# Some Papers on Maude and on Rewriting Logic

From The Maude System

A friendly introduction to the latest advances in the symbolic features of Maude will appear in Proc. LOPSTER 2020: Symbolic Computation in Maude: Some Tapas.

In-depth presentations of Maude, and on how to use its most common features, are available in the following books:

- M. Clavel et al.: All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. LNCS 4350, Springer (2007)

- P.C. Ölveczky: Designing Reliable Distributed Systems - A Formal Methods Approach Based on Executable Modeling in Maude. Springer (2017)

Several bibliographies and surveys on rewriting logic and Maude have been published:

- M. Clavel et al.: Two Decades of Maude. Logic, Rewriting, and Concurrency: 232-254 (2015). A pre-print is available here.

- J. Meseguer: Twenty years of rewriting logic. J. Log. Algebraic Methods Program. 81(7-8): 721-781 (2012). A pre-print is available here.

- N. Martí-Oliet, M. Palomino, and A. Verdejo: Rewriting logic bibliography by topic: 1990–2011. J. Log. Algebraic Methods Program. 81: 782-815 (2012)

- N. Martí-Oliet and J. Meseguer: Rewriting logic: roadmap and bibliography. Theor. Comput. Sci. 285(2): 121-154 (2002). A pre-print is available here.

The following papers may serve as a selection of such huge body of work:

- S. Eker et al.: The Maude strategy language. J. Log. Algebraic Methods Program. 134: 100887 (2023)

- S. Liu et al.: Bridging the semantic gap between qualitative and quantitative models of distributed systems. Proc. ACM Program. Lang. 6 (OOPSLA2): 315-344 (2022)

- F. Durán et al.: Programming and symbolic computation in Maude. J. Log. Algebraic Methods Program. 110 (2020). A pre-print is available here.

- J. Meseguer: Generalized rewrite theories, coherence completion, and symbolic methods. J. Log. Algebraic Methods Program. 110 (2020). A pre-print is available here.

- F. Durán, J. Meseguer, and C. Rocha: Ground confluence of order-sorted conditional specifications modulo axioms. J. Log. Algebraic Methods Program. 111: 100513 (2020). A pre-print is available here.

- C. Rocha, J. Meseguer, C. Muñoz: Rewriting modulo SMT and open system analysis. J. Log. Algebraic Methods Program. 86(1): 269-297 (2017)

- S. Escobar, R. Sasse, J. Meseguer: Folding variant narrowing and optimal variant termination. J. Log. Algebraic Methods Program. 81(7-8): 898-928 (2012)

- F. Durán and J. Meseguer: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Log. Algebraic Methods Program. 81(7-8): 816-850 (2012). A pre-print is available here.

- J. Meseguer, M. Palomino, and N. Martí-Oliet: Algebraic simulations. J. Log. Algebraic Methods Program. 79(2): 103-143 (2010). A pre-print is available here.

- J. Meseguer, M. Palomino, and N. Martí-Oliet: Equational abstractions. Theor. Comput. Sci. 403(2-3): 239-264 (2008). A pre-print is available here.

- M. Clavel, J. Meseguer, and M. Palomino: Reflection in membership equational logic, many-sorted equational logic, Horn logic with equality, and rewriting logic. Theor. Comput. Sci. 373(1-2): 70-91 (2007)

- P.C. Ölveczky and J. Meseguer: Semantics and pragmatics of Real-Time Maude. High. Order Symb. Comput. 20(1-2): 161-196 (2007)

- F. Durán and J. Meseguer: Maude's module algebra. Sci. Comput. Program. 66(2): 125-153 (2007)

- R. Bruni and J. Meseguer: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1-3): 386-414 (2006)

- M. Clavel et al.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285(2): 187-243 (2002). A pre-print is available here.

- J. Meseguer: Membership algebra as a logical framework for equational specification. WADT: 18-61 (1997)

- N. Martí-Oliet and J. Meseguer: Rewriting logic as a logical and semantic framework. WRLA: 190-225 (1996)

- J. Meseguer: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1): 73-155 (1996)

Some Additional Papers on Maude and on Rewriting Logic are available here.