Twenty Years of Rewriting Logic

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign, IL 61801, USA

Abstract

Rewriting logic is a simple computational logic that can naturally express both
concurrent computation and logical deduction with great generality. This paper
provides a gentle, intuitive introduction to its main ideas, as well as a survey of
the work that many researchers have carried out over the last twenty years in
advancing: (i) its foundations; (ii) its semantic framework and logical framework
uses; (iii) its language implementations and its formal tools; and (iv) its many
applications to automated deduction, software and hardware specification and
verification, security, real-time and cyber-physical systems, probabilistic sys-
tems, bioinformatics and chemical systems.

Key words: rewriting logic, concurrency, logical frameworks, temporal logics,
formal specification and verification, programming language semantics,
networks and distributed systems, real-time systems, probabilistic systems,
security, bioinformatics.

To the loving memory of my mother, Fuensanta Guaita Sdnchez

Contents
1 Introduction 3
1.1 How to Read this Survey 4
2 Rewriting Logic in a Nutshell 4
2.1 Semantic Framework Uses: A Communication Protocol Example 7
2.2 Logical Framework Uses: A Propositional Satisfiability Example 11
3 Foundations 15
3.1 Rewriting Logic o 16
3.1.1 Operational and Denotational Semantics of Rewrite Theories 18
3.1.2 Generalized Rewrite Theories 19
3.2 Computability and Coherence 20
3.3 Unification, Generalization, Narrowing, and Symbolic Reachability 23
3.4 Reflection 26

Preprint submitted to The Journal of Logic and Algebraic Programming June 29, 2012

3.5 Strategies e
3.6 The p-Calculus
3.7 Sufficient Completenesso
3.8 Termination
3.9 Real-Time Rewrite Theories
3.10 Probabilistic Rewrite Theories
3.11 Temporal Logic Properties

3.11.1 Temporal Logics o i

3.11.2 Model-Checking Verification of Rewrite Theories

3.11.3 Deductive Verification of Rewrite Theories
3.12 Simulation and Abstractiono Lo

Rewriting Logic as a Logical and Semantic Framework

4.1 Representing Logics L Lo
4.2 Representing Models of Concurrency
4.3 Rewriting Logic Semantics of Programming Languages

4.4 Representing Distributed Systems, Software Architectures, and Models
Rewriting Logic Languages

5.1 CafeOBJ. o e
5.2 ELAN . . . e e
5.3 Maude
Tools

6.1 Formal Tools for Rewriting Logic
6.1.1 The Maude Church-Rosser Checker and Coherence Checker (CRChC) .
6.1.2 The CARIBOO Termination Tool
6.1.3 The Maude Termination Tool (MTT) and p-Term
6.1.4 The Maude Sufficient Completeness Checker (SCC)
6.1.5 The Maude Inductive Theorem Prover (ITP)
6.1.6 The Maude Formal Environment (MFE)
6.1.7 The Declarative Maude Debugger
6.1.8 Real-Time Maude,
6.1.9 The PMaude Language Design
6.1.10 VeStA and PVeStA

6.2 Some Domain-Specific Tools o000
6.2.1 JavaFAN
6.22 K-Maude
6.2.3 The MatchC Tool
6.2.4 The Maude-NPA
6.2.5 MOMENT2 e

Some Applications

7.1 Automated Deduction Applications

7.2 Software and Hardware Specification and Verification.
7.2.1 Modeling Languages e
7.2.2 Programming Languages. 0L
7.2.3 Hardware Specification and Verification
7.2.4 Networks, Distributed Architectures, Middleware and Coordination . . .

7.3 Security
7.3.1 Cryptographic Protocol Specification and Analysis
7.3.2 Network Security L o
7.3.3 Browser Security
7.3.4 Access Control
7.3.5 Code Securityo

7.4 Real-Time and Cyber-Physical Systems
7.4.1 Real-Time Network Protocols
7.4.2 Middleware for Distributed Real-Time Systems

7.4.3 Real-Time Programming Languages 79

7.4.4 Real-Time Modeling Languages 80

7.4.5 Resource Sharing Protocols 83

7.4.6 Cyber-Physical Systems 83

7.5 Probabilistic Systemso 85
7.5.1 Distributed Embedded Systems 85

7.5.2 Distributed Stochastic Hybrid Systems 86

7.6 Bioinformatics, Chemical Systems, and Membranes 87
7.6.1 Bioinformatics Lo 87

7.6.2 Chemical Systems e 91

7.6.3 Membrane Systemso o 91

8 Some Future Research Directions 92
9 Conclusions 93

1. Introduction

The first three papers on rewriting logic were published in 1990 [312, 311,
314]; they were then expanded in [315, 316]. Since that time, many researchers
around the world have made important contributions to its foundations, tools,
and applications. Since 1996, the Workshop on Rewriting Logic and its Ap-
plications has met biennially, with the 2010 Paphos meeting being its eighth
edition, the Workshop on Rewriting Techniques for Real-Time Systems held its
first edition in Spitsbergen in March 2010, and many hundreds of papers have
been published on the subject ([301] contains a bibliography up to 2002, and
this journal issue contains an up-to-date bibliography). This growth makes it
desirable to reflect from time to time upon the advances made, survey such
advances, and perhaps get some glimpses and make some guesses about future
directions. It is somewhat like taking a snapshot of a person at age twenty.
I have taken some similar, total or partial pictures at earlier ages, as a child
[318, 321, 320], and as a teenager [301] (with Narciso Mart{-Oliet) and [324]. It
seems appropriate to attempt taking a coming-of-age picture, and to ask some
questions about rewriting logic such as the following:

e How well-developed are its mathematical foundations?

e To what extent have its goals as a semantic framework for concurrency,
and as a logical framework, been achieved?

e Which languages and tools supporting rewriting logic programming, spec-
ification, and verification have been developed?

e In which application areas has it been shown useful?
e What do its future prospects look like?

This paper is both a survey of the work that has been done, and my own attempt
to answer the above questions.

I am grateful to the many gifted researchers who have contributed to the
rewriting logic research program. I will explicitly mention some of them and

some of their contributions. But I cannot really do justice to either all of them or
all their contributions. This is due, in part, to my own limitations in keeping up
with a vast and fast-growing literature; and to the impossibility, within the scope
of this survey, of discussing, even summarily, the many hundreds of publications
on the subject. The compilers of the detailed bibliography contained in this issue
have gathered and organized by topic all the contributions that seem to have
been made to date. I refer to this bibliography for a more complete picture of
the different research directions that here I can only describe in broad outlines.

1.1. How to Read this Survey

This survey can be read in various ways, depending on the research interests,
time, and degree of previous acquaintance with the overall area. For somebody
unfamiliar with the area, not particularly interested in the mathematical foun-
dations, and trying to gain a first overview of it, I would suggest reading first
Sections 2, 4, and 7, and then looking at the other sections as needed. For a
reader with a formal methods background, I would instead suggest reading first
Sections 2, 3, 4, 5, and 6, and then looking at applications in Section 7 as needed.
More specialized readings are also possible. For example, somebody only inter-
ested in security (resp. bioinformatics) applications could probably jump from
Section 2 directly into Section 7.3 (resp. 7.6.1). Of course, for somebody trying
to get an in-depth understandig of the whole area, I would recommend reading
the entire survey from beginning to end.

2. Rewriting Logic in a Nutshell

Since the main goal of this paper is to facilitate access to a large body of
research ideas to readers who may not be familiar with rewriting logic, it does
not seem out of place to explain and illustrate, in an informal and impressionistic
way, what rewriting logic is, and how it can be used.

Rewriting logic is like a coin with two sides: a computational side and a
logical side. These two sides are complementary viewpoints on the same reality.
Some applications fall more obviously into one of these sides, but when viewed
as rewrite theories their other side is always present.

Computationally, rewriting logic is a semantic framework in which many dif-
ferent models of concurrency, distributed algorithms, programming languages,
and software and hardware modeling languages can be naturally represented,
executed and analyzed as rewrite theories (see Sections 4.2—4.4). Logically, it is
a logical framework within which many different logics, and automated deduc-
tion procedures can likewise be represented, mechanized, and reasoned about
(see Section 4.1).

Whenever anybody is selling you a semantic or logical framework you should
be wary. A key reason for waryness is that such a framework may work in
principle, but it may create a big gap between what is represented and its rep-
resentation. I call this the representational distance imposed by the framework.
For example, Turing machines provide an, in principle unobjectionable, seman-
tic framework for sequential programming languages; but nobody uses them to

define a language’s semantics, except perhaps in the sense that a compiler for
a language closely resembles a Turing machine semantics for it. There is just
too much distance between a high-level programming language and a Turing
machine, and much, including all the language’s features, is lost in translation.
In this regard, the evidence accumulated over the last twenty years strongly
supports the claim that rewriting logic can rightfully be said to have “e rep-
resentational distance” as a semantic and logical framework. That is, what is
represented and its representation are often isomorphic structures, typically dif-
fering only because of the slightly different notations used, but agreeing on all
the main features.!

Why is this so? Whenever you represent a concurrent system or a logic,
there are two key aspects about such a representation, which could be called
the static and the dynamic aspects, and rewriting logic happens to be very
well-suited for naturally representing both. Representing the static aspect of
a concurrent system means representing its distributed states, while represent-
ing that of a logic means representing its formulas. Instead, representing the
dynamic aspect of a concurrent system means representing its concurrent tran-
sitions, while representing that of a logic means representing its inferences.

The reason why rewriting logic’s representational distance is typically € is
that a rewrite theory R = (X, E, R) consists of an equational theory (%, E)
and a set of (possibly conditional) rewrite rules R, where (X, F) specifies the
statics and R specifies the dynamics. If we are using (X, E, R) to represent a
concurrent system (resp. a logic), then the distributed states (resp. formulas)
of such a system are specified by the equational theory (X, E), where X is a
collection of typed operators which includes the state constructors that build
up a distributed state out of simpler state components (resp. the logical and non-
logical symbols that build up a formula), and where E specifies the algebraic
identities that such distributed states (resp. formulas) enjoy. That is, distributed
states (resp. formulas) are specified as elements of an algebraic data type, namely,
the initial algebra of the equational theory (X, E). Concretely, this means that
a distributed state (resp. a formula) is mathematically represented as an E-
equivalence class [t]g of terms (i.e., algebraic expressions) built up with the
operators declared in X2, modulo provable equality using the equations F, so that
two state (resp. formula) representations t and ¢’ describe the same state (resp.
formula) if and only if one can prove the equality ¢ = ¢’ using the equations E.
The great generality with which algebraic data types can faithfully represent any
data structures such as states or formulas (including binding operators such as
quantifiers, A-abstraction, and so on, which have a natural algebraic specification
using a calculus of explicit substitutions such as CINNI [430]) is the reason why
the static aspect can typically be represented with an e representational distance.

The dynamic aspect of a system or logic represented as a rewrite theory

1When even the notation is identical, I speak of “0 representational distance,” but the key
point in either case is the isomorphic way in which a formalism is faithfully represented within
a framework.

R = (%, E, R) is specified by its set R of rewrite rules. Why are they likewise
so flexible? I focus first on concurrent systems specified with unconditional
rewrite rules; the case of logics is discussed afterwards. What the rules R then
represent are the system’s local concurrent transitions. Each rewrite rule in R
has the form ¢t — #/, where ¢t and ' are algebraic expressions in the syntax of
Y. The lefthand side t describes a local firing pattern, and the righthand side
t' describes a corresponding replacement pattern. That is, any fragment of a
distributed state which is an instance of the firing pattern ¢ can perform a local
concurrent transition in which it is replaced by the corresponding instance of
the replacement pattern t’. Both ¢ and t' are typically parametric patterns,
describing not single states, but parametric families of states. The parameters
appearing in ¢t and ¢ are precisely the mathematical variables that t and t
have, which can be instantiated to different concrete expressions by a mapping
0, called a substitution, sending each variable = to a term #(x). The instance of
t by 6 is then denoted 6(¢).

The most basic logical deduction steps in a rewrite theory R = (X, E, R) are
precisely atomic concurrent transitions, corresponding to applying a rewrite rule
t — ¢ in R to a state fragment which is an instance of the firing pattern ¢ by some
substitution 6. That is, up to E-equivalence, the state is of the form C[0(¢)],
where C'is the rest of the state not affected by this atomic transition. Then, the
resulting state is precisely C[0(t')], so that the atomic transition has the form
Co(t)] — COt)]. Rewriting is intrinsically concurrent, because many other
atomic rewrites can potentially take place in the rest of the state C' (and in the
substitution 6), at the same time that the local atomic transition 6(t) — 6(t')
happens. That is, in general one may have complex concurrent transitions of the
form C[0(t)] — C'[¢' ()], where the rest of the state C' has evolved to C" and
the substitution 6 has evolved to ' by other (possibly many) atomic rewrites
simultaneous with the atomic rewrite 6(¢t) — 0(¢'). The rules of deduction of
rewriting logic [315, 80] (which in general allow rules in R to be conditional)
precisely describe all the possible, complex concurrent transitions that a system
can perform, so that concurrent computation and logical deduction coincide.
Such inference rules are discussed in Section 3.1.

If instead we adopt a logical point of view, so that the rewrite theory R =
(%, E, R) represents a logic, then the rewrite rules R exactly specify the inference
rules of the logic. What the rules rewrite may be formulas, or other formula-
based data structures such as sets or lists of formulas, sequents, and so on. In the
simplest case of an unconditional rewrite rule ¢ — t/, we describe an inference
step in which we pass from a formula or formula-based structure which is an
instance of the pattern ¢ to another such formula or structure which is the
corresponding instance of t/, perhaps in a context C. That is, such atomic
inference steps again take the form C[0(t)] — C[0(¢')], for 6 the substitution
instantiating the patterns ¢ and ¢'. Often, however, logical inference steps are
conditional, and this may happen in two different ways. First, an inference step
t — t' may only be allowed if we can previously show that other related steps,
say, u; — v1,...,U, — U, can be taken. Second, the inference step may be
further constrained by a so-called side condition such as, for example, that a

certain variable involved in the step is not a free variable in a given formula.
Algebraically, such side conditions can be represented as equational constraints
of the form wy, = ¢4 A ... A w,, = ¢n. The € representational distance of
rewriting logic as a logical framework is due to the fact that such conditional
inference rules can be exactly represented in R as conditional rewrite rules of
the form

t—t if ui =V A AU, =V AW =@ A .o A W = G-

Of course, what we regard as concurrent computation or as logical deduction
may, like beauty, be just in the eyes of the beholder. For example, we may regard
any rewrite theory (X, F, R) where ¥ has just a binary operator ® and some
constants, including a unit element I, F has associativity and commutativity
axioms for ® and an axiom for I as identity of ®, and R is a collection of
unconditional ground rewrite rules, as either a Petri net, or as a theory in
the linear conjunctive (®) fragment of propositional linear logic [299]. But
since both structures are mathematically isomorphic, there is no fact of the
matter about which viewpoint should be adopted: this is just a pragmatic issue
depending on what applications one has in mind.

I illustrate below all the ideas just discussed by means of two simple exam-
ples, one of a concurrent object system and another of an automated deduction
procedure. For concreteness I give the specifications in Maude [105, 106], a
language and system implementation directly based on rewriting logic (rewrit-
ing logic languages are discussed in Section 5). This emphasizes that rewriting
logic is a computational logical and semantic framework, so that systems and
logics can not only be mathematically represented: they can also be efficiently
executed if they satisfy some minimum requirements (see Section 3.2).

2.1. Semantic Framework Uses: A Communication Protocol Example

I present a concurrent object-based system —namely, a simple communica-
tion protocol— specified in Maude. Maude’s syntax is user-definable: operators
can be declared with any desired “mixfix” syntax. A concurrent state made
up of objects and messages can be thought of as a “soup” in which objects
and messages are freely floating and can come into contact with each other in
communication events. Mathematically, this means that the concurrent state,
called a configuration, is modeled as a multiset or bag built up by a multiset
union operator which satisfies the axioms of associativity and commutativity,
with the empty multiset as its identity element. We can, for example, denote
multiset union with empty syntax, that is, just by juxtaposition by declaring the
type (called a sort) Configuration of configurations, which contains the sorts
Object and Msg as subsorts, the empty configuration none, and the configura-
tion union operator as follows:

sorts Object Msg Configuration .

subsorts Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none] .

Each operator is declared with the op keyword, followed by its syntax, the list
of its argument sorts, an arrow ->, and its result sort. The configuration union
operator has two argument positions, which are marked by underbars. Before
and/or after such underbars, any desired syntax tokens can be declared. In this
case an empty syntax (juxtaposition) has been chosen, so that no syntax tokens
at all are declared. Note that constants like none are viewed as operators with
no arguments. The keyword config declares that this is a union operator for
configurations of objects and messages (the significance of this for fair execution
is explained in Section 3.5). The assoc comm id: none attributes declare the
associativity axiom (z y) z = z (y 2), the commutativity axiom z y = y x, and
the identity axiom z none = x. Maude then supports rewriting modulo such
axioms, so that a rule can be applied to a configuration regardless of parentheses,
and regardless of the order of arguments. The ctor keyword declares that both
none and __ are state-building constructors, as opposed to functions defined on
such constructors (see Section 3.7).

Consider an object-based system containing three classes of objects, namely,
Buffer, Sender, and Receiver objects, so that a sender object sends to the
corresponding receiver a sequence of values (say natural numbers) which it reads
from its own buffer, while the receiver stores the values it gets from the sender
in its own buffer. In Maude’s Full Maude language extension (see Part IT of
[106]), such object classes can be declared as subsorts of the Object sort in
class declarations, which specify the names and sorts of the attributes of objects
in the class. The above three classes can be defined with class declarations:

class Buffer | q : NatList, owner : 0id .
class Sender | cell : Nat?, cnt : Nat, receiver : 0id .
class Receiver | cell : Nat?, cnt : Nat .

In general, if a class C1 has been declared with attributes al of sort A1, ...,
an of sort An, in a class declaration

class C1 | al : A1, ... , an : An .

then an object o of class C1 is a record-like structure of the form:

<o:Cl | at :vl, ..., an : vn >

where each vi is a term of sort Ai. For example, the sort 0id of object identifiers
can use quoted identifiers as object names by importing the QID module, where
quoted identifiers have sort Qid, and giving the subsort declaration Qid < 0id.
Similarly, by importing the module NAT, where the natural numbers are the
elements of sort Nat, one can then define the supersort Nat? of Nat containing
an empty value mt, and the sort NatList of lists of natural numbers as follows:

sorts Nat? NatList .

subsorts Nat < Nat? NatList .

op mt : -> Nat? [ctor] .

op nil : -> NatList [ctor] .

op _._ : NatList NatList -> NatList [ctor assoc id: nil] .

then the following is an initial configuration of a sender and a receiver object,
each with its own buffer, and each with its cell currently empty:

< ’a : Buffer | g : 1 .2 .3, owner : ’b >

< ’b : Sender | cell : mt , cnt : O , receiver : ’d >
< ’c : Buffer | q : nil , owner : ’d >

<

’d : Receiver | cell : mt , cnt : 1 >

A sender object can send messages to its corresponding receiver object. The
specifier has complete freedom to define the format of such messages by declaring
operators of sort Msg, using the msg keyword instead of the more general op
keyword to emphasize that the resulting terms are messages. For example, one
can choose the following format:

msg to_::_from_cnt_ : 0id Nat 0id Nat -> Msg .

where a message, say, to ’d :: 3 from ’b cnt 1, means that ’b sends to
’d the data item 3, with counter 1, indicating that this is the first element
transmitted. This last information is important, since message passing in a
configuration is usually asynchronous, so that messages could be received out-
of-order. Therefore, receiver objects need to use the counter information to
properly reassemble a list of transmitted data. Of course, out-of-order com-
munication is just one possible situation that can be modeled. If, instead, one
wanted to model in-order communication, the distributed state could contain
channels, similar for example to the buffer objects, so that axioms of associa-
tivity and identity are satisfied when inserting messages into a channel, but not
commutativity, which is the axiom allowing out-of-order communication in a
configuration of objects and messages. Up to now we have just defined the dis-
tributed states of our object-based system as the algebraic data type associated
to the equational theory (X, E), where ¥ is the signature whose sorts have been
declared with the sort (and class) keywords, with subsort relations declared
with the subsort keyword, and whose operators have been declared with the
op (or msg) keywords; and where the equations E have been declared? as equa-
tional axioms of associativity and/or commutativity and/or identity associated
to specific operators, declared with the assoc, comm and id: keywords.

What about the concurrent transitions for buffers, senders, and receivers?
They are specified by rewrite rules R such as the following (note that, by con-
vention, object attributes not changed by a rule need not be mentioned in its
righthand side):

vars X Y Z : 0id . vars NE : Nat . vars L L’ : NatList .
rl [read] : < X : Buffer | q : L . E, owner : Y >
Y

: Sender | cell : mt, cnt : N, receiver: Z >

<
<
=>< X : Buffer | g : L > <Y : Sender | cell : E, cnt : N + 1 >

2In Maude one can also declare explicit equations with the eq and ceq keywords. See
Section 2.2 for an example.

rl [write] : < X : Buffer | q : L, owner : Y > < Y : Receiver | cell : E >
=> <X : Buffer | g : E. L > <Y : Receiver | cell : mt >

rl [send] : < Y : Sender | cell : E, cnt : N, receiver : Z >
=>< Y : Sender | cell : mt > (to Z :: E from Y cnt N)

rl [receive] : < Z : Receiver | cell : mt, cnt : N > (to Z :: E from Y cnt N)
=> < Z : Receiver | cell : E, cnt : N + 1 >

That is, senders can read data from the buffer they own and update their count;
and receivers can write their received data in their own buffer. Also, each time a
sender has a data element in its cell, it can send it to its corresponding receiver
with the appropriate count; and a receiver with an empty cell can receive a data
item from its sender, provided it has the correct counter. Note that rewriting is
intrinsically concurrent; for example, b could be sending the next data item to
’d at the same time that ’d is receiving the previous data item or is writing it
into its own buffer; furthermore, there could be many different sender-receiver
pairs executing concurrently in the same configuration. Note also that the rules
send and receive describe the asynchronous message passing communication
between senders and receivers typical of the Actor model [3]. Instead, the read
and write rewrite rules describe synchronization events, in which a buffer and its
owner object synchronously transfer data between each other. This illustrates
the flexibility of rewriting logic as a semantic framework: no assumption of
either synchrony or asynchrony is built into the logic. Instead, many different
styles of concurrency and of in-order or out-of-order communication can be
easily modeled.

Since the above rewrite theory is executable, we can use its rewrite rules not
just as a formal specification, but also for simulation purposes. For example,
from the initial state described above, where the sender’s buffer had a list 1 . 2

3 and the receiver’s buffer was empty, we would expect the above rewrite rules
to achieve in-order communication, so that in the final state the sender’s buffer
is empty and the receiver’s buffer has the list 1 . 2 . 3. Maude achieves a
rule-fair execution with the rewrite command. To support the object-oriented
notation for classes, objects, and messages used in this example, we can declare
the above sorts, subsorts, classes, and rules in an object-oriented module in
Maude’s Full Maude extension (see [106]). Then, to execute our system from the
above-mentioned initial state we can give to Full Maude the following command
(note that all Full Maude module declarations and commands must be enclosed
in parentheses):

Maude> (rewrite < ’a : Buffer | q : 1 . 2 . 3 , owner : ’b >
< ’b : Sender | cell : mt , cnt : O , receiver : ’d >
< ’c : Buffer | q : nil , owner : ’d >

< ’d : Receiver | cell : mt , cnt : 1 > .)

result Configuration :
< ’a : Buffer | owner : ’b, q : nil >
< ’b : Sender | cell : mt, cnt : 3, receiver : ’d >
< ’c : Buffer | owner : ’d, q :(1 . 2 . 3) >

10

< ’d : Receiver | cell : mt, cnt : 4 >

2.2. Logical Framework Uses: A Propositional Satisfiability Example

Procedures for propositional satisfiability (SAT) are very useful in many ap-
plications, including SAT solving modulo decidable theories in first-order theo-
rem proving. Sometimes, however, in the quest for performance the algorithmic
details of a SAT solver may become so involved that it is unclear whether it
is sound. In fact, this is not a theoretical possibility but a real concern in ac-
tual SAT solvers. What is needed is a clear separation of concerns between the
SAT solver’s inference system and its (typically quite sophisticated) heuristics.
This separation of concerns has been advocated by Cesare Tinelli, who gave a
precise sequent calculus specification of the Davis-Putnam-Logemann-Loveland
(DPLL) SAT solving procedure, from which a proof of its correctness is quite
direct, in [453]. T discuss in what follows a slightly enhanced version of Tinelli’s
inference system in [453], which Tinelli and I then used to develop the rewriting
logic specification of the inference system executable in Maude discussed below.
Tinelli’s sequent-based formalization is as follows. To reason about the satisfia-
bility of a propositional formula ¢ we first put it in conjuntive normal form as a
conjunction of clauses Cy A ... A Cy,, where a clause C' is a disjunction of literals,
which is logically equivalent to the set of clauses I' = {C},...,C,}. The DPLL
procedure can then be formalized as a sequent-based inference system with se-
quents of the form A F T', where A is a set of literals, i.e., of atomic propositions
p or negations —p of such propositions, and where I is a set of clauses. A set of
clauses I" will be satisfiable iff from the initial sequent) - I" we can derive a se-
quent of the form A + @) using the DPLL inference system, where A represents a
satisfying assignment. As usual in sequent formulations, a set I' = {C1,...,Cy}
is written without the enclosing parentheses as I' = C1, ..., (). Likewise, a set
of literals A = {ly,...,l,n} is written A =1;,...,l,;,,. The DPLL procedure can
then be formalized as the following inference system:

AFT,IVC | AFT,IVC |

(subsume) ALT if le A (resolve) AFT.C if "le A
AFT,I AFT,O
(assert) mzflg{A,—'lgA (close) szA#@\/F#@
AFT
(split) VO ifIdA, ~l¢A, C4D

AJIFT A-IFIL,C

where O denotes the empty clause, C ranges over clauses, and for [any lit-
eral, ==l = [. The rewriting logic formalization of this inference system as
a rewrite theory Rpprr = (Xpprrr, EpprL, Rpprr) must axiomatize sequents
as the algebraic data type of the equational theory (Xpprr, Fpprr), and then
axiomatize the inference rules as rewrite rules in Rpprr. We can, however,
do better than that. Because of rewriting logic’s distinction between equations

11

and rules, we can choose to axiomatize as equations those inference rules that
are deterministic (in the sense that their combined application will lead to a
unique final result) and that should always be applied exhaustively. We only
need to axiomatize as rules the truly nondeterministic rules. This makes the
specification both more clever, since it makes explicit the implicit determinism,
and much more efficient, because it can drastically reduce the amount of search
required, given that search is now only needed for the nondeterministic rules.
For the above DPLL inference system, only the split rule is nondeterministic:
all other rules can be axiomatized equationally. The rewriting logic axiomati-
zation Rpprr = (Xpprr, Epprr, Rpprr) is in fact executable in Maude as the
DPLL module below and can be used as a prototype of the DPLL procedure.
Of course, the real smarts of a SAT solver are in its heuristics; but this is
the whole point of Tinelli’s proposal: we should cleanly separate between the
inference system and its heuristics and not mix the two together in a confusion
of pointers. Nevertheless, the rewrite theory RDPLL = (EDPLL7 EDPLL; RDPLL)
captures in a declarative way a simple but important part of those heuristics,
namely, it identifies those deterministic rules that should always be applied ex-
haustively; but it leaves unspecified the heuristics for applying the split rule.
Heuristics or, more precisely, strategies are a separate and modular dimension
of a rewrite theory that I discuss in Section 3.5. The same rewrite theory can
be executed with many different strategies, which may be better or worse in
various regards; but strategies, being now a particular way of applying intrinsi-
cally correct rules, can never affect correctness. For DPLL and DPLL(T) this
completely agrees with Tinelli’s approach in [453] and in his later joint work
with Nieuwenhuis and Oliveras [356], where the issue of strategies is discussed
in depth. Although the above DPLL calculus does not model fundamental
features of modern SAT solvers such as back-jumping, conflict resolution, and
clause learning, the Abstract DPLL framework of [356] —which could also be
naturally specified as a rewrite theory— can express such features declaratively,
so that a clean separation between heuristics and inference rules is maintained.

mod DPLL is protecting QID .
sorts Literal Context Clause ClauseSet Sequent .
subsorts Qid < Literal < Context Clause < ClauseSet .

op ~ : Literal -> Literal .

op null : -> Context .

op _,_ : Context Context -> Context [assoc comm id: null] .

op _,_ : ClauseSet ClauseSet -> ClauseSet [assoc comm id: null] .
op [: -> Clause .

op _\/_ : Clause Clause -> Clause [assoc comm id: ([1)] .

op _|-_ : Context ClauseSet -> Sequent .

op _in_ : Literal Context -> [Booll] .

var p : Qid .

var 1 : Literal .
var CTX : Context .
var C : Clause .

var CS : ClauseSet .

eq "("(1)) =1 .

12

eq 1 in 1,CTX = true .

eq [contraction] : C,C = C .
eq [subsume] : 1,CTX |- €S,(1 \/ C) = 1,CTX |- CS .
eq [resolvel] : p,CTX |- CS,("(p) \/ C) = p,CTX |- CS,C .
eq [resolve2] : ~(p),CTX |- CS,(p \/ C) = “(p),CTX |- CS,C .
eq [closel] : CTX |- C,CS,[] = null |- [] .
eq [close2] : CTX,1 |- CS,[] = null |- [1 .
ceq [assert] : CTX |- CS,1 = CTX,1 |- CS
if (1 in CTX) =/= true and ("(1) in CTX) =/= true .

crl [splitl] : CTX |- CS,(1 \/ C) => 1,CTX |- CS

if (1 in CTX) =/= true and (“(1) in CTX) =/= true and C =/= [] .
crl [split2] : CTX |- CS,(1 \/ C) => ~(1),CTX |- Cs,C

if (1 in CTX) =/= true and (“(1) in CTX) =/= true and C =/= [] .

endm

Let me discuss the rewrite theory Rpprr, = (EDPLL, Epprr, RDPLL) in more
detail. The signature X ppr; describes the sorts, subsorts, constructors, and
auxiliary functions needed for sequents. Note that the order-sorted type struc-
ture in DPLL precisely captures the types of: (i) propositional symbols, repre-
sented here by the sort Qid of quoted identifiers, (ii) literals, (iii) sets of literals,
called contexts, (iv) clauses, and (v) sets of clauses. Sequents are then pairs
of a context and a set of clauses. Negation — is represented by ~ in typewriter
notation, set membership € by in, and the empty set ® by null. All other
operators are typewriter analogues of their mathematical notation.

The equations Eppyy, are essentially of two kinds: those axiomatizing the ba-
sic properties of sequents, and those expressing the deterministic inference rules
subsume, resolve, assert, and close. In any sequent calculus, the first order
of business is to define the so-called structural rules enjoyed by sequents A+ T'.
For propositional and first-order logic, sequents A F T' enjoy structural rules
making A and I' sets of formulas. This is captured above by the assoc, comm
(corresponding to the so-called exchange structural rule of sequents), and id:
attributes of the operator _, _ of set union; but there is still one more structural
rule, namely, the so-called contraction rule expressing the idempotency of set
union, which is specified above as the contraction equation. Not all sequent
calculi obey all these structural rules: linear logic drops contraction, and Lam-
bek’s logic drops both contraction and exchange. The general point is that,
by choosing the right equations, we can capture any desired structural axioms.
Furthermore, by declaring some of them as azioms, we can reason modulo such
axioms without having to explicitly apply them as structural inference rules:
the only exception here is the contraction rule, which is explicitly applied as
a simplification equation modulo the built-in associativity, commutativity, and
identity axioms for set union.

Since negations are restricted to literals in the above type structure, we only
need the equation stating that the double negation of a literal is the literal
itself. Set membership needs only be defined in the positive case by the ob-
vious equation; since we are only defining the positive case, an expression like
’a in ’b,’c,’d, where ’a is not in the set ’b, ’c, ’d, does not have a Boolean
value: its value is the expression itself, which belongs to the supersort [Bool]

13

of Bool automatically added by Maude. For simplicity and efficiency reasons,
except for the assert rule, all deterministic inference rules that had side con-
ditions in Tinelli’s formulation are now specified as unconditional equations
declared with the eq keyword. The simplicity of these unconditional equations
is due to the expressiveness of pattern matching modulo associativity, commu-
tativity and identity, which can capture the corresponding side conditions in
the lefthand side patterns. Sometimes, as in the case of resolve and close, two
equations are needed to specify one rule. This is done to express the condi-
tions of the corresponding inference rules in the patterns of the unconditional
equations, such as the disjunction of either A or I' being nonempty in the side
condition of close, and the side condition of the resolve inference rule. Finally,
the two conditional rewrite rules in Rpprr, declared with the crl keyword, ex-
actly capture the two inference rules specified by the two different outcomes of
the split rule. Note that we could have instead chosen to represent the DPLL
inference rules au pied de la lettre. For example, using the or operator from the
implicitly imported BOOL module, we could have represented the close rule by
the single conditional equation

ceq [close]l : CTX |- CS,[] = null |- [] if CTX =/= null or CS =/= null .

As already mentioned, the particular choice of equations and rules in DPLL is
motivated by two reasons: first, to illustrate the high expressive power of match-
ing modulo associativity, commutativity and identity, which allows expressing
some conditions directly in the lefthand side pattern; and second, for efficiency
reasons, since unconditional equations and rules can be executed more efficiently
than condional ones. Again, the representational distance between the textbook
formulation of the DPLL sequent calculus and its expression in an executable
form in the rewriting logic framework, whether in the more literal way just al-
luded to or the freer one in the DPLL module, can be fairly described as an €
distance. Furthermore, rewriting logic’s distinction between equations and rules
gives a specifier additional expressive power to discriminate between determin-
istic and nondeterministic inference rules.

The above inference system, being an executable rewrite theory, provides
a prototype implementation of a DPLL-style SAT solver. Of course, since
the DPLL inference system is non-deterministic, using Maude’s rewrite com-
mand is not enough, since the concrete sequence of inference steps followed
by the default strategy of the rewrite command could result in an assign-
ment not satisfied by the given formula, when the formula is actually satis-
fiable. Omne option is to specify a strategy that applies the DPLL rules in
a way that guarantees that a satisfying assignment will be found if there is
one; this could be done using Maude’s strategy language [175]. A simpler
option is to use Maude’s search command, where we begin with an initial
term ¢ and search for a rewrite sequence reaching a term # which is a sub-
stitution instance of a pattern (a term with variables) specified as the goal
of the search command. For example, the satisfiability of a formula such as
Ca \/ ~Cb) \/ ’e), (“Ca) \/ 'b \/ ’c), (Ca \/ ’b), can be decided by giving to

14

Maude a search command to look for a satisfying assignment, which is rep-
resented as a sequent of the form cTx |- nuil. Therefore, we begin with the
sequent null |- (Ca \/ ~(’b) \/ ’c), ("(’a) \/ ’b \/ ’c), (’a \/ ’b) and search
for a sequence of DPLL inference steps bringing us to a sequent which is an
instance of the pattern c¢Tx |- null. If we are interested in just one solution, we
can qualify the search command with the [1] request for the first solution as
follows:

Maude> search [1] null |- (Pa \/ “(Cb) \/ ’c), ("C’a) \/ b \/ ’c), CCa \/ ’b)
=>+ CTX |- null .

Solution 1 (state 4)
CTX --> ’a,’c,”(’b)

which tells us that we can reach the satisfying assignment ’a,’c,”(’b) |- null
by instantiating the pattern’s variable cTx to the context ’a,’c,~(’b). Instead,
if we are interested in all satisfying assignments, we can give the unqualified
search command (note that some satisfying assignments below are special cases
of more general ones):

Maude> search null |- (Pa \/ “(b) \/ ’¢c), ("C’a) \/ b \/ ’c), (Ca \/ ’b)
=>+ CTX |- null .

Solution 1 (state 4)
CTX --> ’a,’c,”(’b)

Solution 2 (state 5)
CTX --> ’b,’c,”(’a)

Solution 3 (state 7)
CTX --> ’a,’b

Solution 4 (state 8)
CTX --> ’a,’c

Solution 5 (state 9)
CTX --> ’a,’b,”(’c)

Solution 6 (state 10)
CTX --> ’b,’c

No more solutionms.

3. Foundations

The foundations of rewriting logic begin of course with its proof theory and
its model theory, but have various other aspects such as reflection, strategies,
and executability properties. Furthermore, rewrite theories themselves can be
extended to model real-time systems and probabilistic systems. Finally, the
properties enjoyed by a rewrite theory need not be just those expressible in
rewriting logic itself: they may also be expressible in other logics, such as tem-
poral logics. Temporal logic properties can then be verified by model checking
or deductive methods.

15

3.1. Rewriting Logic
A rewrite theory? is a tuple R = (3, E, R), with:

e (X, E) an equational theory with function symbols ¥ and equations FE;
and

e R a set of labeled rewrite rules of the general form
rit—t

with r a label and ¢, ¢’ Y-terms which may contain variables in a countable
set X of variables which we assume fixed in what follows; that is, ¢ and ¢’
are elements of the term algebra 7% (X). In particular, their corresponding
sets of variables, vars(t), vars(t') are both contained in X.

Given R = (X, E, R), the sentences that R proves are rewrites of the form,
t — t/, with ¢,¢ € Tx(X), which are obtained by finite application of the
following rules of deduction:

e Reflexivity. For each ¢t € Tx(X), P
=

u—v ElFu=4 Erov=1

uw =

e Equality.
e Congruence. For each f : ky...k, — kin X, and ¢;,t, € Tx(X), 1 <
1 < n,
t1 =t .t —

fltr, .o otn) = f(H, ...)

e Replacement. For each rule r : ¢ — ¢’ in R, with, say, vars(t)Uvars(t') =
{z1,...,z,}, and for each substitution 0 : {z1,...,z,} — Tx(X), with
O(x;) = pi, 1 <1< n, then

pL—pPy .. DPn— D
0(t) — ¢'(t')

3 As already mentioned in Section 2, rewrite rules can be conditional. To simplify the
exposition I present here the simplest version of rewrite theories, namely, unconditional rewrite
theories over an unsorted equational theory (X, E'). In general, however, the equational theory
(X, E) can be many-sorted, order-sorted, or even a membership equational theory [319]. And
the rules can be conditional, where a rule’s condition has a conjunction of rewrites, equalities,
and even memberships, that is, rules have the general form

rot—tif (/\uZ :u;)/\(/\vj :Sj)/\(/\wl — wy)
i 7 l

Furthermore, the theory may also specify an additional mapping ¢ : ¥ — P(N), assigning
to each function symbol f € ¥ (with, say, n arguments) a set ¢(f) = {i1,...,ix}, 1 < i1 <
... < i < nof frozen argument positions under which it is forbidden to perform any rewrites.
Rewrite theories in this more general sense are studied in detail in [80]; they are clearly more
expressive than the simpler unconditional and unsorted version presented here. This more
general notion is the one supported by the Maude language [106]. I discuss further these
generalized rewrite theories in Section 3.1.2.

16

where for 1 < ¢ <n, ¢'(z;) = p}

i

e Transitivity

t1—>t2 t2—>t3

t1—>t3

We can visualize the above inference rules as follows:

Reflexivity
t - t
Equality
u - v
| |
u T v
Congruence

Replacement

Transitivity

17

The notation R + t — t' states that the sequent ¢ — ¢’ is provable in the
theory R using the above inference rules. Intuitively, we should think of the
inference rules as different ways of constructing all the (finitary) concurrent com-
putations of the concurrent system specified by R. The Reflexivity rule says
that for any state ¢ there is an idle transition in which nothing changes. The
Equality rule specifies that the states are in fact equivalence classes modulo
the equations E. The Congruence rule is a very general form of “sideways
parallelism,” so that each operator f can be seen as a parallel state constructor,
allowing its arguments to evolve in parallel. The Replacement rule supports
a different form of parallelism, which I call “parallelism under one’s feet,” since
besides rewriting an instance of a rule’s lefthand side to the corresponding right-
hand side instance, the state fragments in the substitution of the rule’s variables
can also be rewritten. Finally, the Transitivity rule allows us to build longer
concurrent computations by composing them sequentially.

8.1.1. Operational and Denotational Semantics of Rewrite Theories

A rewrite theory R = (X, F, R) has both a deduction-based operational se-
mantics, and an initial model denotational semantics. Both semantics are de-
fined naturally out of the proof theory just described. The deduction-based
operational semantics of R is defined as the collection of proof terms [315] of
the form « : t — '. A proof term « is an algebraic description of a proof tree
proving R ¢ — t' by means of the inference rules of rewriting logic. As already
mentioned, such proof trees describe the different finitary concurrent computa-
tions of the concurrent system axiomatized by R. When we specify R as a
Maude module and rewrite a term ¢ with the rewrite or frewrite commands,
obtaining a term t' as a result, we can use Maude’s trace mode to obtain a
sequentialized version of a proof term « : t — t’ of the particular rewrite proof
built by the Maude interpreter.

A rewrite theory R = (3, E, R) has also a model-theoretic semantics, so that
the inference rules of rewriting logic are sound and complete with respect to
satisfaction in the class of models of R [315]. Such models are categories with
a (X, E)-algebra structure [315]. These are “true concurrency” denotational
models of the concurrent system axiomatized by R. That is, this model theory
gives a precise mathematical answer to the question: when do two descriptions
of two concurrent computations denote the same concurrent computation? The
class of models of a rewrite theory R = (X, E, R) has an initial model Tr [315].
The initial model semantics is obtained as a quotient of the just-mentioned
deduction-based operational semantics, precisely by axiomatizing algebraically
when two proof terms « : t — ¢/ and 3 : u — u’ denote the same concurrent
computation. Of course, a and [should have identical beginning states and
identical ending states. By the Equality rule this means that we should have
Etrt=wu and E+ t' = u/. That is, the objects of the category 7 are E-
equivalence classes [t] of ground 3-terms, which denote the states of our system.
The arrows or morphisms in 7 are equivalence classes of proof terms, so that
[a] =[] iff both proof terms denote the same concurrent computation according
to the “true concurrency” axioms. Such axioms are very natural. They express

18

that the Transitivity rule behaves as an arrow composition and is therefore
associative. Similarly, the Reflexivity rule provides an identity arrow for each
object, satisfying the usual identity laws. Furthermore, they state that each
f in the Congruence rule acts not only on states but also on arrows as a
functor, i.e., preserving arrow compositions and identitites; this axiomatizes the
true concurrency semantics of “sideways parallelism.” Finally, the “parallelism
under one’s feet” semantics of the Replacement inference rule is axiomatized
by giving equational axioms making each rewrite rule r : t — t a natural
transformation r : t = t' between the functors ¢ and ¢'.

Categorical models for rewrite theories go back to [312, 314, 315]. As pointed
out in those papers and mentioned above, the models of a rewrite theory are
(small) categories with an algebraic structure. They generalize ordinary alge-
bras, which are sets with an algebraic structure. This means that the underlying
universe in which these models and their morphisms should be considered is the
2-category Cat of small categories [314, 315, 344], as opposed to the underlying
universe of algebras, which is the category Set of sets. There is also a generaliza-
tion of Lawvere’s functorial semantics [279] for ordinary algebras: the models
of a rewrite theory R have a functorial semantics as 2-product-preserving 2-
functors into Cat from its associated Lawvere 2-theory L [313, 322]. Such
Lawvere 2-theories have been replaced by weaker sesqui-categories in [436, 123];
and in the context of tile logic (which I discuss further in Section 4.2) by Lawvere
double theories in [328, 78, 81].

3.1.2. Generalized Rewrite Theories

Since rewriting logic is parameterized by its underlying equational logic, the
more expressive its underlying equational part, the more expressive also the
resulting rewriting logic. Increased expressivenes is not a theoretical luxury,
but an eminently practical goal, since formal specification languages should
describe as simply and naturally as possible the widest possible class of systems.
As explained in [319], membership equational logic is indeed a very expressive
equational logic generalizing order-sorted equational logic (which generalizes
many-sorted equational logic, which, in turn, generalizes unsorted equational
logic). It supports sorts, subsorts, partiality, and sorts defined by equational
conditions through membership axioms. Its atomic formulas are either equalities
t = ¢/, or memberships ¢ : s stating that ¢ has sort s. Its sentences are universally
quantified Horn clauses on such atoms. Therefore, as already pointed out in
Footnote 3, a rewrite theory R = (3, E, R), whose underlying equational theory
(¥, F) is a membership equational theory, may have conditional rules in R whose
conditions can be conjunctions of equations, memberships, and rewrites.

In the quest for more expressive versions of rewriting logic, another feature,
namely, frozenness, has proved to be very useful in many applications. The
idea of frozenness is that some argument positions in a state constructor should
be “frozen,” in the sense that no rewrites are allowed below that position. For
example, if _- _is an action concatenation operator in a process calculus, then
an expression like a.P, with a an action and P a process expression, should
typically not be rewritten on the P part, that is, on its second argument. This

19

can be simply captured by saying that _- _ is frozen on its second argument.
More generally, given a signature X, its frozenness information is defined as a
function ¢ : ¥ — Pp,, (N), where ¢(f) is the set of frozen argument positions.
For example, ¢(_-_) = {2}. In summary, a generalized rewrite theory is a 4-tuple
R = (5, E, R, ¢) where: (i) (¥, E) is a membership equational theory; (ii) the
rules in R may be conditional, where conditions are conjunctions of equations,
memberships and rewrites, and (iii) ¢ is the frozenness map. As shown in
detail in [80], all the good properties of the proof theory and the model theory
of rewriting logic, including the existence of initial and free models, extend
naturally to the case of generalized rewrite theories.

A theme already developed in [315], which is extended to generalized rewrite
theories in [80], is that of reachability models. For some purposes (for example,
model checking or reachability analysis), we may not need the initial model of a
rewrite theory R in its full glory as a category of truly concurrent computations:
a much more abstract model, namely, its reachability relation may be sufficient
for such purposes. It is well-known that any small category can be collapsed to a
binary relation on its objects which is a preorder. In exactly this way, the initial
model of R = (X, E, R, ¢) is collapsed to a preorder, namely, its reachability
initial model, whose elements are E-equivalence classes [t] of ground terms t;
and where the reachabilty relation [t] —x [t'] is defined by the equivalence:

[t == [t'] & REt—T.

It is also possible to distinguish in the initial reachability model between one-
step transitions [t] —L [t'], corresponding to the application of a single rewrite
rule, and general transitions [t] —x [t'], corresponding to zero, one, or more
rewrite steps. This distinction is useful for various purposes, for example for
giving semantics in the initial reachability model of R to the next operator ()

in temporal logic, a topic further discussed in Section 3.11.

8.2. Computability and Coherence

For execution purposes a rewrite theory R = (X, E, R, ¢) should satisfy
some additional requirements. As already illustrated by the DPLL example in
Section 2.2, the equations E' may decompose as a union £ = EyU B, where B
is a (possibly empty) set of structural axioms, and Ej is a set of equations used
as simplification rules modulo B. We should require that matching modulo B
is decidable, and that the equations Fy are sort-decreasing, ground confluent
and terminating modulo B and B-coherent. This makes the initial algebra
Ts/E,uB, that is, the set of states of the system axiomatized by R, computable;
in fact, equality becomes obviously decidable, and the elements of the initial

4For B any combination of associativity and/or commutativity and/or identity axioms,
B-coherence can be automatically guaranteed by a simple theory transformation, as done
automatically in Maude (see [106, Section 4.8]). As explained in Footnote 5, the notion
of coherence of an equational theory (X, Ep U B), though related, is different from that of
coherence of a rewrite theory, which is the main topic discussed in this section.

20

algebra Ts,p,up have a very simple description as the (irreducible) canonical
forms cang,,p(t) of ground terms ¢ by the equations Ey modulo the axioms B.

What about the computability of the one-step rewrite relation —% in R =
(X,E,R,¢$)? If we want the number of states reachable in one step from a
given state to be finite, for unconditional rules R we should first of all require
that for any rule r : ¢ — ¢’ in R we have vars(t') C vars(¢). But because of
rewriting logic’s Equality inference rule, computability is not at all obvious just
by requiring vars(t') C wvars(t), or even by further requiring that £ = Ey U B
with the equations Ej sort-decreasing, ground confluent and terminating modulo
B. The problem is that the term ¢ we rewrite need not be in canonical form, and
there may easily be an infinite number of terms having the same canonical form.
Otherwise put, model-theoretically the transitions in the initial model 75, or
in its collapse as an initial reachability model, are between states [t] which are
EyU B-equivalence classes of terms, and therefore possibly infinite sets. Finding
a rewritable term in such a set is the proverbial search for a needle in a haystack
and may be undecidable.

Of course, all would be easy if the existence of a one-step rewrite proof
Rkt — t' guarantees the existence of another such one-step rewrite proof of
the form R F cang, p(t) — t" such that [t'] = [t"], since then, assuming R
is finite, the one-step rewrite relation becomes easily computable: to rewrite
[t] what we can do is: (i) compute the canonical form cang,,p(t) of ¢, and
(ii) try to rewrite cang,,p(t) with the rules R modulo B in all possible ways.
By the assumptions on B and the finiteness of R there is only a finite set of
such one-step rewrites that can be effectively computed, say, cang, p(t) —
t1,...,cang,/p(t) — tr. Then the next states reachable from [t] in one step are
exactly [t1],..., [tg]. Furthermore, we can conveniently represent such states by
their unique canonical forms cang,,(t1),...,cang, p(tx). This is exactly how
Maude computes with a rewrite theory: it reduces t to canonical form with Ej
modulo B, and then applies a rule in R modulo B, and keeps doing this until
termination or until a user-given maximum number of rewrites with R, that is,
of one-step transitions. Similarly, in reachability analysis or model checking,
Maude stores the states in the state space as their canonical forms cang,,p(t).

But is this complete? Couldn’t we be missing rewrite proofs, and therefore
transitions, by adopting this strategy? Completeness is guaranteed if we have
the implication:

REt—='t = (3H")RFcang,/p(t) =" t" A [t]=[t"]

where R F t —! ¢ denotes a one-step rewrite proof. This property is called
the ground coherence of R with Fy modulo B. If we do not require t to be
a ground term, we talk instead of the coherence® of R with Eq modulo B.

5 The notion of coherence of a rewrite theory is related to, but different from, that of coher-
ence of an equational theory (X, Eg U B). In both cases the issue is to ensure an appropriate
notion of completeness of a rewrite relation. For equational theories the relation is that of
rewriting with equations Ey modulo axioms B. Instead, for rewrite theories it is a matter of

21

This coherence property was first axiomatized by Viry [463, 464]. A similar but
weaker property, what Viry calls “weak coherence,” was independently identified
in [316]. For the case of rewrite theories R = (3, EyU B, R) where (3, EgUB) is
an untyped equational theory, Ey is confluent and terminating modulo B, and
the axioms B consist of the associativity or the associativity-commutativity of
some binary function symbols in ¥, a detailed study of critical pair criteria
for checking coherence of R with Ey modulo B was given by Viry in [467].
Since coherence is such a fundamental property to ensure the computability and
efficient executability of rewrite theories, coherence needed to be generalized
to support more expressive rewrite theories R = (X, Ey U B, R, ¢) with: (i)
an order-sorted signature ¥ with sorts and subsorts; (ii) possibly conditional
equations FEy; (iii) more general axioms B such as any axioms whose equations
are unconditional, linear and regular and have a finitary unification algorithm;
(iv) conditional rules R which can have a conjunction of equations in their
condition; and (v) a frozenness map ¢. Furthermore, proof methods and tools
not only for coherence (the case studied by Viry) but also for ground coherence
had to be developed. This has been done recently in [161], where the Maude
Coherence Checker tool is also described (I further discuss this tool in Section
6.1.1). But of course, to check coherence or ground coherence under such general
conditions is only possible if we can first check the confluence and termination of
the underlying order-sorted conditional specification (%, EgUB). Proof methods
for checking confluence of equational theories under such general conditions and
a tool (the Maude Church-Rosser Checker (CRC)) are presented in [161] (I
discuss the CRC tool in Section 6.1.1). I postpone discussion of the termination
methods until Section 3.8, and of termination tools until Section 6.1.

To summarize, equality of states, operations on states, and the one-step
rewrite relation are all effectively computable in a finitary rewrite theory R =
(X,E U B, R,) such that: (i) the (possibly conditional) equations F are sort-
decreasing, ground confluent and terminating modulo B and B-coherent, and
there is a B-matching algorithm; and (ii) the rules in R are coherent with
the equations E modulo B and have only equalities and memberships in their
conditions, and if they have extra variables in their righthand side or condition
which do not appear in the lefthand side, then they are admissible rules in the
sense of [106, Section 6.3].

An interesting question to ask is: how expressive is rewriting logic to specify
computable transition systems and computable Kripke structures (for more on
Kripke structures see Section 3.11)7 For equational logic the same question was
asked and answered by Bergstra and Tucker in [54]: any computable algebra,
i.e., any computable data type, can be specified by a finitary equational theory
(X, E), where the equations E are confluent and terminating. For rewriting logic
the same question has been asked and answered in [332]: any computable tran-

the coherence between two rewrite relations modulo B, namely, one with equations Fy, and
another with rules R. Early work on the coherence of a set of equations Fp modulo axioms
B includes, e.g., [244, 383, 248].

22

sition system, resp., computable Kripke structure, is isomorphic to one specified
by a finitary rewrite theory R = (X, E U B, R, ¢) satisfying conditions (i)—(ii)
and with a chosen kind [State] of states, so that the transition system’s set of

states is the algebraic data type Tx,py Bistare] and its transition relation is —7.

3.8. Unification, Generalization, Narrowing, and Symbolic Reachability

The rewrite rules of a rewrite theory R, and the rewrite sequents we can de-
duce from it using the inference rules discussed in Section 3.1, are all (implicitly)
universally quantified. But what about existential formulas of the form

Iz t(z) — t'(7)

with T some variables; what do such formulas mean? and how can we reason
formally about them? An existential formula 3Z. t(Z) — t/(Z) is of course a
reachability property. It says that there is some instance of the state pattern
t from which we can reach, by some possibly complex computation, another
state which is an instance of the state pattern t’. A negated existential for-
mula —37Z. ¢(Z) — t/(T), which is of course equivalent to the universal formula
VZ. =(t(T) — t'(T)), is then an unreachability property. Reachability and un-
reachability properties are among the most useful properties of rewrite theories.
Typically, an unreachability property expresses a safety property such as an in-
variant (invariants are further discussed in Section 3.11.3). An invariant says
that for all the states reachable from a specified set of initial states something
bad can never happen. By describing our, possibly infinite, set of initial states
as the ground instances of the state pattern ¢, and likewise describing the bad
states as the ground instances of the state pattern t’, the unreachability prop-
erty VZ. =(t(Z) — t/(T)) says that bad states in ¢’ are never reachable from the
initial states in ¢ or, equivalently, that the complement of the set of bad states
which are ground instances of ¢’ is an invariant, relative to the initial states in
t. Understood this way, proving the formula 3z. ¢(Z) — #'(T) means proving
that such a supposed invariant can be violated.

So the question now is: how can we prove existential formulas of the form
3z. t(z) — t'(T) for a rewrite theory R = (3, E U B, R, ¢) (where we assume
the good executability properties already discussed in Section 3.2, i.e., that F
is confluent and terminating modulo B, and R is coherent with E modulo B)?
Prasanna Thati and I studied this question in [340, 450] and gave several con-
ditions on R and several forms of narrowing modulo F'U B providing complete
proof methods for formulas of the form JZ. ¢(Z) — /(Z). Let me summarize the
simplest condition that can be given on R, namely, the frequently occurring case
of topmost rewrite theories. These are theories having a kind k (a topmost sort
in some connected component in the poset of sorts) such that: (i) no operator
has k as sort for any of its arguments; and (ii) the terms in all rewrite rules in
R are of kind k. For example, the DPLL module satisfies these two conditions
with k& = Sequent. Our object-based example in Section 2.1 does not quite sat-
isfy requirements (i) and (ii) because the constructor for configurations __ has
the sort Configuration as an argument, but can be easily transformed into a

23

semantically equivalent rewrite theory which does: we can just add a new sort,
say, State, and declare an operator embracing a whole configuration to make a
global distributed state:

op {_} : Configuration -> State .

Then, to satisfy condition (ii) we can just place all the rules in our object-based
example in the bigger context of a state by adding an extra variable C of sort
Configuration to represent “the rest of the state” (which could be empty). For
example, rule send now becomes:

rl [send] : {
>

Y : Sender | cell : E, cnt : N, receiver : Z > C }
<Y : Sender | cell : mt, cnt : N> (to Z :: E from Y cnt N) C } .

<
{

As shown in [340], under conditions (i)—(ii), narrowing with R modulo E U
B is a complete method for proving formulas of the form 3z. t(z) — t'(Z),
that is, for symbolic reachability analysis. Specifically, under such conditions
3z : #(7) — t'(Z) holds for R iff there is a narrowing sequence t ~% p g
u such that u and # have a F U B-unifier. Narrowing is just like rewriting,
but replacing matching modulo an equational theory by (semantic) unification
modulo such a theory. That is, the one-step (R, E U B)-narrowing relation is
defined as t ~p pup t' iff there is a non-variable position® p of ¢, a (possibly
renamed) rule | — 7 in R, and a unifier ¢ € Unif g p(tp, 1) such that ¢ =
o(t[r]p), where Unif gy g(t|p,!) denotes a complete set of unifiers of the equation
t|, = [, that is, of substitutions 6 solving such an equation in the equational
theory E U B, in the sense that 6(t|,) =gup 0(1). This has many applications
to automated deduction, verification of safety properties, model checking, and
security. Some of these applications were discussed in [340, 188]. I discuss some
of the applications to model checking in Section 3.11.2, and to the analysis of
cryptographic protocols in Section 7.3.

There is, however, a nontrivial problem, namely, how to obtain practical
unification algorithms to compute Unif g, (tp,1). If E =0, and B is a set of
axioms for which a unification algorithm exists, then things are easy. For exam-
ple, for the object-based system of sender and receiver objects with buffers in
Section 2.1, E = () and B consists of the axioms of associativity, commutativity
and identity for the operators __and _, _ for which there is a finitary unification
algorithm generating a finite set of solutions. There is, however, the remaining
problem that the signature of the above example is order-sorted (indeed, the
operators __ and _, _ have different sorts), whereas the standard unification al-
gorithms modulo associativity, commutativity and identity are unsorted. The
paper [235] gives an algorithm, under very general conditions on B, by which
one can use an unsorted B-unification algorithm to obtain a complete set of

6By viewing a term as a tree, we can represent a positions p in it by a string of natural
numbers. For example, in the term f(a, g(b,c)), a is at position 1, g(b,c) at postion 2, b at
position 2.1, and ¢ at position 2.2. The subterm of ¢t at position p is then denoted t|,. A
position p is non-variable, iff ¢|, is not a variable.

24

order-sorted B-unifiers. Currently, Maude supports order-sorted unification for
B any combination of: (i) free function symbols; (ii) commutativity axioms;
(iii) associativity-commutativity axioms; and (iv) associativity, commutativity
and identity axioms [152].

When E is nonempty, the matter of finding a F U B-unification algorithm
is more complex. In principle, one can assume good properties about E such
as confluence, termination, and coherence modulo B and use the results in
[249] to compute E U B-unifiers by (E, B)-narrowing.” But there are two main
problems: (i) in general the number of E' U B-unifiers is not finite; and (ii) for
B # () unrestricted narrowing can be horribly inefficient in the sense of leading
to huge search spaces, and known strategies making narrowing efficient such as
basic narrowing can be incomplete. For example, basic narrowing is incomplete
when B is the theory of associativity-commutativity (AC) [121]. To make things
even worse, it is very easy to give examples of narrowing modulo, e.g., AC such
that there is a finite set of most general narrowing solutions to a unification
problem, but the narrowing algorithm modulo AC will loop forever looking for
more solutions.

In fact, narrowing with (oriented) equations F modulo axioms B when B # ()
has been for a long time a terra incognita, where little was known about any
practical methods to deal with these problems. Using the idea of wvariants®
of a term proposed by Comon and Delaune in [121], Santiago Escobar, Ralf
Sasse and I have defined a complete narrowing strategy with equations £ mod-
ulo B called folding variant narrowing® [189] (see also the longer paper [190]
in this issue), that is optimally terminating, that is, if any complete narrow-
ing strategy terminates on an input term, then folding variant narrowing will
terminate on that term. Furthermore, if E U B has the so-called finite vari-
ant property [121], folding variant narrowing will terminate on all input terms.
For E U B-unification purposes this means that, if £ U B has the finite variant
property, folding variant narrowing then provides a finitary F U B-unification
algorithm.'® Escobar, Sasse and I have also given methods to check the finite
variant property of a theory in [187]. It turns out that many cryptographic

7 This reduces the problem of computing EU B-unifiers to a symbolic reachability problem.
Specifically, we add a new binary operator ~ and a fresh constant true to our syntax, and
add a new rule x = x — true to our equations E oriented as rewrite rules. Then the E U B-
unification problem 3z. t(z) = t'(7) is transformed into the symbolic reachability problem
3z : t(z) ~ t'(T) — true for the rewrite theory with equations B and rules EU{z ~ & — true},
which is solved by narrowing with rules E U {a ~ — true} modulo B.

8The E U B-variants of a term t are pairs (u,0) with u = cang/p(0(t)) and 6 some
substitution. Therefore, the variants of ¢ are essentially the irreducible patterns to which any
instance of t may evaluate.

9Variant narrowing is a narrowing strategy which, given an input term ¢, computes a
complete set of F U B-variants of t. The folding version of this strategy uses subsumption
modulo B to avoid computing any variant which is a substitution instance modulo B of a
more general variant.

10Using the ideas in Footnote 7, computing the £ U B-unifiers of the equation v = v by
folding variant narrowing amounts to computing (a complete set among) those E’U B-variants
of the term u & v which are of the form (true,), for B/ = EU{z = = — true}.

25

theories of interest have the finite variant property [121]. T explain in Section
7.3 how —using folding variant narrowing to compute E U B-unifiers and nar-
rowing with protocol rules R modulo F U B to perform symbolic reachability
analysis— this has been exploited in the Maude-NPA protocol analyzer [183]
to provide complete formal analysis for security protocols modulo a variety of
cryptographic theories. More generally, Maude 2.6 supports variant narrowing,
and symbolic reachability analysis of topmost rewrite theories, modulo a large
class of equational theories E U B having the finite variant property [152].

Generalization is the dual of unification. Given two terms ¢ and ¢/, a set of
most general B-unifiers for the equation t = t’ is, as already mentioned, a set
Unif g(t,t') giving us a set of most general instances {6(t) | 0 € Unif g(¢,t')},
which are common instances of t and ¢ up to B-equivalence, i.e., 6(t) =p 0(t').
But we can ask the dual question: given terms ¢ and t’, can we compute a
set Gralp(t,t') of least general patterns of which ¢ and ¢ are instances mod-
ulo B, i.e., least general terms u such that there are substitutions 6, p with
f(u) =p t and p(u) =p t'? For example, for B = () and X untyped, the terms
f(f(a,a),b) and f(f(b,b),c) have a least general generalization in the pattern
f(f(z,2),y). Generalization has many useful applications, for example, to au-
tomated deduction, machine learning, testing, and partial evaluation. Maria
Alpuente, Santiago Escobar, Pedro Ojeda and I have developed generalization
algorithms for two cases that are important for rewriting logic, namely, order-
sorted generalization [17], and generalization modulo B, for B any combination
of associativity and/or commutativity and/or identity axioms [16].

3.4. Reflection

Reflection is a very important property of rewriting logic [113, 102, 115, 116].
Intuitively, a logic is reflective if it can faithfully represent its metalevel at
the object level. Specifically, rewriting logic can faithfully represent its own
theories and their deductions by having a finitely presented rewrite theory U
that is universal, in the sense that for any finitely presented rewrite theory R
(including U itself) we have the following equivalence

REt—t < UF (R — (R,t),

where R and f are terms representing R and ¢ as data elements of U/. Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection [113, 102, 115], since we have

Rbt—t o UH(RD — (R,T) & UF U, (R,D) — U, (R,T))...

Reflection is a very powerful property: (i) it allows defining rewriting strate-
gies by means of metalevel theories that extend U and guide the application
of the rules in a given object-level theory R (this is further discussed in Sec-
tion 3.5); (ii) it is efficiently supported in the Maude implementation by means
of descent functions [104] in the META-LEVEL module; (iii) it can be used to build
a variety of theorem proving and theory transformation tools (this is further

26

discussed in Sections 4.1 and 6.1); (iv) it can endow a rewriting logic language
like Maude with powerful theory composition operations [159, 150, 151, 160];
(v) it can be used to prove metalogical properties about families of theories in
rewriting logic, and about other logics represented in the rewriting logic meta-
logical framework [50, 109] (this is further discussed in Section 4.1); and (vi)
has important connections with distributed object-based reflection and adapta-
tion [338].

3.5. Strategies

Recall the DPLL rewrite theory in Section 2.2. The most complex aspect of a
SAT solver is precisely its heuristics or strategy. In the case of the rewrite theory
specified in DPLL this means that performance will crucially depend on the strate-
gies used to apply the splitl and split2 rewrite rules. In a more sophisticated
SAT solver supporting back-jumping, conflict resolution and clause learning, the
situation is similar: performance will crucially depend on the strategies guid-
ing the application of the Abstract DPLL inference rules in [356]. Of course,
this is a general issue that applies not just to SAT solving but to any rewrite
theory; and that involves not only performance but also any goal-oriented use
of a rewrite theory. The key issue is the potential nondeterminism of rules, as
opposed to the determinism of confluent and terminating equations.

Strategies are still relevant for equations for performance and termination
reasons, even when the equations are confluent and terminating, or to ensure
their termination as in the case of context-sensitive rewriting for equations (see,
e.g., [290] and references there). Context-sensitive rewriting of equational spec-
ifications is supported by OBJ, CafeOBJ, and Maude. Note that the addition
of a frozenness map ¢ to a generalized rewrite theory, as explained in Section
3.1.2, provides a similar form of context-sensitive rewriting at the rule level,
as opposed to the equation level.'' But for nondeterministic rules, strategies
become a much more essential issue, because such rules, depending on when
and where they are applied, can yield totally different outcomes. Frozenness
provides a very simple form of strategic rewriting with rules, but more than
frozenness is needed.

The role of strategies is to tame the potentially wild nondeterminism of rules
for various purposes, which may include: (i) realistic modeling of the behavior
of a truly nondeterministic system, whose nondeterminism we cannot or we do
not intend to control, but where some behaviors may be utterly unrealistic; and
(ii) goal-oriented (and perhaps performance-oriented) control of the nondeter-
minism in a system’s execution. It is of course possible to mix purposes (i) and
(ii): for example, we may have an asynchronous object system where the asyn-
chronous behavior is only restricted by a few fairness assumptions, but where
the objects are intelligent and use sophisticated game-theoretic strategies when
interacting with each other. In all cases, what strategies do is to restrict the

11 Maude supports both forms of context-sensitive rewriting: with equations using the strat
attribute, and with rules using the frozen attribute.

27

set of all possible dynamic behaviors of the system axiomatized by the given
rewrite theory. That is, roughly speaking a strategy determines a subset of the
set of all the possible computations of a system specified by a rewrite theory R,
where those computations need not be just the finite ones but may also include
infinite computations.

If we are modeling a concurrent, asynchronous system whose nondetermin-
ism is an intrinsic fact of life which cannot really be controlled, and we want
to simulate such a system, strategies may still be relevant, not so much to con-
trol the outcome of system executions as to observe the behavior of the system
under realistic assumptions about its execution. Recall the example of sender,
receiver, and buffer objects in Section 2.1. It is easy to extend such a system to
one where there are also sensor objects that are periodically writing numerical
data observations into the sender’s buffer. In this way the system immediately
becomes a nonterminating reactive system. Such a system can have executions
that are totally unrealistic. For example, a sensor can be regularly writing new
data into the sender’s buffer, the sender object can be sending this potentially
infinite stream of data to the receiver, but the receiver never receives anything!
Intuitively, such a behavior is unfair. Therefore, fair strategies, which restrict
the set of behaviors to those were starvations such as this are ruled out, are
very important to model a system’s behavior realistically, and to reason for-
mally about system properties such as termination or satisfaction of temporal
logic formulas (I further discuss fair termination in Section 3.8, and model check-
ing of temporal logic formulas under fairness assumptions in Section 3.11). As
explained in [323], fair rewriting is not just a matter of rule fairness, that is,
of making sure that all rewrite rules are given a chance to be executed. For
example, in the above concurrent object system with sensor, buffer, sender and
receiver objects, if we have two different sensors hooked up to two different
senders through their respective buffers and two corresponding receiver objects
with their own buffers, we can be rule fair by making sure that the receive
and write rules are executed infinitely often; but we can still starve one of the
receivers, just by only executing receive and write rules for the other. That is,
we here need not only rule fairness but also object fairness: each object should
be treated fairly. The general notion is that of localized fairness in rule appli-
cations [323]. This is of course important to obtain realistic simulations. For
example, Maude provides rule fair executions through its rewrite command,;
and rule and position fair executions through its frewrite command, which
becomes also object fair for object-based concurrent systems specified with a
multiset union operator using the config keyword, as illustrated in the exam-
ple of Section 2.1. But what can be done if we want to obtain fair behaviors
besides the ones provided by a language implementation? Fairness is just a par-
ticular kind of temporal logic property. More generally, we can view a temporal
logic formula as a strategy expression which defines a corresponding class of
behaviors. In Section 3.11.2, I explain how an expressive temporal logic such as
TLR can be used as a strategy language, which is then implemented by a model
checker.

If instead our purpose is to control the nondeterministic behavior of a rewrite

28

theory R for goal-oriented and perhaps performance-oriented purposes, an ap-
propriate way to achieve that end is to provide a strategy language that can be
used to guide and control the way in which the rules of R are applied. To give a
logical example, R can be the inference system of a theorem prover or of a SAT
solver, and then the strategies correspond to proof tactics or to solving heuris-
tics. In concurrent system applications the relevant strategies may have other
purposes, such as, for example, having a winning strategy in a game-theoretic
interaction between agents. Given all these useful purposes, different rule-based
languages such as, for example, ELAN [71, 70], Maude [113, 114, 303], and
Stratego [468], provide strategy languages to guide and control rule executions.
The ELAN researchers deserve much credit as pioneers in this area for having
made key contributions to rewriting strategy ideas from the beginning of the
ELAN language.

For modularity and reasoning purposes it is very useful to keep a clear sep-
aration between the rewrite theory R and the strategies used to control it. As
discussed in Section 2.2, this was one of the key motivations of Tinelli in seek-
ing formal specifications of SAT solvers by inference systems, so that the proof
of correctness of a SAT solver is completely decoupled from its, possibly quite
complex, heuristics. Following this point of view, a strategy language SL is
understood in [303] as a theory transformation of the form:

(R,SM) — SL(R,SM)

where SM is a strategy module completely separated from the rewrite theory
R, and SL(R,SM) is a transformed rewrite theory which executes the rules
in R using the strategy expressions of SM. Modularity and separation of con-
cerns are thus achieved, because we can have different strategy modules, say,
SM,...,SM,, to control the executions of the same rewrite theory R in dif-
ferent ways for different purposes. The fact that SL(R, SM) is another rewrite
theory means that the operational semantics of the strategy language SL is also
defined by rewriting, as done, for example, in [71, 70, 114, 303]. But what is
now rewritten is not just a term ¢ in R, but a pair s @ ¢, consisting of a strategy
expression s in SM which is applied to a term ¢t in R. What the term s@Q¢
rewrites to are solutions (plus possibly pending strategy tasks); that is, terms
t’ in R that are reachable from ¢ when the rules in R are applied according to
the strategy s. Therefore, one can also give to SL a more abstract set-theoretic
semantics that assigns to s @t the set of all its solutions, as done, for example,
in [71, 70, 303].

Of course, the theory SL(R,SM) manipulates or controls the theory R.
It needs to know and handle notions such as term, subterm, rule, position,
matching substitution, and so on. This makes an explicit use of reflection in
the definition of SL(R,SM) very natural, in the sense that SL(R,SM) can
be viewed as a rewrite theory that extends the universal theory U with special
combinators aimed at controlling the execution of R at the metalevel. This
has been the approach taken in Maude since its first strategy languages until
its current one [113, 114, 303]. In this way, strategies are made internal to

29

rewriting logic itself. There are of course various requirements that one would
like a strategy language to satisfy, the most basic one being its soundness,
i.e., only terms reachable from ¢ in R should be among the solutions of s@¢.
The paper [303] discusses several such requirements, emphasizing the fact that
the determinism of SL(R,SM) is a highly desirable feature: since we want to
control the nondeterminism of R, once we fix a strategy s, the solutions of s @¢
should not depend on how s @ is executed in SL(R, SM), in the sense that any
possible solution not yet seen should always be obtainable by further rewriting.
An important area where more advances are needed is that of formal reason-
ing about rewriting with strategies. Useful formal reasoning techniques and tools
already exist for proving termination under some notion of strategy: I discuss
work on termination under fairness, context-sensitive termination, and termi-
nation under ELAN strategies in Section 3.8. However, other formal reasoning
methods are less developed; for example, the paper [289] studies conditions for
context-sensitive confluence, but the conditions are quite strong.

8.6. The p-Calculus

One of the attractive aspects of the A-calculus is that it is very simple, both
in its syntax and its rules, yet all of higher-order functional programming can
be encoded in it, or in some variant of it such as a typed version. Couldn’t
there be a similar calculus for rewriting? And could such a calculus be general
enough as to naturally embed the A-calculus as a subcalculus? Horatiu Cirstea
and Claude Kirchner both posed these intriguing questions and gave an elegant
positive answer to them in their p-calculus [95, 96, 97]. The key idea is to
replace the A-abstraction operator Azx.u by a p-abstraction ¢ — u, where the
role of the bound variable z in Az.u is now played by the bound term t in
t — w. As in the A-calculus, there is also an application operator []-. The
intended meaning of an application [t — u](v) is to rewrite the term v at the
top with the rewrite rule ¢ — u. The A-calculus is then naturally encoded in
the p-calculus as a special case. For example, the A-term Az.(y x) is encoded as
the p-term x — [y](x). The entire p-calculus is then described by a small set of
evaluation rules; furthermore, such evaluation rules, particularly the Fire rule,
can be made parametric on the matching algorithm employed, i.e., the p-calculus
can express not only syntactic rewriting, but also rewriting modulo axioms such
as associativity-commutativity. In similarity to the A-calculus, there are also
typed versions of the p-calculus [99, 287], and even a “p-cube” [98].

From the point of view of reflection, the p-calculus can be understood as
a convenient simple calculus specifying a universal theory (modulo using an
explicit substitution calculus such as, e.g., CINNI [430] to turn the p-calculus
itself into a first-order rewrite theory). Indeed, it is shown in [96, 97] that the
p-calculus can faithfully simulate at the metalevel the rewriting behavior of any
other rewrite theory. Since, as pointed out in Section 3.5, from a reflective point
of view a strategy language SL can be understood as the addition of appropriate
strategy combinators to a universal theory U, it is entirely natural to see that
one of the important uses of the p-calculus has been to give a rewriting semantics
at the metalevel to strategy languages such as ELAN, and that the p-calculus

30

itself has been extended with such strategy combinators to become in effect a
powerful strategy language [100].

3.7. Sufficient Completeness

Given a rewrite theory R = (X, E U B, R, ¢), with good executability con-
ditions such as E being ground confluent and terminating modulo B, and R
being coherent with ¥ modulo B, we can represent its states uniquely up to
B-equality as canonical forms cang,p(t) with ¢ a ground term. The equations
E may define various auziliary functions (for example, numerical functions),
which operate on some parts of the state, that is, that manipulate elements of
the initial algebra 7y, pyp. Therefore in cang,p(t) all such auxiliary functions
should have already disappeared and only state constructors should remain.
This is the (equational) sufficient completeness problem: given a subsignature
Q) C ¥ of operators called constructors, is it the case that for any ground X-term
t, the term cang/p(t) is an Q-term? If this holds, (X, E'U B) is called suffi-
ciently complete with respect to the constructor subsignature ; if it fails to
hold, this is clear indication that we have not given enough equations to define
some auxiliary function f € ¥ —), so that there is something wrong with the
specification. For a rewrite theory R = (X, EU B, R) this means that there are
extra states that we had not intended to have in our system and which are not
built by the state constructors §2 alone.

It is therefore important to check that an equational theory (3, E U B), or
the equational part of a rewrite theory R = (X, E U B, R, ¢), is sufficiently
complete. When B =), ¥ is unsorted, and the equations E are unconditional,
several algorithms to check sufficient completeness are known (see, e.g., [120]
and references there). An attractive possibility is to further assume that the
equations E are left-linear (i.e., if (t = t') € E, then each variable z in ¢ oc-
curs at a single position p of t), because then the problem can be reduced to an
emptiness problem for tree automata (see [120]). In general, however, one would
like to have sufficient completeness proof methods that can apply more broadly
to: (i) order-sorted or even membership-equational signatures; (ii) modulo ax-
ioms B; and (iii) with E containing conditional equations and even conditional
memberships. In such a broad generality the problem becomes undecidable,
but proof obligations can be generated. For example, the tool described in [232]
addresses (i) and (iii) by providing a decision procedure to check the sufficient
completeneess of unconditional order-sorted equational theories without requir-
ing left linearity, and generates proof obligations which are sent to the Maude
Inductive Theorem Prover (ITP) (see Section 6.1.5), to prove sufficient com-
pleteness of order-sorted and membership-equational conditional specifications.
Instead, the Maude Sufficient Completeness Checker tool (SCC) [236, 234] ad-
dresses (i) and (ii) by providing a decision procedure which can check sufficient
completeness of order-sorted equational specifications modulo combinations of
associativity and/or commutativity and/or identity axioms when the equations
E are unconditional and left-linear. The SCC tool reduces the problem to an
emptiness problem for propositional tree automata [238], and uses the CETA
library that efficiently implements tree automata operations for propositional

31

tree automata [231]. As already mentioned, sufficient completeness for mem-
bership equational logic (MEL) is in general undecidable, but proof obligations
can be generated. The MEL sufficient completeness problem has been studied
in [72, 237, 231].

For a rewrite theory R = (X, E U B, R, ¢) there are actually two different
sufficient completeness problems. The first, of course, is the equational sufficient
completeness of its equational part (X, EUB) relative to a constructor subsigna-
ture €2 described above. The second problem is the sufficient completeness of the
rules R. But what does that mean? If (X, E'U B) is sufficiently complete in the
equational sense, are not all states of R already representable as {2-constructor
terms of the form cang,p(t)? Yes indeed, but what about the set of final states,
that is, states for which it is not possible to perform any further transitions with
R? They are in general a subset of all ground -terms, so that they may be
describable by an even smaller constructor subsignature A C Q@ C . By speci-
fying A, a user makes clear a set of state constructors that is enough to generate
all such final states. What is then a failure of sufficient completeness for the
rules R? What does it mean? It means exactly a violation of deadlock freedom.
A deadlock is an unintended and unwanted final state. Lack of sufficient com-
pleteness for R means that there is a final state of R which is not a A-term, that
is, R has a deadlock. Therefore, checking sufficient completeness of R means
checking deadlock-freedom. This has been proposed by Camilo Rocha and me
in [397], where we show that the same propositional tree automata techniques
used to verify sufficient completeness for order-sorted equational specifications
modulo axioms can be extended to check sufficient completeness of the rules R
in R under the assumption that they are unconditional, left-linear, and weakly
terminating; we also extend the Maude SCC tool to also support such checking.
For the case of rewrite theories of the form R = (X, 0, R), with ¥ unsorted and
R unconditional, a different method to check the sufficient completeness of R
using narrowing techniques has been proposed by I. Gnaedig and H. Kirchner
in [213].

3.8. Termination

Termination of a rewrite theory R = (X, E U B, R, ¢) is a very important
problem, and there is a rich body of termination techniques for term rewriting
systems that can be used. However, the standard termination proof methods
address the much simpler case of untyped rewrite theories of either the form
R = (2,0, R), or the form R = (X, B, R) for some restricted set B of axioms.
These standard methods are clearly insufficient for rewrite theories and need
to be substantially generalized in several dimensions such as: (i) support for
sorts, subsorts, and memberships; (ii) support for conditional rules with ex-
tra variables in their conditions!? in both E and R; (iii) the existence, when

12The use of extra variables in conditions, which are instantiated incrementally, greatly
increases the expressive power of specifications. See [106, Sections 4.6 and 6.3] for the exe-
cutability conditions required in Maude for such specifications.

32

E and R are conditional, of two separate rewrite relations —g and — g that
cannot be easily combined into a single one; (iv) the need to support a wide
range of equational axioms B containing at the very least any combination of
associativity and/or commutativity and/or identity axioms; and (v) support for
context-sensitive rewriting. Furthermore, standard termination methods were
developed in the context of equational logic and automated deduction and do
not address important kinds of termination relevant for rewriting logic appli-
cations such as: (a) termination under fairness assumptions; (b) termination
under strategies; and (c) probabilistic termination.

To address problems (i)—(v) in the context of generalized rewrite theories
R = (3,E U B, R, ¢) whose equational part is a (possibly conditional) mem-
bership equational theory (3, E), the first thing to observe is that the “vanilla
flavored” description of the computations by a single rewrite relation —pg, or
even by two relations — g and — g, is utterly inadequate, because the computa-
tion of the membership relations t : s is just as important and is entwined with
that of rewrites using — g and — . What one needs to make explicit is an infer-
ence system involving both rewrites (with R and E) and memberships. This, in
turn, poses the problem of conditional termination not in terms of a rewrite re-
lation — g, but in terms of different logics with different inference systems. This
has led to proposing the notion of operational termination in [155], not only for
membership rewriting, but for logical inference systems in general. Although
very general, this notion is also very practical, because it captures the idea of
an interpreter carrying out the inference steps, so that operational termination
means that such an interpreter will never loop. Even for the vanilla-flavored
case of untyped conditional rewrite theories R = (X, 0, R) this notion provides
useful insights: as shown in [291], operational termination coincides there with
the notion of quasi-decreasing conditional term rewriting systems, making it
clear that other conditional rewrite systems, which are soi disant terminating,
such as those enjoying “effective termination,” are not effective at all, since
interpreters can loop on such systems [155]. The relations of operational ter-
mination with other notions of conditional termination for untyped conditional
term rewriting systems have been futher investigated in [414].

Although the approach to the operational termination of membership rewrite
theories in [155] already dealt with rewriting modulo axioms B, and was ex-
tended in [157] to deal simultaneously with the relations — g and — g plus the
memberships ¢ : s, there is great practical interest in being able to use existing
state-of-the-art termination tools for term rewriting systems to prove the termi-
nation of generalized rewrite theories R = (X, E'U B, R, ¢) beyond their scope.
To bridge this gap, several important problems need to be solved. First, the
rewrite theories R = (X, EU B, R, ¢), or even the membership equational theo-
ries (X, E) need to be transformed into untyped vanilla-flavored term rewriting
systems, eliminating features such as sorts, subsorts, memberships, and even
conditions. This is accomplished in [155, 157] by appropriate non-termination
preserving theory transformations. The second problem is that the sets of ax-
ioms B for which proofs of termination modulo B are supported in existing
tools are quite restricted. To solve this problem, semantics-preserving theory

33

transformations based on the notion of variant (see Section 3.3) that trans-
form a rewrite theory R = (X, FU B, R, ¢) into a semanticaly equivalent one
R = (Z,E uDu BQ,E7 ¢) with simpler axioms By, where B = By U D, are
presented in [158]. However, transformational methods come at a nontrivial
cost, since the transformed theories are usually more complex. Therefore, more
intrinsic proof methods to handle the above two problems are also of great
interest. For example, in [294] the transformations in [155] are replaced by
transformations into order-sorted rewrite theories, which still keep a lot of sort
information, and in [292] dependency-pair-based methods are generalized from
the unsorted to the order-sorted level. Similarly, in [10] intrinsic methods to
prove termination modulo useful combinations of equational axioms by depen-
dency pair techniques are proposed. The advantages of intrinsic methods over
transformational ones are also clear in proofs of context-sensitive termination
(see, e.g., [8, 225]). Many of the above-mentioned techniques for proving ter-
mination of rewrite theories are already supported by the Maude Termination
Tool (MTT), which I discuss in Section 6.1.3.

My current view is that the class of order-sorted rewrite theories of the
form R = (3, By, R, ¢), where: (i) By is the widest possible class of axioms for
which dependency pair proof methods are available; and (ii) the rules R are
unconditional, is a good target class for which intrinsic methods should be fur-
ther developed, since the transformations of general rewrite theories into that
class become much simpler than the transformations into untyped rewrite the-
ories, and therefore the proof methods will become considerably more effective
in practice.

Another, orthogonal set of techniques that need to be further developed in
order for termination proofs to scale up to large rewrite theories are modularity
techniques that work at the richer level of at least order-sorted rewrite theories
modulo axioms By. At the vanilla-flavored level of untyped rewrite theories of
the form R = (%, 0, R), there is already a substantial body of such techniques
available (see, e.g., [358, 456]), and even some very useful work for untyped
rewrite theories of the form R = (X, AC, R), with AC' associative-commutative
axioms [296]. Felix Schernhammer and I have initiated the study of modularity
techniques for the termination of unconditional order-sorted specifications mod-
ulo combinations of associativity and/or commutativity and/or identity axioms
in [415].

All the termination techniques described above provide an important neces-
sary core. However, this core is not sufficient to cover important applications.
Suppose that our rewrite theory R specifies a communication protocol whose
termination we want to prove. Very often R will not terminate in the standard
sense, but will terminate under appropriate fairness assumptions. That is, infi-
nite rewrite sequences do exist, but all such sequences are unfair and therefore
unrealistic. For example, the simple communication protocol in Section 2.1 can
be easily extended to a fault-tolerant one that can operate in a lossy medium by:
(i) modeling the lossy medium by a rewrite rule which can destroy a message
(rewrite it to the none configuration); (ii) modifying the receive rule, so that

34

an acknowledgment is sent back to the sender; and (iii) modifying the send rule
so that the sender keeps resending the n-th item without emptying its cell until
an acknowledgment for it is received. Since now any message can be destroyed
before it is received, plus a sender can keep resending a message forever, the
system is no longer terminating. However, under fairness assumptions about
how each receiver object will apply the receive rule, and each sender object will
receive acknowledgments and clear its cell, the fault-tolerant system is indeed
fairly terminating. Proof techniques for termination of rewrite theories under
fairness assumptions have been studied in [293], substantially extending prior
work in [386, 387]. Another way in which termination techniques need to be
extended is to reason about termination of R when executed under a given
strategy (see Section 3.5). This extension has been carried out in [199, 214] and
is supported by the CARIBOO tool, which I discuss in Section 6.1.2. Yet an-
other topic requiring a substantial extension of standard termination techniques
is the termination of probabilistic rewriting, a topic investigated in [212] (for
a discussion of probabilistic rewriting and the different notions that have been
proposed see Section 3.10).

3.9. Real-Time Rewrite Theories

In many reactive and distributed systems, including, for example, sched-
ulers, networks, and so-called cyber-physical systems, real-time properties are
essential to their design and correctness. Therefore, the question of how systems
with real-time features can be best specified, analyzed, and proved correct in the
semantic framework of rewriting logic is an important one. This question has
been investigated by several authors from two related perspectives. On the one
hand, an extension of rewriting logic called timed rewriting logic has been inves-
tigated, and has been applied to several examples and specification languages
[273, 366, 274, 429]. On the other hand, Peter Olveczky and I found a simple
way to express real-time and hybrid system specifications directly in rewriting
logic [367, 359, 368, 371]. Such specifications are called real-time rewrite theories
and have rules of the form

{ty={t} i C

with 7 a term denoting the duration of the transition (where the time can be
chosen to be either discrete or continuous), {t} representing the whole state of
a system, and C' an equational condition. Peter Olveczky and I showed that, by
making the clock an explicit part of the state, these theories can be desugared
into semantically equivalent ordinary rewrite theories [367, 359, 368]. That is,
in the desugared version we can model the state of a real-time or hybrid system
as a pair ({t},rg), with {¢t} the current state and ry the current global clock
time. Then the above rule becomes desugared as

{t}ro) = {thro+1) if C

Rewrite rules can then be either instantaneous rules, that take no time and
only change some part of the state ¢, or tick rules, that advance the global time

35

of the system according to some time expression r and may also change the
global state!® ¢. By characterizing equationally the enabledness of each rule
and using conditional rules and frozen operators [79], it is always possible to
define tick rules so that instantaneous rules are always given higher priority;
that is, so that a tick rule can never fire when an instantaneous rule is enabled
[369]. When time is continuous, tick rules may be nondeterministic, in the sense
that the time r advanced by the rule is not uniquely determined, but is instead
a parametric expression (however, this time parameter is typically subjected to
some equational condition C). In such cases, tick rules need a time sampling
strategy to choose suitable values for time advance.

Besides being able to show that a wide range of known real-time models
(including, for example, timed automata, hybrid automata, timed Petri nets,
and timed object-oriented systems) and of discrete or dense time values, can be
naturally expressed in a direct way in rewriting logic (see [368]), an important
advantage of the above approach is that one can use an existing implementation
of rewriting logic to execute and formally analyze real-time specifications. Be-
cause of some technical subtleties, this seems difficult for the alternative of timed
rewriting logic, although a mapping into the above framework does exist [368].

Of course, one would like to simulate and formally analyze real-time systems
specified as real-time rewrite theories. The Real-Time Maude tool [359, 371]
has been developed for this purpose (I further discuss Real-Time Maude in
Section 6.1.8). In this way, a wide range of applications, including schedulers,
networks, cyber-physical systems, and real-time programming and modeling
languages, have been specified (I discuss such applications in Section 7.4), and
have been formally analyzed by model checking their temporal logic properties
(I discuss the model checking of temporal logic properties, including the model
checking of such properties for real-time systems in Section 3.11.2).

8.10. Probabilistic Rewrite Theories

Many systems are probabilistic in nature. This can be due either to the
uncertainty of the environment in which they must operate, such as message
losses and other failures in an unreliable environment, or to the probabilistic
nature of some of their algorithms, or to both. In general, particularly for dis-
tributed systems, both probabilistic and nondeterministic aspects may coexist,
in the sense that different transitions may take place nondeterministically, but
the outcomes of some of those transitions may be probabilistic in nature. To
specify systems of this kind, rewrite theories have been generalized to proba-
bilistic rewrite theories in [276, 277, 5]. Rules in such theories are probabilistic
rewrite rules of the form

1:4(Z) = t'(Z,9) if cond(Z) with probability ¥ := m.(Z)

13Instantaneous rules need not involve the global state: they can be local (for example,
local to a give object, which receives a message) and can be applied concurrently; only tick
rules, which change the global time and must reflect the effects of time elapse everywhere (for
example, in all timers) need to be global and must rewrite the entire state.

36

where the first thing to observe is that the term ¢’ has new variables ¢ disjoint
from the variables & appearing in t. Therefore, such a rule is nondeterminis-
tic; that is, the fact that we have a matching substitution 6 such that 6(cond)
holds does not uniquely determine the next state fragment: there can be many
different choices for the next state, depending on how we instantiate the ex-
tra variables 7 in t'. In fact, we can denote the different such next states
by expressions of the form #'(0(Z), p(7)), where 6 is fixed as the given match-
ing substitution, but p ranges along all the possible substitutions for the new
variables 4. The probabilistic nature of the rule is expressed by the notation:
with probability i := m,.(Z), where 7,.(Z) is a probability distribution which may
depend on the matching substitution 6. We then choose the values for ¥, that
is, the substitution p, probabilistically according to the distribution 7,.(6(Z)).

The fact that the probability distribution may depend on the substitution 6
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive rational number denoting
the amount of battery charge. Each time the clock ticks, the time is increased
by one unit, and the battery charge slightly decreases; however, the lower the
battery charge, the greater the chance that the clock will stop, going into a state
of the form broken(T,C’). We can model this system in PMaude notation (see
Section 6.1.9) by means of the probabilistic rewrite rule

rl [tick]: clock(T,C) => if B then clock(T + 1,C - (C / 1000))
else broken(T,C - (C / 1000))
fi
with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the
rule’s righthand side is the Boolean variable B, corresponding to the result of
tossing the biased coin. As shown in [276], probabilistic rewrite theories can
express a wide range of models of probabilistic systems, including continuous-
time Markov chains [437], probabilistic nondeterministic systems [388, 418], and
generalized semi-Markov processes [211]; they can also naturally express proba-
bilistic object-based distributed systems [277, 5], including real-time ones. Yet
another class of probabilistic models that can be simulated by probabilistic
rewrite theories is the class of object-based stochastic hybrid systems discussed
in [336].

A completely different notion of probabilistic rewriting has been proposed
in [76, 74]. The key idea in both of these papers is that the rewrite rules
themselves, r : t — ¢/, are still deterministic (the lefthand side ¢’ has no extra
variables); what is probabilistic is the choice of which rule to apply and where.
In [76] it is shown how such choices can be defined in quite sophisticated ways by
probabilistic ELAN strategies to model, for example, probabilistic algorithms;
and in [74] ordinary deterministic rewrite rules are endowed with weights to
achieve a notion of probabilistic rewrite system. A good way to understand

37

how the ideas in [76, 74] are different from those in [276, 277, 5] is to observe
that in a rewrite theory R there are two completely different potential sources
of nondeterminism: (i) the choice of which rule to apply at any given moment
and where to apply it; and (ii) once a choice of rule, term position and matching
substitution has been made, if the rule r : #(Z) — t/(#,¥) has extra variables
¢ on its righthand side, the choice of a ground substitution p to instantiate
the variables §. The semantics in [76, 74] makes the choice (i) probabilistic
while keeping the rules themselves deterministic; while the semantics in [276,
277, 5] keeps the choice (i) nondeterministic while making the instantiation of
nondeterministic rewrite rules governed by probability distributions that are
parametric on the lefhand side’s matching substitution. A final observation
to make is that the existence of nondeterminism in the choice (i) of which
transition to fire and where, with the transitions themselves being probabilistic
in their outcome, is well-known in the modeling of probabilistic systems, e.g.,
in probabilistic nondeterministic systems [388, 418]; and in the probabilistic
model checking of such systems, which introduces the notion of a scheduler
to eliminate the nondeterminism in the choice of transitions, and then model
checks the system considering all such possible schedulers.

It is highly desirable to be able to specify, simulate and analyze probabilistic
systems specified as probabilistic rewrite theories. The PMaude language design
[5] has exactly this purpose; I further discuss PMaude in Section 6.1.9. The
kinds of possible formal analyses go beyond simulations and include statistical
model checking with respect to properties expressed in either a probabilistic
temporal logic or even a quantitative probabilistic temporal logic where the
result of evaluating a formula on a path is a real number corresponding to
some quantity associated to a system behavior. I discuss probabilistic temporal
logics and model checking of probabilistic properties in Section 3.11. Many
applications to probabilistic systems are thus made possible; I discuss some of
them in Section 7.5.

8.11. Temporal Logic Properties

As already observed at the end of Section 3.1.2, the reachability initial model
of a rewrite theory R = (X, E, R, ¢) has an associated one-step rewrite relation
[t] =% [¢'] relating the states, i.e., the E-equivalence classes [t] of ground -
terms ¢t. Since R can have different sorts and kinds, we should furthermore
specify which is the preferred kind of states, so that terms of other kinds de-
scribe state fragments, or data components of the state, but not an entire state
of our system. Let [State] be such a kind. Then we can associate to R a tran-
sition system, namely, the pair (Ty, B Stm],ﬂ%z) where Ty /g, denotes the
set of E-equivalence classes [t] of ground X-terms ¢ of kind [[State]. Without
loss of generality we may also assume that the equations F already define a
desired collection of state predicates (if they do not, we can just add new func-
tion symbols and equations defining such state predicates as Boolean-valued

functions). That is to say, we can associate to R not just a transition system

38

(TE/E[SLaLe]7_>/]i3)7 but in fact a Kripke structure' (TE/E[SLWV—>}3,LR)7 where
Ly is a labeling function, associating to each state predicate p the set of all
states where p holds.

All this means that, since rewrite theories model concurrent systems and we
can naturally associate to them Kripke structures, their temporal logic properties
can then be defined semantically in terms of such Kripke structures (or for real-
time or probabilistic rewrite theories the analogous real-time or probabilistic
transition systems). For expressing such properties, suitable temporal logics
can be used. Then, both model checking, or theorem proving, or a combination
of both approaches, can be used to verify that a rewrite theory (more precisely,
its reachability initial model) satisfies some desired temporal logic properties.

3.11.1. Temporal Logics

Which temporal logic is best suited for specifying which properties of a
rewrite theory is itself a very good question. Here are several choices with
specific advantages.

State-Based Logics. There are many choices. The most common is CTL* [101],
or one of its subsets such as CTL or LTL. These logics are well suited for
properties based on state predicates; but not well suited for properties based on
events, which need to be encoded unnaturally in the state itself to be expressible.

TLR and Parameterized Fairness. To avoid the limitations of state-based log-
ics in expressing events, while keeping all their good state-based features; and
to take advantage of the expressive power of rewrite theories in expressing pa-
rameterized events by rewrite rules, and spatial information by term patterns,
the temporal logic of rewriting TLR [325] can be used. TLR is a simple ex-
tension of CTL* where just one more construct is added to the syntax of for-
mulas, namely, spatial action patterns. The simplest such patterns are just
labels of rewrite rules, stating that a transition event with a rule having that
label has taken place. For example, for the object-based system of Section 2.1,
we can state the liveness property that each message send is always eventu-
ally followed by a receive event by the (implicitly universally path quanti-
fied) TLR formula O(send — oreceive). However, more complex patterns
are possible taking advantage of both the parametric nature of rewrite rules
(whose parameters are the mathematical variables of each rule) and the context
where the rewrite takes place. For example, we can localize the above property
both to sender object b and its associated receiver object ’d by the formula
O(send(’b) — o receive(’d)). It is also very easy to express localized (that is,
parameterized) fairness conditions as universally quantified TLR properties. For
example, the (weak) object fairness of the receive and write actions needed
for a realistic modeling of the object-based system of Section 2.1 when sensor

M For technical reasons, in some approaches, e.g., [101], the transition relation of a Kripke
structure is assumed to be a total relation; there is no problem in extending the relation H,}z

to a total relation for this purpose.

39

objects are added, as explained in Section 3.5, can be succinctly captured by
the TLR formulas (Vz : Oid) ¢ Oreceive.enabled(x) — O o receive(x), and
(Vz : Oid) o Owrite.enabled(z) — O ¢ write(z), where receive.enabled(z)
and write.enabled(x) are the obvious state predicates stating that the object
x can perform the receive, resp., write action. Of course, the reachabil-
ity initial model of a rewrite theory R and its associated Kripke structure
(Ts / E[Smte],—ﬁa,Ln) throw away all information about actions and therefore
cannot be used to give semantics to TLR. We need to use the initial model 7

of R and its associated labeled Kripke structure, where labeled transitions are

of the form [¢] [ﬂn [t'], with @ a one-step proof term [325].

Metric Temporal Logic and TCTL. For real-time systems, standard temporal
logics, although able to express many useful properties (particularly when the
state predicates refer to timers or even to the global clock), are not expressive
enough: one often wants to express the requirement that a certain property must
hold within certain time bounds. Various temporal logics for real-time systems
can be used. A simple possibility is to use the metric temporal logic MTL [275],
which extends LTL to timed paths by qualifying LTL’s until operator U with a
time interval [t,7]. The meaning of a formula ¢ Uy ,1 ¢ is then that ¢ U 1) holds
in the standard LTL sense and, furthermore, ¢ must hold at a time ¢’ € [t,r],
and ¢ must continuously hold until time ¢'. Instead, Timed CTL (TCTL [25])
extends CTL by qualifying the until operator & with a time bound ¢ plus an
indication of whether the second formula must hold before, after, or exactly at
time ¢, that is, we have formulas of the form ¢ Ut 10, where Xe {>, >, <, <, =},
with the expected meaning. For example, ¢ U>; 1 is equivalent to ¢ Uy ooy ¥
in an interval formulation.

PCTL, CSL, and QuaTFEz. For probabilistic systems, temporal logics that ex-
tend standard ones are also needed. One well-known such logic is Probabilistic
CTL (PCTL) [227]. The basic idea is that sets of computation paths in a proba-
bilistic system have probability measures associated to them, and we can qualify
temporal logic formulas by requiring that the set of paths satisfying a certain
formula has a probability greater (resp., smaller) than or equal to a certain
p € [0,1]. For example, the PCTL formula P>o.7(¢ U) states that the set of
paths where ¢ U ¥ holds has a probability measure greater than or equal to 0.7.

Since many probabilistic systems are also real-time systems, for such systems
there is also a need to have temporal logics which combine both probabilistic
and time-bounded features. Continuous Stochastic Logic (CSL) [1, 43] is one
such logic extending PCTL by qualifying temporal logic operators by a time
bound. For example, the formula Pq.7(p US32 1)) states that the set of paths
where ¢ U ¢ holds and, furthermore, ¢ holds at a time ¢ € [0, 3.2], and ¢ holds
continuously until time ¢, has a probability measure greater than or equal to
0.7.

In the analysis of probabilistic systems we are often interested not just in
the probabilities associated to the satisfaction of certain temporal logic formu-
las, but in quantitative properties such as, for example, the expected latency of

40

a communication protocol when hardened against DoS attacks under specific
assumptions about the attacker and the network. Such a latency is not a prob-
ability but a real number. To be able to express such quantitative properties,
PCTL and CSL have been generalized to a logic of Quantitative Temporal Ex-
pressions (QuaTEx) in [5]. The key idea is to generalize state formulas and path
formulas to real-valued state expressions and path expressions, where the appro-
priate real-valued functions can be defined by the user, just as the appropriate
state predicates are defined by the user in standard temporal logics. Boolean-
valued and probability-valued formulas are now regarded as special cases of real-
valued QuaTEx formulas by using the subset containments {0,1} C [0,1] C R.
For example, Boolean-valued CSL formulas such as P>g.7(¢ US324) are also
expressible in QuaTEx, but QuaTEx can express properties beyond CSL [5].

8.11.2. Model-Checking Verification of Rewrite Theories

Model Checking of State-Based Temporal Properties. The simplest, yet very
useful, form of model-checking analysis of rewrite theories is the verification of
invariants. As usual in model checking, what we search for is the wviolation of
a property, in this case the invariant. An invariant I is a Boolean-valued state
predicate, so we can express a search for its violation as a search for a proof of
the existential formula

(Fx : [State]) (init — x A I(z) = false)

where init is the initial state, and [State]| is our chosen kind of states. If the
number of states reachable from init is finite, breadth first search is a com-
plete model-checking procedure to verify the invariant. If the number of states
reachable from init is infinite, breadth first search still gives us a semidecision
procedure to check the failure of the invariant: if I fails, we are guaranteed to
find a counterexample in finite time.

More generally, we can model check properties in state-based temporal logics
such as CTL, LTL, or CTL" using the model-checking algorithms described in
[101] by using the Kripke structure (TZ/E[State] ,—%, Lr) associated to the given
rewrite theory R, provided the number of states reachable from the given initial
state init is finite.

Model Checking of TLR Properties. To verify TLR properties on a rewrite the-
ory R, assuming again that the number of states reachable from the given initial
state init is finite, we have two different possibilities: (i) to transform R and
the property ¢ into a new rewrite theory R and a CTL* formula @ and then
model check R,init = ¢ as described in [325] and implemented in Maude in
[37] for the linear time temporal logic fragment LTLR; or (ii) to use a more
efficient algorithm that can directly verify LTLR formulas on a rewrite theory
R on the fly, as the one developed and implemented in the Maude system in
[38]. One of the good features of TLR is that it is very easy to express fairness
assumptions in it [325], so a first approach to the verification of a TLR property
1 under fairness assumptions ¢ is to verify the implication ¢ — . However,

41

this suffers from two major drawbacks: (i) in a logic like LTL the Biichi au-
tomaton associated to ¢ — 1) grows exponentially with the size of the formula,;
and since ¢ typically contains several fairness formulas and can be relatively
complex, we can easily hit severe performance barriers; and (ii) to make things
worse, the approach of model checking ¢ — 1 has no reasonable way of deal-
ing with localized fairness formulas which are parametric, i.e., what we have is
not a propositional formula ¢, but a universally quantified first-order formula
(Vz) ¢(x). For example, (V) ¢(x) may express an object fairness assumption
in a system with dynamic object creation. Even if we could predict the set
O of all such objects, which may not be possible unless we explore the entire
state space, the only way to encode this directly at the propositional level would
be as a conjunction A ., ¢(0), something quite unfeasible to model check in
practice because of the typically huge size of the corresponding Biichi automa-
ton. For these reasons, Kyungmin Bae and I have developed a completely new
model-checking algorithm for LTLR which can model check LTLR formulas un-
der parametric fairness assumptions of the form (V) ¢(z). The algorithm and
its Maude implementation are described in [39].

An interesting, additional aspect of LTLR model checking is its use as a
strategy language. Since TLR formulas contain action patterns corresponding
to how rules are applied, with which substitutions, and where in the state,
and describe complex behaviors involving such elementary actions and tests ex-
pressed by state predicates, a TLR path formula ¢ can be naturally understood
as a strategy expression, which defines a corresponding set of computations in
the given rewrite theory R. Assuming that ¢ does not contain any path quanti-
fiers, we can use an LTLR model checker to generate a behavior for the strategy
expression ¢ by giving to the model checker the LTLR state formula V—p. If the
strategy expression ¢ can be realized by a concrete behavior, the LTLR model
checker will provide such a behavior as a counterexample for V-, that is, as a
constructive proof of the existentially path quantified TLR state formula Jip.

Narrowing-Based Symbolic Model Checking of Rewrite Theories. One impor-
tant limitation of standard model-checking algorithms such as those described
in [101] is that they work under the assumption that the set of states reachable
from the initial state is finite. There are several ways to avoid this limitation:
(i) to use deductive methods such as those I discuss in Section 3.11.3; (ii) to
use some kind of abstraction or simulation that transforms the system into a
finite-state one (I discuss this in Section 3.12); and (iii) to use a model-checking
approach that does not require the system to be finite-state. Regarding ap-
proaches of type (iii), Section 3.3 has explained how narrowing can be used as
a complete symbolic reachability analysis method to model check the failure of
an invariant for a possibly infinite-state rewrite theory R. This is of course a
very different notion of “symbolic model checking” than the usual one based
on BDDs, which uses the representation of a finite set of states as a proposi-
tional formula assuming a finite state space. But Section 3.3 dealt only with
reachability and invariants. What about other temporal logic properties? In
[186] Santiago Escobar and I show how the same narrowing approach can be ex-

42

tended to model check ACTL" properties of a possibly infinite system specified
as a topmost rewrite theory R, where ACTL" denotes the universal fragment
of CTL".

Model Checking of Real-Time Rewrite Theories. The simplest models of real-
time systems are timed automata [26], whose TCTL properties are decidable by
model checking [25]. The paper [52] shows how timed automata model check-
ing can be expressed as a symbolic procedure using appropriate strategies in
the ELAN rewriting logic language. Timed automata can be seen as very sim-
ple real-time rewrite theories [368], but their simplicity also involves a severe
limitation: they are finite-state systems. Even a relatively simple system such
as a scheduler whose state includes unbounded queues cannot be modeled by
a timed automaton [364]. What real-time rewrite theories offer is a more ex-
pressive high-level way of specifying many real-time systems of interest, such as
network protocols and distributed object systems, whose states are in princi-
ple unbounded and often contain complex data structures. The challenge is to
identify temporal logic properties and conditions on the real-time rewrite theory
that make the verification of such properties decidable by model checking. A
very broad class of real-time rewrite theories (whose time may be continuous)
has been identified in [370], where it is shown that the following temporal logic
properties are decidable for such systems: (i) time-bounded LTL\() formulas'®
of the form ¢ in time r, where ¢ is an LTL\(formula and r is a time bound
(for a detailed explanation of the semantics of such formulas see [371]); and
(ii) LTL\O formulas whose state predicates do not refer to the global clock,
provided the set of discrete states reachable from the initial state is finite. Re-
call that a state of a system specified by a real-time rewrite theory is a pair
({t},r), with {t} a ground term describing the global state and r a (possibly
continuous) clock value. By the “discrete state” I mean the global state {¢}.
Formulas of types (i) or (ii) can already express many properties of practical
interest, but formalisms such as MTL and TCTL are obviously more expressive.
More recent work has developed two new model-checking algorithms for real-
time rewrite theories. In [283], a model-checking algorithm to verify properties
in a subset of MTL for object-oriented real-time rewrite theories whose state is
a multiset of objects and messages is presented; and [282] presents an algorithm
to model check real-time rewrite theories for the satisfaction of TCTL formulas,
except for formulas of the form ¢ U—_; 1. In Section 6.1.8 T discuss the Real-
Time Maude tool, which supports all the model-checking procedures mentioned
above; and in Section 7.4 I discuss many real-time system applications that have
been specified and analyzed in Real-Time Maude.

Statistical Model Checking of Probabilistic Rewrite Theories. Temporal logic
properties of a probabilistic system can be model checked either by exact model-
checking algorithms, or in an approximate, but more scalable and more widely

5L TINQ is the sublogic of LTL obtained by not using the O operator.

43

applicable way, by statistical model checking (see, e.g., [419, 475, 5]). The idea
of statistical model checking is to verify the satisfaction of a temporal logic prop-
erty by statistical methods up to a user-specified level of statistical confidence.
For this, a large enough number of Monte-Carlo simulations of the system are
performed, and the formula is evaluated on each of the simulations.

Recall the discussion in Section 3.10 about how a probabilistic rewrite the-
ory in general has a nondeterministic aspect corresponding to the choice of
which probabilistic transition to fire. One important requirement of statistical
model-checking algorithms is that they assume that the system is purely prob-
abilistic: there is no nondeterminism in the choice of transitions. This seems
like a strong requirement. However, using the methodology presented in [5], a
wide class of object-oriented probabilistic real-time rewrite theories specifying
many concurrent, actor-based systems of interest can be expressed so that no
nondeterminism is involved in the application of rewrite rules. The key idea
is to take advantage of three facts: (i) time is continuous; (ii) the probability
distributions governing message arrival latencies are also continuous; and (iii)
since the message arrival latency distributions are continuous, the probability
that two messages will arrive at the same time to any two objects (or to the
same object) is then zero. Since the rewrite rules specify how an actor changes
state when it receives a message, and at each instant in time at most one mes-
sage has arrived to at most one object, there is at most one rewrite rule that
can be applied at each continuous instant and all nondeterminism disappears.

Properties expressed in either CSL or QuaTEx can then be statistically
model checked for such probabilistic real-time rewrite theories, using the algo-
rithms presented in, respectively, [419] and [5]. Furthermore, as shown in [23],
the above algorithms are naturally parallelizable and can scale up very well us-
ing such paralelization. A related algorithm for statistical model checking of
quantitative properties is presented in [261]. In Section 6.1.10 I discuss how
the VeStA and PVeStA tools support the statistical model checking of C'SL and
QuaTEx properties for the above-mentioned class of probabilistic rewrite theo-
ries; and in Section 7.5 I discuss various applications that have been specified
and analyzed this way.

8.11.8. Deductive Verification of Rewrite Theories

Model checking, while extremely useful, is not sufficient for all verification
purposes. This is clear from the fact that satisfaction of properties is in general
undecidable, from the infinite-state nature of many systems, and, even when a
system is finite-state for each initial state, from the fact that in general there
may be an infinite number of initial states. Furthermore, even if we succeed
in reducing the verification problem to a finite-state model-checking problem
by the use of an abstraction as discussed in Section 3.12, deduction still plays
a fundamental role in verifying the correctness of such an abstraction. The
late Amir Pnueli expressed the situation succinctly in his motto “deduction is
forever” [385].

44

Given a rewrite theory R (resp. a parameterized'® rewrite theory R[P] with
P its parameter theory), there are different kinds of properties that one may
want to verify deductively about its initial model 7z, or the Kripke structure
associated to its initial reachability model (resp. the free models of R[P] or
their associated Kripke structures). Properties we may want to verify include:
(i) temporal logic properties; (ii) inductive properties about the rewrite relation
itself; and (iii) inductive equational properties about the states of R. The ter-
mination methods for rewrite theories discussed in Section 3.8 can be naturally
regarded as proof methods for a particular kind of type (i) property.

Regarding deductive verification of temporal logic (type (i)) properties, the
general idea is to use a sound and relatively complete proof system for a temporal
logic to get rid of the temporal logic operators as much as possible and try to
reduce the proof task to the verification of proof obligations of type (iii). The
term “relatively complete” expresses the fact that the original temporal logic
property holds for the given model iff the proof obligations of type (iii) generated
by the inference system do; but since these are inductive proof obligations, a
complete proof system for properties of type (iii) does not exist in general.
A good example of a sound and relatively complete deductive proof system
for CTL* is the one proposed by Gabbay and Pnueli in [204]. An important
remaining problem in using a deductive system of this kind is how to deal with
the resulting proof obligations of type (iii). In this regard, rewrite theories are
particularly attractive, because there is a rich body of inductive proof methods
for equational logic which can then be used to discharge such proof obligations.
For example, for Maude specifications one can use various formal tools described
in Section 6.1 for this purpose.

For rewrite theories, this approach to the verification of type (i) properties
has so far focused mostly on safety properties, including invariants. For the
deductive proof of invariants there is a rich body of work, including several
substantial case studies, using proof scores in CafeOBJ to verify invariants of
observational transition systems (OTSs) (see, e.g., [357, 202]). The CafeOBJ
researchers have also shown how deductive verification of invariants for an OTS
can be combined with model-checking verification of the rewrite theory asso-
ciated to the OTS, or an abstraction of it [476, 202]. Another approach to
invariant and temporal logic verification which can be viewed as both deductive
and algorithmic is the narrowing-based reachability analysis method already
discussed in Sections 3.3 and 3.11.2. Rusu and Clavel [410], and Rusu [409],
present a different approach to invariant verification that reduces the problem
to a type (iii) proof task by associating to a rewrite theory R a corresponding

16 A parameterized rewrite theory R[P] can be understood as a theory inclusion P «— R of
the parameter theory P into the “body” R and specifies a parametric family of concurrent
systems. R[P] can then be instantiated by views, i.e., theory interpretations V : P — Q,
by the usual “pushout construction.” Semantically, what is used is the fact that rewriting
logic is a “liberal institution,” i.e., that it has not only initial models, but also free models
along theory interpretations. For the treatment of parameterized rewrite theories in Maude
see [106, Section 8.3].

45

membership equational theory M(R) with a sort Reachable of reachable states
characterized by appropriate membership predicates. In a sense, this can be
seen as using an enrichment of the characterization of the initial reachability
model of R as the initial model of a membership equational theory given in [80]
and discussed in Section 3.1.2. Camilo Rocha and I have presented a different
approach to the verification of safety properties in [398]. The basic idea is to
use narrowing-based proof methods to reduce the proof of: (a) invariants, (b)
stability properties of the form P = OP, and (c) strengthenings of invariants,
to proof obligations of type (iii); and to then discharge many such proof obli-
gations automatically, so that a considerably smaller set of proof obligations is
left for an inductive theorem prover.

Finally, Camilo Rocha and I have initiated a study of constructor-based
proof methods for inductive properties about the rewrite relation of the initial
reachability model of a rewrite theory R (type (ii) properties) in [397]. That is,
we want to prove that the initial reachability model of R satisfies some property
of the form (V&) ¢t — ¢/, which is equivalent to proving R F 6(¢t) — 6(t’) for all
ground substitutions 6. A related task is to prove that the initial reachability
model of R satisfies inductive joinability properties of the form (VZ) ¢ | ¢/,
stating that all ground instances of ¢ and t' can be rewritten to a common term.
The key idea is that, the same way that equational constructors are crucial for
proving inductive equalities ¢ = t’, both equational constructors for (X, £ U B),
and constructors for R associated to final states (see Section 3.7) are crucial
for proving inductive properties of the form (VZ) ¢ — ¢’ for a rewrite theory
R=(%,EUB,R,¢).

3.12. Simulation and Abstraction

As already mentioned, the application of standard model checking methods
to the verification of a temporal logic property ¢ by (the initial model of) a
rewrite theory R may be hindered by R being infinite-state. Even if R is finite-
state, the huge size of its state space may still make it unfeasible to model check
such a property. Under such circumstances a very useful approach is to find
a different rewrite theory R which has a much smaller (and finite) state space
than R, to verify ¢ for 7%, and to show that we have an implication

71@)2@ = R,init = ¢.

As shown in, e.g., [101, 295, 332], this can be done if we can relate the sets of
states of R and R and the initial states init and init by a binary relation H
such that either: (i) H is a simulation and ¢ € ACTL"; or (ii) H is a stuttering
simulation and ¢ € ACTL*\O (i.e., ¢ is an ACTL* formula which does not
contain the operator (). In addition, the above implication can be turned into
an equivalence if H is a bisimulation (resp. stuttering bisimulation).

Given a rewrite theory R = (X, E U B, R, $), a very simple, yet powerful,
approach to obtaining such a theory R is to realize that rewriting logic comes
with a built-in “abstraction dial” which allows us to turn some rewrite rules in
R into equations that can be removed from R and added to E. That is, we

46

can decompose R into a disjoint union R = G U Ry and define R = (X, EU
GU B, Ry, ¢), where G denotes the set of equations associated to the rules G.
A good example of the use of such an abstraction dial is the DPLL module in
Section 2.2, where G consisted of the subsume, resolve, assert, and close
rules. Of course, for the use of this abstraction dial to be natural, the rules G
should be deterministic in nature, so that the equations £ U G are still ground
confluent and terminating modulo B. But in order for the Kripke structure
associated to R to be computable (an essential requirement for model checking
it) we also need Ry to be coherent with F UG modulo B. If these two conditions
are satisfied, and, furthermore, the rules G preserve all the state predicates in
¢, Azadeh Farzan and I proved in [192] that the quotient -homomorphism
q: Ts/pup — TE/EU@UB defines a stuttering bisimulation, so that for any

p € ACTL*\O we have the equivalence R, init E ¢ < R,init E ¢, where
init = q(init).

If the theory R thus obtained by turning the abstraction dial as much as
possible is still too big to be model checked, a second, also very useful approach is
to further collapse the set of states by an equational abstraction. Given a rewrite
theory R = (X, EU B, R, ¢) and a set G U B’ of ¥-equations, we can collapse
R into the rewrite theory R/GUB’' = (X, EUGUBU B’, R, ¢) which typically
has a much smaller state space than R. Again, we need the equations GU B’ to
preserve the state predicates appearing in the formula ¢ we want to model check;
and we need R/G U B’ itself to yield a computable Kripke structure, i.e., EUG
should be ground confluent and terminating modulo B U B’, and R should be
coherent with £ UG modulo BU B’. Under these conditions, Miguel Palomino,
Narciso Marti-Oliet and I proved in [331] that the quotient ¥-homomorphism
q: Ts/puB — Tx/pucuBup: defines a simulation, so that for any ¢ € ACTL"
we have the implication R/G U B’, q(init) = ¢ = R,init = .

In the two methods just discussed for collapsing the state space of a rewrite
theory R = (X, FE U B, R,¢), the signature ¥ did not change at all: we ei-
ther changed some rules into equations or added some more equations to the
equational part. But this is not a necessary requirement: our more abstract
rewrite theory R may be based on a different signature Y, so that it is of the
form R = (X', " UB',R',¢'). All we need is to find an appropriate simulation
relation H between R and R. Several methods for finding such simulation,
or stuttering simulation, relations are presented in [302, 332] under the gen-
eral banner of “algebraic simulations.” The general idea is to use algebraic
and/or rewriting logic methods to define such an H as either a function or a
relation. Another idea explored in depth in [377, 332] is that simulations and
stuttering simulations are arrows in appropriate categories, so that they can be
composed, i.e., the entire approach is compositional, so that we can combine
several of the above-mentioned abstraction methods to arrive at the desired
abstraction. A general emphasis common to all the abstraction methods pre-
sented in [192, 331, 302, 332] is on the inductive proof obligations that need to
be discharged in order to prove that the proposed simulation H is correct. That
is, although H is used to verify a property by model checking, the correctness

47

of the verification requires the interplay between model checking and inductive
theorem proving: deduction is forever!

Another stuttering-simulation-based method frequently used to reduce the
state space is partial order reduction (POR). The general idea is that a concur-
rent system can have a huge number of states due to the many different inter-
leavings involved; however, many concurrent transitions are independent, in the
sense that they can be interleaved with each other in arbitrary order without
affecting the resulting state. This leads to the idea of cutting down the number
of interleavings by only considering a subset of the computations involving in-
dependent transitions (see [101] for a detailed discussion). To support POR at
the level of rewrite theories, Azadeh Farzan and I proposed in [193] a general
theory transformation mapping rewrite theories of a certain type into their cor-
responding POR versions. In particular we showed how this transformation can
be applied as a generic method to model check programs much more efficiently
in a wide range of concur