
Twenty Years of Rewriting Logic

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign, IL 61801, USA

Abstract

Rewriting logic is a simple computational logic that can naturally express both
concurrent computation and logical deduction with great generality. This paper
provides a gentle, intuitive introduction to its main ideas, as well as a survey of
the work that many researchers have carried out over the last twenty years in
advancing: (i) its foundations; (ii) its semantic framework and logical framework
uses; (iii) its language implementations and its formal tools; and (iv) its many
applications to automated deduction, software and hardware specification and
verification, security, real-time and cyber-physical systems, probabilistic sys-
tems, bioinformatics and chemical systems.

Key words: rewriting logic, concurrency, logical frameworks, temporal logics,
formal specification and verification, programming language semantics,
networks and distributed systems, real-time systems, probabilistic systems,
security, bioinformatics.

To the loving memory of my mother, Fuensanta Guaita Sánchez

Contents

1 Introduction 3
1.1 How to Read this Survey . 4

2 Rewriting Logic in a Nutshell 4
2.1 Semantic Framework Uses: A Communication Protocol Example 7
2.2 Logical Framework Uses: A Propositional Satisfiability Example 11

3 Foundations 15
3.1 Rewriting Logic . 16

3.1.1 Operational and Denotational Semantics of Rewrite Theories 18
3.1.2 Generalized Rewrite Theories . 19

3.2 Computability and Coherence . 20
3.3 Unification, Generalization, Narrowing, and Symbolic Reachability 23
3.4 Reflection . 26

Preprint submitted to The Journal of Logic and Algebraic Programming June 29, 2012

3.5 Strategies . 27
3.6 The ρ-Calculus . 30
3.7 Sufficient Completeness . 31
3.8 Termination . 32
3.9 Real-Time Rewrite Theories . 35
3.10 Probabilistic Rewrite Theories . 36
3.11 Temporal Logic Properties . 38

3.11.1 Temporal Logics . 39
3.11.2 Model-Checking Verification of Rewrite Theories 41
3.11.3 Deductive Verification of Rewrite Theories 44

3.12 Simulation and Abstraction . 46

4 Rewriting Logic as a Logical and Semantic Framework 49
4.1 Representing Logics . 49
4.2 Representing Models of Concurrency . 52
4.3 Rewriting Logic Semantics of Programming Languages 54
4.4 Representing Distributed Systems, Software Architectures, and Models 56

5 Rewriting Logic Languages 58
5.1 CafeOBJ . 58
5.2 ELAN . 58
5.3 Maude . 59

6 Tools 59
6.1 Formal Tools for Rewriting Logic . 60

6.1.1 The Maude Church-Rosser Checker and Coherence Checker (CRChC) . 60
6.1.2 The CARIBOO Termination Tool . 60
6.1.3 The Maude Termination Tool (MTT) and µ-Term 60
6.1.4 The Maude Sufficient Completeness Checker (SCC) 61
6.1.5 The Maude Inductive Theorem Prover (ITP) 61
6.1.6 The Maude Formal Environment (MFE) 61
6.1.7 The Declarative Maude Debugger . 62
6.1.8 Real-Time Maude . 62
6.1.9 The PMaude Language Design . 62
6.1.10 VeStA and PVeStA . 63

6.2 Some Domain-Specific Tools . 63
6.2.1 JavaFAN . 63
6.2.2 K-Maude . 64
6.2.3 The MatchC Tool . 64
6.2.4 The Maude-NPA . 65
6.2.5 MOMENT2 . 66

7 Some Applications 66
7.1 Automated Deduction Applications . 67
7.2 Software and Hardware Specification and Verification 67

7.2.1 Modeling Languages . 68
7.2.2 Programming Languages . 68
7.2.3 Hardware Specification and Verification 69
7.2.4 Networks, Distributed Architectures, Middleware and Coordination . . . 70

7.3 Security . 72
7.3.1 Cryptographic Protocol Specification and Analysis 72
7.3.2 Network Security . 73
7.3.3 Browser Security . 75
7.3.4 Access Control . 76
7.3.5 Code Security . 76

7.4 Real-Time and Cyber-Physical Systems . 78
7.4.1 Real-Time Network Protocols . 78
7.4.2 Middleware for Distributed Real-Time Systems 78

2

7.4.3 Real-Time Programming Languages . 79
7.4.4 Real-Time Modeling Languages . 80
7.4.5 Resource Sharing Protocols . 83
7.4.6 Cyber-Physical Systems . 83

7.5 Probabilistic Systems . 85
7.5.1 Distributed Embedded Systems . 85
7.5.2 Distributed Stochastic Hybrid Systems 86

7.6 Bioinformatics, Chemical Systems, and Membranes 87
7.6.1 Bioinformatics . 87
7.6.2 Chemical Systems . 91
7.6.3 Membrane Systems . 91

8 Some Future Research Directions 92

9 Conclusions 93

1. Introduction

The first three papers on rewriting logic were published in 1990 [312, 311,
314]; they were then expanded in [315, 316]. Since that time, many researchers
around the world have made important contributions to its foundations, tools,
and applications. Since 1996, the Workshop on Rewriting Logic and its Ap-
plications has met biennially, with the 2010 Paphos meeting being its eighth
edition, the Workshop on Rewriting Techniques for Real-Time Systems held its
first edition in Spitsbergen in March 2010, and many hundreds of papers have
been published on the subject ([301] contains a bibliography up to 2002, and
this journal issue contains an up-to-date bibliography). This growth makes it
desirable to reflect from time to time upon the advances made, survey such
advances, and perhaps get some glimpses and make some guesses about future
directions. It is somewhat like taking a snapshot of a person at age twenty.
I have taken some similar, total or partial pictures at earlier ages, as a child
[318, 321, 320], and as a teenager [301] (with Narciso Mart́ı-Oliet) and [324]. It
seems appropriate to attempt taking a coming-of-age picture, and to ask some
questions about rewriting logic such as the following:

• How well-developed are its mathematical foundations?

• To what extent have its goals as a semantic framework for concurrency,
and as a logical framework, been achieved?

• Which languages and tools supporting rewriting logic programming, spec-
ification, and verification have been developed?

• In which application areas has it been shown useful?

• What do its future prospects look like?

This paper is both a survey of the work that has been done, and my own attempt
to answer the above questions.

I am grateful to the many gifted researchers who have contributed to the
rewriting logic research program. I will explicitly mention some of them and

3

some of their contributions. But I cannot really do justice to either all of them or
all their contributions. This is due, in part, to my own limitations in keeping up
with a vast and fast-growing literature; and to the impossibility, within the scope
of this survey, of discussing, even summarily, the many hundreds of publications
on the subject. The compilers of the detailed bibliography contained in this issue
have gathered and organized by topic all the contributions that seem to have
been made to date. I refer to this bibliography for a more complete picture of
the different research directions that here I can only describe in broad outlines.

1.1. How to Read this Survey
This survey can be read in various ways, depending on the research interests,

time, and degree of previous acquaintance with the overall area. For somebody
unfamiliar with the area, not particularly interested in the mathematical foun-
dations, and trying to gain a first overview of it, I would suggest reading first
Sections 2, 4, and 7, and then looking at the other sections as needed. For a
reader with a formal methods background, I would instead suggest reading first
Sections 2, 3, 4, 5, and 6, and then looking at applications in Section 7 as needed.
More specialized readings are also possible. For example, somebody only inter-
ested in security (resp. bioinformatics) applications could probably jump from
Section 2 directly into Section 7.3 (resp. 7.6.1). Of course, for somebody trying
to get an in-depth understandig of the whole area, I would recommend reading
the entire survey from beginning to end.

2. Rewriting Logic in a Nutshell

Since the main goal of this paper is to facilitate access to a large body of
research ideas to readers who may not be familiar with rewriting logic, it does
not seem out of place to explain and illustrate, in an informal and impressionistic
way, what rewriting logic is, and how it can be used.

Rewriting logic is like a coin with two sides: a computational side and a
logical side. These two sides are complementary viewpoints on the same reality.
Some applications fall more obviously into one of these sides, but when viewed
as rewrite theories their other side is always present.

Computationally, rewriting logic is a semantic framework in which many dif-
ferent models of concurrency, distributed algorithms, programming languages,
and software and hardware modeling languages can be naturally represented,
executed and analyzed as rewrite theories (see Sections 4.2–4.4). Logically, it is
a logical framework within which many different logics, and automated deduc-
tion procedures can likewise be represented, mechanized, and reasoned about
(see Section 4.1).

Whenever anybody is selling you a semantic or logical framework you should
be wary. A key reason for waryness is that such a framework may work in
principle, but it may create a big gap between what is represented and its rep-
resentation. I call this the representational distance imposed by the framework.
For example, Turing machines provide an, in principle unobjectionable, seman-
tic framework for sequential programming languages; but nobody uses them to

4

define a language’s semantics, except perhaps in the sense that a compiler for
a language closely resembles a Turing machine semantics for it. There is just
too much distance between a high-level programming language and a Turing
machine, and much, including all the language’s features, is lost in translation.
In this regard, the evidence accumulated over the last twenty years strongly
supports the claim that rewriting logic can rightfully be said to have “ε rep-
resentational distance” as a semantic and logical framework. That is, what is
represented and its representation are often isomorphic structures, typically dif-
fering only because of the slightly different notations used, but agreeing on all
the main features.1

Why is this so? Whenever you represent a concurrent system or a logic,
there are two key aspects about such a representation, which could be called
the static and the dynamic aspects, and rewriting logic happens to be very
well-suited for naturally representing both. Representing the static aspect of
a concurrent system means representing its distributed states, while represent-
ing that of a logic means representing its formulas. Instead, representing the
dynamic aspect of a concurrent system means representing its concurrent tran-
sitions, while representing that of a logic means representing its inferences.

The reason why rewriting logic’s representational distance is typically ε is
that a rewrite theory R = (Σ, E,R) consists of an equational theory (Σ, E)
and a set of (possibly conditional) rewrite rules R, where (Σ, E) specifies the
statics and R specifies the dynamics. If we are using (Σ, E,R) to represent a
concurrent system (resp. a logic), then the distributed states (resp. formulas)
of such a system are specified by the equational theory (Σ, E), where Σ is a
collection of typed operators which includes the state constructors that build
up a distributed state out of simpler state components (resp. the logical and non-
logical symbols that build up a formula), and where E specifies the algebraic
identities that such distributed states (resp. formulas) enjoy. That is, distributed
states (resp. formulas) are specified as elements of an algebraic data type, namely,
the initial algebra of the equational theory (Σ, E). Concretely, this means that
a distributed state (resp. a formula) is mathematically represented as an E-
equivalence class [t]E of terms (i.e., algebraic expressions) built up with the
operators declared in Σ, modulo provable equality using the equations E, so that
two state (resp. formula) representations t and t′ describe the same state (resp.
formula) if and only if one can prove the equality t = t′ using the equations E.
The great generality with which algebraic data types can faithfully represent any
data structures such as states or formulas (including binding operators such as
quantifiers, λ-abstraction, and so on, which have a natural algebraic specification
using a calculus of explicit substitutions such as CINNI [430]) is the reason why
the static aspect can typically be represented with an ε representational distance.

The dynamic aspect of a system or logic represented as a rewrite theory

1When even the notation is identical, I speak of “0 representational distance,” but the key
point in either case is the isomorphic way in which a formalism is faithfully represented within
a framework.

5

R = (Σ, E,R) is specified by its set R of rewrite rules. Why are they likewise
so flexible? I focus first on concurrent systems specified with unconditional
rewrite rules; the case of logics is discussed afterwards. What the rules R then
represent are the system’s local concurrent transitions. Each rewrite rule in R
has the form t → t′, where t and t′ are algebraic expressions in the syntax of
Σ. The lefthand side t describes a local firing pattern, and the righthand side
t′ describes a corresponding replacement pattern. That is, any fragment of a
distributed state which is an instance of the firing pattern t can perform a local
concurrent transition in which it is replaced by the corresponding instance of
the replacement pattern t′. Both t and t′ are typically parametric patterns,
describing not single states, but parametric families of states. The parameters
appearing in t and t′ are precisely the mathematical variables that t and t′

have, which can be instantiated to different concrete expressions by a mapping
θ, called a substitution, sending each variable x to a term θ(x). The instance of
t by θ is then denoted θ(t).

The most basic logical deduction steps in a rewrite theory R = (Σ, E,R) are
precisely atomic concurrent transitions, corresponding to applying a rewrite rule
t→ t′ inR to a state fragment which is an instance of the firing pattern t by some
substitution θ. That is, up to E-equivalence, the state is of the form C[θ(t)],
where C is the rest of the state not affected by this atomic transition. Then, the
resulting state is precisely C[θ(t′)], so that the atomic transition has the form
C[θ(t)] → C[θ(t′)]. Rewriting is intrinsically concurrent, because many other
atomic rewrites can potentially take place in the rest of the state C (and in the
substitution θ), at the same time that the local atomic transition θ(t) → θ(t′)
happens. That is, in general one may have complex concurrent transitions of the
form C[θ(t)] → C ′[θ′(t′)], where the rest of the state C has evolved to C ′ and
the substitution θ has evolved to θ′ by other (possibly many) atomic rewrites
simultaneous with the atomic rewrite θ(t) → θ(t′). The rules of deduction of
rewriting logic [315, 80] (which in general allow rules in R to be conditional)
precisely describe all the possible, complex concurrent transitions that a system
can perform, so that concurrent computation and logical deduction coincide.
Such inference rules are discussed in Section 3.1.

If instead we adopt a logical point of view, so that the rewrite theory R =
(Σ, E,R) represents a logic, then the rewrite rules R exactly specify the inference
rules of the logic. What the rules rewrite may be formulas, or other formula-
based data structures such as sets or lists of formulas, sequents, and so on. In the
simplest case of an unconditional rewrite rule t → t′, we describe an inference
step in which we pass from a formula or formula-based structure which is an
instance of the pattern t to another such formula or structure which is the
corresponding instance of t′, perhaps in a context C. That is, such atomic
inference steps again take the form C[θ(t)] → C[θ(t′)], for θ the substitution
instantiating the patterns t and t′. Often, however, logical inference steps are
conditional, and this may happen in two different ways. First, an inference step
t → t′ may only be allowed if we can previously show that other related steps,
say, u1 → v1, . . . , un → vn can be taken. Second, the inference step may be
further constrained by a so-called side condition such as, for example, that a

6

certain variable involved in the step is not a free variable in a given formula.
Algebraically, such side conditions can be represented as equational constraints
of the form w1 = q1 ∧ . . . ∧ wm = qm. The ε representational distance of
rewriting logic as a logical framework is due to the fact that such conditional
inference rules can be exactly represented in R as conditional rewrite rules of
the form

t→ t′ if u1 → v1 ∧ . . . ∧ un → vn ∧ w1 = q1 ∧ . . . ∧ wm = qm.

Of course, what we regard as concurrent computation or as logical deduction
may, like beauty, be just in the eyes of the beholder. For example, we may regard
any rewrite theory (Σ, E,R) where Σ has just a binary operator ⊗ and some
constants, including a unit element I, E has associativity and commutativity
axioms for ⊗ and an axiom for I as identity of ⊗, and R is a collection of
unconditional ground rewrite rules, as either a Petri net, or as a theory in
the linear conjunctive (⊗) fragment of propositional linear logic [299]. But
since both structures are mathematically isomorphic, there is no fact of the
matter about which viewpoint should be adopted: this is just a pragmatic issue
depending on what applications one has in mind.

I illustrate below all the ideas just discussed by means of two simple exam-
ples, one of a concurrent object system and another of an automated deduction
procedure. For concreteness I give the specifications in Maude [105, 106], a
language and system implementation directly based on rewriting logic (rewrit-
ing logic languages are discussed in Section 5). This emphasizes that rewriting
logic is a computational logical and semantic framework, so that systems and
logics can not only be mathematically represented: they can also be efficiently
executed if they satisfy some minimum requirements (see Section 3.2).

2.1. Semantic Framework Uses: A Communication Protocol Example
I present a concurrent object-based system —namely, a simple communica-

tion protocol— specified in Maude. Maude’s syntax is user-definable: operators
can be declared with any desired “mixfix” syntax. A concurrent state made
up of objects and messages can be thought of as a “soup” in which objects
and messages are freely floating and can come into contact with each other in
communication events. Mathematically, this means that the concurrent state,
called a configuration, is modeled as a multiset or bag built up by a multiset
union operator which satisfies the axioms of associativity and commutativity,
with the empty multiset as its identity element. We can, for example, denote
multiset union with empty syntax, that is, just by juxtaposition by declaring the
type (called a sort) Configuration of configurations, which contains the sorts
Object and Msg as subsorts, the empty configuration none, and the configura-
tion union operator as follows:

sorts Object Msg Configuration .

subsorts Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

7

Each operator is declared with the op keyword, followed by its syntax, the list
of its argument sorts, an arrow ->, and its result sort. The configuration union
operator has two argument positions, which are marked by underbars. Before
and/or after such underbars, any desired syntax tokens can be declared. In this
case an empty syntax (juxtaposition) has been chosen, so that no syntax tokens
at all are declared. Note that constants like none are viewed as operators with
no arguments. The keyword config declares that this is a union operator for
configurations of objects and messages (the significance of this for fair execution
is explained in Section 3.5). The assoc comm id: none attributes declare the
associativity axiom (x y) z = x (y z), the commutativity axiom x y = y x, and
the identity axiom x none = x. Maude then supports rewriting modulo such
axioms, so that a rule can be applied to a configuration regardless of parentheses,
and regardless of the order of arguments. The ctor keyword declares that both
none and __ are state-building constructors, as opposed to functions defined on
such constructors (see Section 3.7).

Consider an object-based system containing three classes of objects, namely,
Buffer, Sender, and Receiver objects, so that a sender object sends to the
corresponding receiver a sequence of values (say natural numbers) which it reads
from its own buffer, while the receiver stores the values it gets from the sender
in its own buffer. In Maude’s Full Maude language extension (see Part II of
[106]), such object classes can be declared as subsorts of the Object sort in
class declarations, which specify the names and sorts of the attributes of objects
in the class. The above three classes can be defined with class declarations:

class Buffer | q : NatList, owner : Oid .

class Sender | cell : Nat?, cnt : Nat, receiver : Oid .

class Receiver | cell : Nat?, cnt : Nat .

In general, if a class Cl has been declared with attributes a1 of sort A1, . . .,
an of sort An, in a class declaration

class Cl | a1 : A1, ... , an : An .

then an object o of class Cl is a record-like structure of the form:

< o : Cl | a1 : v1, ... , an : vn >

where each vi is a term of sort Ai. For example, the sort Oid of object identifiers
can use quoted identifiers as object names by importing the QID module, where
quoted identifiers have sort Qid, and giving the subsort declaration Qid < Oid.
Similarly, by importing the module NAT, where the natural numbers are the
elements of sort Nat, one can then define the supersort Nat? of Nat containing
an empty value mt, and the sort NatList of lists of natural numbers as follows:

sorts Nat? NatList .

subsorts Nat < Nat? NatList .

op mt : -> Nat? [ctor] .

op nil : -> NatList [ctor] .

op _._ : NatList NatList -> NatList [ctor assoc id: nil] .

8

then the following is an initial configuration of a sender and a receiver object,
each with its own buffer, and each with its cell currently empty:

< ’a : Buffer | q : 1 . 2 . 3 , owner : ’b >

< ’b : Sender | cell : mt , cnt : 0 , receiver : ’d >

< ’c : Buffer | q : nil , owner : ’d >

< ’d : Receiver | cell : mt , cnt : 1 >

A sender object can send messages to its corresponding receiver object. The
specifier has complete freedom to define the format of such messages by declaring
operators of sort Msg, using the msg keyword instead of the more general op
keyword to emphasize that the resulting terms are messages. For example, one
can choose the following format:

msg to_::_from_cnt_ : Oid Nat Oid Nat -> Msg .

where a message, say, to ’d :: 3 from ’b cnt 1, means that ’b sends to
’d the data item 3, with counter 1, indicating that this is the first element
transmitted. This last information is important, since message passing in a
configuration is usually asynchronous, so that messages could be received out-
of-order. Therefore, receiver objects need to use the counter information to
properly reassemble a list of transmitted data. Of course, out-of-order com-
munication is just one possible situation that can be modeled. If, instead, one
wanted to model in-order communication, the distributed state could contain
channels, similar for example to the buffer objects, so that axioms of associa-
tivity and identity are satisfied when inserting messages into a channel, but not
commutativity, which is the axiom allowing out-of-order communication in a
configuration of objects and messages. Up to now we have just defined the dis-
tributed states of our object-based system as the algebraic data type associated
to the equational theory (Σ, E), where Σ is the signature whose sorts have been
declared with the sort (and class) keywords, with subsort relations declared
with the subsort keyword, and whose operators have been declared with the
op (or msg) keywords; and where the equations E have been declared2 as equa-
tional axioms of associativity and/or commutativity and/or identity associated
to specific operators, declared with the assoc, comm and id: keywords.

What about the concurrent transitions for buffers, senders, and receivers?
They are specified by rewrite rules R such as the following (note that, by con-
vention, object attributes not changed by a rule need not be mentioned in its
righthand side):

vars X Y Z : Oid . vars N E : Nat . vars L L’ : NatList .

rl [read] : < X : Buffer | q : L . E, owner : Y >

< Y : Sender | cell : mt, cnt : N, receiver: Z >

=> < X : Buffer | q : L > < Y : Sender | cell : E, cnt : N + 1 > .

2In Maude one can also declare explicit equations with the eq and ceq keywords. See
Section 2.2 for an example.

9

rl [write] : < X : Buffer | q : L, owner : Y > < Y : Receiver | cell : E >

=> < X : Buffer | q : E . L > < Y : Receiver | cell : mt > .

rl [send] : < Y : Sender | cell : E, cnt : N, receiver : Z >

=> < Y : Sender | cell : mt > (to Z :: E from Y cnt N) .

rl [receive] : < Z : Receiver | cell : mt, cnt : N > (to Z :: E from Y cnt N)

=> < Z : Receiver | cell : E, cnt : N + 1 > .

That is, senders can read data from the buffer they own and update their count;
and receivers can write their received data in their own buffer. Also, each time a
sender has a data element in its cell, it can send it to its corresponding receiver
with the appropriate count; and a receiver with an empty cell can receive a data
item from its sender, provided it has the correct counter. Note that rewriting is
intrinsically concurrent; for example, ’b could be sending the next data item to
’d at the same time that ’d is receiving the previous data item or is writing it
into its own buffer; furthermore, there could be many different sender-receiver
pairs executing concurrently in the same configuration. Note also that the rules
send and receive describe the asynchronous message passing communication
between senders and receivers typical of the Actor model [3]. Instead, the read
and write rewrite rules describe synchronization events, in which a buffer and its
owner object synchronously transfer data between each other. This illustrates
the flexibility of rewriting logic as a semantic framework: no assumption of
either synchrony or asynchrony is built into the logic. Instead, many different
styles of concurrency and of in-order or out-of-order communication can be
easily modeled.

Since the above rewrite theory is executable, we can use its rewrite rules not
just as a formal specification, but also for simulation purposes. For example,
from the initial state described above, where the sender’s buffer had a list 1 . 2

. 3 and the receiver’s buffer was empty, we would expect the above rewrite rules
to achieve in-order communication, so that in the final state the sender’s buffer
is empty and the receiver’s buffer has the list 1 . 2 . 3. Maude achieves a
rule-fair execution with the rewrite command. To support the object-oriented
notation for classes, objects, and messages used in this example, we can declare
the above sorts, subsorts, classes, and rules in an object-oriented module in
Maude’s Full Maude extension (see [106]). Then, to execute our system from the
above-mentioned initial state we can give to Full Maude the following command
(note that all Full Maude module declarations and commands must be enclosed
in parentheses):

Maude> (rewrite < ’a : Buffer | q : 1 . 2 . 3 , owner : ’b >

< ’b : Sender | cell : mt , cnt : 0 , receiver : ’d >

< ’c : Buffer | q : nil , owner : ’d >

< ’d : Receiver | cell : mt , cnt : 1 > .)

result Configuration :

< ’a : Buffer | owner : ’b, q : nil >

< ’b : Sender | cell : mt, cnt : 3, receiver : ’d >

< ’c : Buffer | owner : ’d, q :(1 . 2 . 3) >

10

< ’d : Receiver | cell : mt, cnt : 4 >

2.2. Logical Framework Uses: A Propositional Satisfiability Example
Procedures for propositional satisfiability (SAT) are very useful in many ap-

plications, including SAT solving modulo decidable theories in first-order theo-
rem proving. Sometimes, however, in the quest for performance the algorithmic
details of a SAT solver may become so involved that it is unclear whether it
is sound. In fact, this is not a theoretical possibility but a real concern in ac-
tual SAT solvers. What is needed is a clear separation of concerns between the
SAT solver’s inference system and its (typically quite sophisticated) heuristics.
This separation of concerns has been advocated by Cesare Tinelli, who gave a
precise sequent calculus specification of the Davis-Putnam-Logemann-Loveland
(DPLL) SAT solving procedure, from which a proof of its correctness is quite
direct, in [453]. I discuss in what follows a slightly enhanced version of Tinelli’s
inference system in [453], which Tinelli and I then used to develop the rewriting
logic specification of the inference system executable in Maude discussed below.
Tinelli’s sequent-based formalization is as follows. To reason about the satisfia-
bility of a propositional formula ϕ we first put it in conjuntive normal form as a
conjunction of clauses C1 ∧ . . . ∧ Cn, where a clause C is a disjunction of literals,
which is logically equivalent to the set of clauses Γ = {C1, . . . , Cn}. The DPLL
procedure can then be formalized as a sequent-based inference system with se-
quents of the form ∆ ` Γ, where ∆ is a set of literals, i.e., of atomic propositions
p or negations ¬p of such propositions, and where Γ is a set of clauses. A set of
clauses Γ will be satisfiable iff from the initial sequent ∅ ` Γ we can derive a se-
quent of the form ∆ ` ∅ using the DPLL inference system, where ∆ represents a
satisfying assignment. As usual in sequent formulations, a set Γ = {C1, . . . , Cn}
is written without the enclosing parentheses as Γ = C1, . . . , Cn. Likewise, a set
of literals ∆ = {l1, . . . , lm} is written ∆ = l1, . . . , lm. The DPLL procedure can
then be formalized as the following inference system:

(subsume)
∆ ` Γ, l ∨ C

∆ ` Γ
if l ∈ ∆ (resolve)

∆ ` Γ, l ∨ C
∆ ` Γ, C

if ¬l ∈ ∆

(assert)
∆ ` Γ, l
∆, l ` Γ

if l 6∈ ∆,¬l 6∈ ∆ (close)
∆ ` Γ,2
∅ ` 2

if ∆ 6= ∅ ∨ Γ 6= ∅

(split)
∆ ` Γ, l ∨ C

∆, l ` Γ ∆,¬l ` Γ, C
if l 6∈ ∆, ¬l 6∈ ∆, C 6= 2

where 2 denotes the empty clause, C ranges over clauses, and for l any lit-
eral, ¬¬l = l. The rewriting logic formalization of this inference system as
a rewrite theory RDPLL = (ΣDPLL, EDPLL, RDPLL) must axiomatize sequents
as the algebraic data type of the equational theory (ΣDPLL, EDPLL), and then
axiomatize the inference rules as rewrite rules in RDPLL. We can, however,
do better than that. Because of rewriting logic’s distinction between equations

11

and rules, we can choose to axiomatize as equations those inference rules that
are deterministic (in the sense that their combined application will lead to a
unique final result) and that should always be applied exhaustively. We only
need to axiomatize as rules the truly nondeterministic rules. This makes the
specification both more clever, since it makes explicit the implicit determinism,
and much more efficient, because it can drastically reduce the amount of search
required, given that search is now only needed for the nondeterministic rules.
For the above DPLL inference system, only the split rule is nondeterministic:
all other rules can be axiomatized equationally. The rewriting logic axiomati-
zation RDPLL = (ΣDPLL, EDPLL, RDPLL) is in fact executable in Maude as the
DPLL module below and can be used as a prototype of the DPLL procedure.

Of course, the real smarts of a SAT solver are in its heuristics; but this is
the whole point of Tinelli’s proposal: we should cleanly separate between the
inference system and its heuristics and not mix the two together in a confusion
of pointers. Nevertheless, the rewrite theory RDPLL = (ΣDPLL, EDPLL, RDPLL)
captures in a declarative way a simple but important part of those heuristics,
namely, it identifies those deterministic rules that should always be applied ex-
haustively; but it leaves unspecified the heuristics for applying the split rule.
Heuristics or, more precisely, strategies are a separate and modular dimension
of a rewrite theory that I discuss in Section 3.5. The same rewrite theory can
be executed with many different strategies, which may be better or worse in
various regards; but strategies, being now a particular way of applying intrinsi-
cally correct rules, can never affect correctness. For DPLL and DPLL(T) this
completely agrees with Tinelli’s approach in [453] and in his later joint work
with Nieuwenhuis and Oliveras [356], where the issue of strategies is discussed
in depth. Although the above DPLL calculus does not model fundamental
features of modern SAT solvers such as back-jumping, conflict resolution, and
clause learning, the Abstract DPLL framework of [356] —which could also be
naturally specified as a rewrite theory— can express such features declaratively,
so that a clean separation between heuristics and inference rules is maintained.

mod DPLL is protecting QID .

sorts Literal Context Clause ClauseSet Sequent .

subsorts Qid < Literal < Context Clause < ClauseSet .

op ~ : Literal -> Literal .

op null : -> Context .

op _,_ : Context Context -> Context [assoc comm id: null] .

op _,_ : ClauseSet ClauseSet -> ClauseSet [assoc comm id: null] .

op [] : -> Clause .

op _\/_ : Clause Clause -> Clause [assoc comm id: ([])] .

op _|-_ : Context ClauseSet -> Sequent .

op _in_ : Literal Context -> [Bool] .

var p : Qid .

var l : Literal .

var CTX : Context .

var C : Clause .

var CS : ClauseSet .

eq ~(~(l)) = l .

12

eq l in l,CTX = true .

eq [contraction] : C,C = C .

eq [subsume] : l,CTX |- CS,(l \/ C) = l,CTX |- CS .

eq [resolve1] : p,CTX |- CS,(~(p) \/ C) = p,CTX |- CS,C .

eq [resolve2] : ~(p),CTX |- CS,(p \/ C) = ~(p),CTX |- CS,C .

eq [close1] : CTX |- C,CS,[] = null |- [] .

eq [close2] : CTX,l |- CS,[] = null |- [] .

ceq [assert] : CTX |- CS,l = CTX,l |- CS

if (l in CTX) =/= true and (~(l) in CTX) =/= true .

crl [split1] : CTX |- CS,(l \/ C) => l,CTX |- CS

if (l in CTX) =/= true and (~(l) in CTX) =/= true and C =/= [] .

crl [split2] : CTX |- CS,(l \/ C) => ~(l),CTX |- CS,C

if (l in CTX) =/= true and (~(l) in CTX) =/= true and C =/= [] .

endm

Let me discuss the rewrite theoryRDPLL = (ΣDPLL, EDPLL, RDPLL) in more
detail. The signature ΣDPLL describes the sorts, subsorts, constructors, and
auxiliary functions needed for sequents. Note that the order-sorted type struc-
ture in DPLL precisely captures the types of: (i) propositional symbols, repre-
sented here by the sort Qid of quoted identifiers, (ii) literals, (iii) sets of literals,
called contexts, (iv) clauses, and (v) sets of clauses. Sequents are then pairs
of a context and a set of clauses. Negation ¬ is represented by ~ in typewriter
notation, set membership ∈ by in, and the empty set ∅ by null. All other
operators are typewriter analogues of their mathematical notation.

The equations EDPLL are essentially of two kinds: those axiomatizing the ba-
sic properties of sequents, and those expressing the deterministic inference rules
subsume, resolve, assert, and close. In any sequent calculus, the first order
of business is to define the so-called structural rules enjoyed by sequents ∆ ` Γ.
For propositional and first-order logic, sequents ∆ ` Γ enjoy structural rules
making ∆ and Γ sets of formulas. This is captured above by the assoc, comm
(corresponding to the so-called exchange structural rule of sequents), and id:
attributes of the operator _,_ of set union; but there is still one more structural
rule, namely, the so-called contraction rule expressing the idempotency of set
union, which is specified above as the contraction equation. Not all sequent
calculi obey all these structural rules: linear logic drops contraction, and Lam-
bek’s logic drops both contraction and exchange. The general point is that,
by choosing the right equations, we can capture any desired structural axioms.
Furthermore, by declaring some of them as axioms, we can reason modulo such
axioms without having to explicitly apply them as structural inference rules:
the only exception here is the contraction rule, which is explicitly applied as
a simplification equation modulo the built-in associativity, commutativity, and
identity axioms for set union.

Since negations are restricted to literals in the above type structure, we only
need the equation stating that the double negation of a literal is the literal
itself. Set membership needs only be defined in the positive case by the ob-
vious equation; since we are only defining the positive case, an expression like
’a in ’b,’c,’d, where ’a is not in the set ’b,’c,’d, does not have a Boolean
value: its value is the expression itself, which belongs to the supersort [Bool]

13

of Bool automatically added by Maude. For simplicity and efficiency reasons,
except for the assert rule, all deterministic inference rules that had side con-
ditions in Tinelli’s formulation are now specified as unconditional equations
declared with the eq keyword. The simplicity of these unconditional equations
is due to the expressiveness of pattern matching modulo associativity, commu-
tativity and identity, which can capture the corresponding side conditions in
the lefthand side patterns. Sometimes, as in the case of resolve and close, two
equations are needed to specify one rule. This is done to express the condi-
tions of the corresponding inference rules in the patterns of the unconditional
equations, such as the disjunction of either ∆ or Γ being nonempty in the side
condition of close, and the side condition of the resolve inference rule. Finally,
the two conditional rewrite rules in RDPLL, declared with the crl keyword, ex-
actly capture the two inference rules specified by the two different outcomes of
the split rule. Note that we could have instead chosen to represent the DPLL
inference rules au pied de la lettre. For example, using the or operator from the
implicitly imported BOOL module, we could have represented the close rule by
the single conditional equation

ceq [close] : CTX |- CS,[] = null |- [] if CTX =/= null or CS =/= null .

As already mentioned, the particular choice of equations and rules in DPLL is
motivated by two reasons: first, to illustrate the high expressive power of match-
ing modulo associativity, commutativity and identity, which allows expressing
some conditions directly in the lefthand side pattern; and second, for efficiency
reasons, since unconditional equations and rules can be executed more efficiently
than condional ones. Again, the representational distance between the textbook
formulation of the DPLL sequent calculus and its expression in an executable
form in the rewriting logic framework, whether in the more literal way just al-
luded to or the freer one in the DPLL module, can be fairly described as an ε
distance. Furthermore, rewriting logic’s distinction between equations and rules
gives a specifier additional expressive power to discriminate between determin-
istic and nondeterministic inference rules.

The above inference system, being an executable rewrite theory, provides
a prototype implementation of a DPLL-style SAT solver. Of course, since
the DPLL inference system is non-deterministic, using Maude’s rewrite com-
mand is not enough, since the concrete sequence of inference steps followed
by the default strategy of the rewrite command could result in an assign-
ment not satisfied by the given formula, when the formula is actually satis-
fiable. One option is to specify a strategy that applies the DPLL rules in
a way that guarantees that a satisfying assignment will be found if there is
one; this could be done using Maude’s strategy language [175]. A simpler
option is to use Maude’s search command, where we begin with an initial
term t and search for a rewrite sequence reaching a term t′ which is a sub-
stitution instance of a pattern (a term with variables) specified as the goal
of the search command. For example, the satisfiability of a formula such as
(’a \/ ~(’b) \/ ’c), (~(’a) \/ ’b \/ ’c), (’a \/ ’b), can be decided by giving to

14

Maude a search command to look for a satisfying assignment, which is rep-
resented as a sequent of the form CTX |- null. Therefore, we begin with the
sequent null |- (’a \/ ~(’b) \/ ’c), (~(’a) \/ ’b \/ ’c), (’a \/ ’b) and search
for a sequence of DPLL inference steps bringing us to a sequent which is an
instance of the pattern CTX |- null. If we are interested in just one solution, we
can qualify the search command with the [1] request for the first solution as
follows:

Maude> search [1] null |- (’a \/ ~(’b) \/ ’c), (~(’a) \/ ’b \/ ’c), (’a \/ ’b)

=>+ CTX |- null .

Solution 1 (state 4)

CTX --> ’a,’c,~(’b)

which tells us that we can reach the satisfying assignment ’a,’c,~(’b) |- null

by instantiating the pattern’s variable CTX to the context ’a,’c,~(’b). Instead,
if we are interested in all satisfying assignments, we can give the unqualified
search command (note that some satisfying assignments below are special cases
of more general ones):

Maude> search null |- (’a \/ ~(’b) \/ ’c), (~(’a) \/ ’b \/ ’c), (’a \/ ’b)

=>+ CTX |- null .

Solution 1 (state 4)

CTX --> ’a,’c,~(’b)

Solution 2 (state 5)

CTX --> ’b,’c,~(’a)

Solution 3 (state 7)

CTX --> ’a,’b

Solution 4 (state 8)

CTX --> ’a,’c

Solution 5 (state 9)

CTX --> ’a,’b,~(’c)

Solution 6 (state 10)

CTX --> ’b,’c

No more solutions.

3. Foundations

The foundations of rewriting logic begin of course with its proof theory and
its model theory, but have various other aspects such as reflection, strategies,
and executability properties. Furthermore, rewrite theories themselves can be
extended to model real-time systems and probabilistic systems. Finally, the
properties enjoyed by a rewrite theory need not be just those expressible in
rewriting logic itself: they may also be expressible in other logics, such as tem-
poral logics. Temporal logic properties can then be verified by model checking
or deductive methods.

15

3.1. Rewriting Logic
A rewrite theory3 is a tuple R = (Σ, E,R), with:

• (Σ, E) an equational theory with function symbols Σ and equations E;
and

• R a set of labeled rewrite rules of the general form

r : t→ t′

with r a label and t, t′ Σ-terms which may contain variables in a countable
set X of variables which we assume fixed in what follows; that is, t and t′

are elements of the term algebra TΣ(X). In particular, their corresponding
sets of variables, vars(t), vars(t′) are both contained in X.

Given R = (Σ, E,R), the sentences that R proves are rewrites of the form,
t → t′, with t, t′ ∈ TΣ(X), which are obtained by finite application of the
following rules of deduction:

• Reflexivity. For each t ∈ TΣ(X),
t→ t

• Equality.
u→ v E ` u = u′ E ` v = v′

u′ → v′

• Congruence. For each f : k1 . . . kn → k in Σ, and ti, t
′
i ∈ TΣ(X), 1 ≤

i ≤ n,

t1 → t′1 . . . tn → t′n
f(t1, . . . , tn)→ f(t′1, . . . , t′n)

• Replacement. For each rule r : t→ t′ in R, with, say, vars(t)∪vars(t′) =
{x1, . . . , xn}, and for each substitution θ : {x1, . . . , xn} −→ TΣ(X), with
θ(xl) = pl, 1 ≤ l ≤ n, then

p1 → p′1 . . . pn → p′n
θ(t)→ θ′(t′)

3 As already mentioned in Section 2, rewrite rules can be conditional. To simplify the
exposition I present here the simplest version of rewrite theories, namely, unconditional rewrite
theories over an unsorted equational theory (Σ, E). In general, however, the equational theory
(Σ, E) can be many-sorted, order-sorted, or even a membership equational theory [319]. And
the rules can be conditional, where a rule’s condition has a conjunction of rewrites, equalities,
and even memberships, that is, rules have the general form

r : t→ t′ if (
^
i

ui = u′i) ∧ (
^
j

vj : sj) ∧ (
^
l

wl → w′l)

Furthermore, the theory may also specify an additional mapping φ : Σ −→ P(N), assigning
to each function symbol f ∈ Σ (with, say, n arguments) a set φ(f) = {i1, . . . , ik}, 1 ≤ i1 <
. . . < ik ≤ n of frozen argument positions under which it is forbidden to perform any rewrites.
Rewrite theories in this more general sense are studied in detail in [80]; they are clearly more
expressive than the simpler unconditional and unsorted version presented here. This more
general notion is the one supported by the Maude language [106]. I discuss further these
generalized rewrite theories in Section 3.1.2.

16

where for 1 ≤ i ≤ n, θ′(xi) = p′i.

• Transitivity

t1 → t2 t2 → t3
t1 → t3

We can visualize the above inference rules as follows:

Reflexivity

�
�
��

@
@
@@

t
-

�
�

��

@
@
@@

t

Equality
�

�
��

@
@
@@

u
-

�
�

��

@
@
@@

v

‖
�

�
��

@
@
@@

u
′ -

‖
�

�
��

@
@
@@

v
′

Congruence
f

�
��
�
�
A
A
Q
QQ.

�� AA �� AA �� AA �� AA

f
�

��
�
�
A
A
Q
QQ.

�� AA �� AA �� AA �� AA� ��*� ��3

-

Replacement

�
�
�

@
@
@

t

�� AA �� AA �� AA �� AA
.

�
�
�

@
@
@

t
′

�� AA �� AA �� AA �� AA
.� ��*� ��3

-

Transitivity

�
�
��

@
@
@@

t1

- �
�

��

@
@
@@

t3

�
�

��

@
@
@@

t2

@
@@R �

���

17

The notation R ` t → t′ states that the sequent t → t′ is provable in the
theory R using the above inference rules. Intuitively, we should think of the
inference rules as different ways of constructing all the (finitary) concurrent com-
putations of the concurrent system specified by R. The Reflexivity rule says
that for any state t there is an idle transition in which nothing changes. The
Equality rule specifies that the states are in fact equivalence classes modulo
the equations E. The Congruence rule is a very general form of “sideways
parallelism,” so that each operator f can be seen as a parallel state constructor,
allowing its arguments to evolve in parallel. The Replacement rule supports
a different form of parallelism, which I call “parallelism under one’s feet,” since
besides rewriting an instance of a rule’s lefthand side to the corresponding right-
hand side instance, the state fragments in the substitution of the rule’s variables
can also be rewritten. Finally, the Transitivity rule allows us to build longer
concurrent computations by composing them sequentially.

3.1.1. Operational and Denotational Semantics of Rewrite Theories
A rewrite theory R = (Σ, E,R) has both a deduction-based operational se-

mantics, and an initial model denotational semantics. Both semantics are de-
fined naturally out of the proof theory just described. The deduction-based
operational semantics of R is defined as the collection of proof terms [315] of
the form α : t → t′. A proof term α is an algebraic description of a proof tree
proving R ` t→ t′ by means of the inference rules of rewriting logic. As already
mentioned, such proof trees describe the different finitary concurrent computa-
tions of the concurrent system axiomatized by R. When we specify R as a
Maude module and rewrite a term t with the rewrite or frewrite commands,
obtaining a term t′ as a result, we can use Maude’s trace mode to obtain a
sequentialized version of a proof term α : t→ t′ of the particular rewrite proof
built by the Maude interpreter.

A rewrite theory R = (Σ, E,R) has also a model-theoretic semantics, so that
the inference rules of rewriting logic are sound and complete with respect to
satisfaction in the class of models of R [315]. Such models are categories with
a (Σ, E)-algebra structure [315]. These are “true concurrency” denotational
models of the concurrent system axiomatized by R. That is, this model theory
gives a precise mathematical answer to the question: when do two descriptions
of two concurrent computations denote the same concurrent computation? The
class of models of a rewrite theory R = (Σ, E,R) has an initial model TR [315].
The initial model semantics is obtained as a quotient of the just-mentioned
deduction-based operational semantics, precisely by axiomatizing algebraically
when two proof terms α : t → t′ and β : u → u′ denote the same concurrent
computation. Of course, α and β should have identical beginning states and
identical ending states. By the Equality rule this means that we should have
E ` t = u, and E ` t′ = u′. That is, the objects of the category TR are E-
equivalence classes [t] of ground Σ-terms, which denote the states of our system.
The arrows or morphisms in TR are equivalence classes of proof terms, so that
[α] = [β] iff both proof terms denote the same concurrent computation according
to the “true concurrency” axioms. Such axioms are very natural. They express

18

that the Transitivity rule behaves as an arrow composition and is therefore
associative. Similarly, the Reflexivity rule provides an identity arrow for each
object, satisfying the usual identity laws. Furthermore, they state that each
f in the Congruence rule acts not only on states but also on arrows as a
functor, i.e., preserving arrow compositions and identitites; this axiomatizes the
true concurrency semantics of “sideways parallelism.” Finally, the “parallelism
under one’s feet” semantics of the Replacement inference rule is axiomatized
by giving equational axioms making each rewrite rule r : t → t′ a natural
transformation r : t⇒ t′ between the functors t and t′.

Categorical models for rewrite theories go back to [312, 314, 315]. As pointed
out in those papers and mentioned above, the models of a rewrite theory are
(small) categories with an algebraic structure. They generalize ordinary alge-
bras, which are sets with an algebraic structure. This means that the underlying
universe in which these models and their morphisms should be considered is the
2-category Cat of small categories [314, 315, 344], as opposed to the underlying
universe of algebras, which is the category Set of sets. There is also a generaliza-
tion of Lawvere’s functorial semantics [279] for ordinary algebras: the models
of a rewrite theory R have a functorial semantics as 2-product-preserving 2-
functors into Cat from its associated Lawvere 2-theory LR [313, 322]. Such
Lawvere 2-theories have been replaced by weaker sesqui-categories in [436, 123];
and in the context of tile logic (which I discuss further in Section 4.2) by Lawvere
double theories in [328, 78, 81].

3.1.2. Generalized Rewrite Theories
Since rewriting logic is parameterized by its underlying equational logic, the

more expressive its underlying equational part, the more expressive also the
resulting rewriting logic. Increased expressivenes is not a theoretical luxury,
but an eminently practical goal, since formal specification languages should
describe as simply and naturally as possible the widest possible class of systems.
As explained in [319], membership equational logic is indeed a very expressive
equational logic generalizing order-sorted equational logic (which generalizes
many-sorted equational logic, which, in turn, generalizes unsorted equational
logic). It supports sorts, subsorts, partiality, and sorts defined by equational
conditions through membership axioms. Its atomic formulas are either equalities
t = t′, or memberships t : s stating that t has sort s. Its sentences are universally
quantified Horn clauses on such atoms. Therefore, as already pointed out in
Footnote 3, a rewrite theory R = (Σ, E,R), whose underlying equational theory
(Σ, E) is a membership equational theory, may have conditional rules in R whose
conditions can be conjunctions of equations, memberships, and rewrites.

In the quest for more expressive versions of rewriting logic, another feature,
namely, frozenness, has proved to be very useful in many applications. The
idea of frozenness is that some argument positions in a state constructor should
be “frozen,” in the sense that no rewrites are allowed below that position. For
example, if · is an action concatenation operator in a process calculus, then
an expression like a.P , with a an action and P a process expression, should
typically not be rewritten on the P part, that is, on its second argument. This

19

can be simply captured by saying that · is frozen on its second argument.
More generally, given a signature Σ, its frozenness information is defined as a
function φ : Σ −→ Pfin(N), where φ(f) is the set of frozen argument positions.
For example, φ(·) = {2}. In summary, a generalized rewrite theory is a 4-tuple
R = (Σ, E,R, φ) where: (i) (Σ, E) is a membership equational theory; (ii) the
rules in R may be conditional, where conditions are conjunctions of equations,
memberships and rewrites, and (iii) φ is the frozenness map. As shown in
detail in [80], all the good properties of the proof theory and the model theory
of rewriting logic, including the existence of initial and free models, extend
naturally to the case of generalized rewrite theories.

A theme already developed in [315], which is extended to generalized rewrite
theories in [80], is that of reachability models. For some purposes (for example,
model checking or reachability analysis), we may not need the initial model of a
rewrite theory R in its full glory as a category of truly concurrent computations:
a much more abstract model, namely, its reachability relation may be sufficient
for such purposes. It is well-known that any small category can be collapsed to a
binary relation on its objects which is a preorder. In exactly this way, the initial
model of R = (Σ, E,R, φ) is collapsed to a preorder, namely, its reachability
initial model, whose elements are E-equivalence classes [t] of ground terms t;
and where the reachabilty relation [t]→R [t′] is defined by the equivalence:

[t]→R [t′] ⇔ R ` t→ t′.

It is also possible to distinguish in the initial reachability model between one-
step transitions [t]→1

R [t′], corresponding to the application of a single rewrite
rule, and general transitions [t] →R [t′], corresponding to zero, one, or more
rewrite steps. This distinction is useful for various purposes, for example for
giving semantics in the initial reachability model of R to the next operator ©
in temporal logic, a topic further discussed in Section 3.11.

3.2. Computability and Coherence
For execution purposes a rewrite theory R = (Σ, E,R, φ) should satisfy

some additional requirements. As already illustrated by the DPLL example in
Section 2.2, the equations E may decompose as a union E = E0 ∪ B, where B
is a (possibly empty) set of structural axioms, and E0 is a set of equations used
as simplification rules modulo B. We should require that matching modulo B
is decidable, and that the equations E0 are sort-decreasing, ground confluent
and terminating modulo B and B-coherent.4 This makes the initial algebra
TΣ/E0∪B , that is, the set of states of the system axiomatized by R, computable;
in fact, equality becomes obviously decidable, and the elements of the initial

4For B any combination of associativity and/or commutativity and/or identity axioms,
B-coherence can be automatically guaranteed by a simple theory transformation, as done
automatically in Maude (see [106, Section 4.8]). As explained in Footnote 5, the notion
of coherence of an equational theory (Σ, E0 ∪ B), though related, is different from that of
coherence of a rewrite theory, which is the main topic discussed in this section.

20

algebra TΣ/E0∪B have a very simple description as the (irreducible) canonical
forms canE0/B(t) of ground terms t by the equations E0 modulo the axioms B.

What about the computability of the one-step rewrite relation →1
R in R =

(Σ, E,R, φ)? If we want the number of states reachable in one step from a
given state to be finite, for unconditional rules R we should first of all require
that for any rule r : t → t′ in R we have vars(t′) ⊆ vars(t). But because of
rewriting logic’s Equality inference rule, computability is not at all obvious just
by requiring vars(t′) ⊆ vars(t), or even by further requiring that E = E0 ∪ B
with the equations E0 sort-decreasing, ground confluent and terminating modulo
B. The problem is that the term t we rewrite need not be in canonical form, and
there may easily be an infinite number of terms having the same canonical form.
Otherwise put, model-theoretically the transitions in the initial model TR, or
in its collapse as an initial reachability model, are between states [t] which are
E0∪B-equivalence classes of terms, and therefore possibly infinite sets. Finding
a rewritable term in such a set is the proverbial search for a needle in a haystack
and may be undecidable.

Of course, all would be easy if the existence of a one-step rewrite proof
R ` t → t′ guarantees the existence of another such one-step rewrite proof of
the form R ` canE0/B(t) → t′′ such that [t′] = [t′′], since then, assuming R
is finite, the one-step rewrite relation becomes easily computable: to rewrite
[t] what we can do is: (i) compute the canonical form canE0/B(t) of t, and
(ii) try to rewrite canE0/B(t) with the rules R modulo B in all possible ways.
By the assumptions on B and the finiteness of R there is only a finite set of
such one-step rewrites that can be effectively computed, say, canE0/B(t) →
t1, . . . , canE0/B(t)→ tk. Then the next states reachable from [t] in one step are
exactly [t1], . . . , [tk]. Furthermore, we can conveniently represent such states by
their unique canonical forms canE0/B(t1), . . . , canE0/B(tk). This is exactly how
Maude computes with a rewrite theory: it reduces t to canonical form with E0

modulo B, and then applies a rule in R modulo B, and keeps doing this until
termination or until a user-given maximum number of rewrites with R, that is,
of one-step transitions. Similarly, in reachability analysis or model checking,
Maude stores the states in the state space as their canonical forms canE0/B(t).

But is this complete? Couldn’t we be missing rewrite proofs, and therefore
transitions, by adopting this strategy? Completeness is guaranteed if we have
the implication:

R ` t→1 t′ ⇒ (∃t′′) R ` canE0/B(t)→1 t′′ ∧ [t′] = [t′′]

where R ` t →1 t′ denotes a one-step rewrite proof. This property is called
the ground coherence of R with E0 modulo B. If we do not require t to be
a ground term, we talk instead of the coherence5 of R with E0 modulo B.

5 The notion of coherence of a rewrite theory is related to, but different from, that of coher-
ence of an equational theory (Σ, E0 ∪B). In both cases the issue is to ensure an appropriate
notion of completeness of a rewrite relation. For equational theories the relation is that of
rewriting with equations E0 modulo axioms B. Instead, for rewrite theories it is a matter of

21

This coherence property was first axiomatized by Viry [463, 464]. A similar but
weaker property, what Viry calls “weak coherence,” was independently identified
in [316]. For the case of rewrite theories R = (Σ, E0∪B,R) where (Σ, E0∪B) is
an untyped equational theory, E0 is confluent and terminating modulo B, and
the axioms B consist of the associativity or the associativity-commutativity of
some binary function symbols in Σ, a detailed study of critical pair criteria
for checking coherence of R with E0 modulo B was given by Viry in [467].
Since coherence is such a fundamental property to ensure the computability and
efficient executability of rewrite theories, coherence needed to be generalized
to support more expressive rewrite theories R = (Σ, E0 ∪ B,R, φ) with: (i)
an order-sorted signature Σ with sorts and subsorts; (ii) possibly conditional
equations E0; (iii) more general axioms B such as any axioms whose equations
are unconditional, linear and regular and have a finitary unification algorithm;
(iv) conditional rules R which can have a conjunction of equations in their
condition; and (v) a frozenness map φ. Furthermore, proof methods and tools
not only for coherence (the case studied by Viry) but also for ground coherence
had to be developed. This has been done recently in [161], where the Maude
Coherence Checker tool is also described (I further discuss this tool in Section
6.1.1). But of course, to check coherence or ground coherence under such general
conditions is only possible if we can first check the confluence and termination of
the underlying order-sorted conditional specification (Σ, E0∪B). Proof methods
for checking confluence of equational theories under such general conditions and
a tool (the Maude Church-Rosser Checker (CRC)) are presented in [161] (I
discuss the CRC tool in Section 6.1.1). I postpone discussion of the termination
methods until Section 3.8, and of termination tools until Section 6.1.

To summarize, equality of states, operations on states, and the one-step
rewrite relation are all effectively computable in a finitary rewrite theory R =
(Σ, E ∪ B,R, φ) such that: (i) the (possibly conditional) equations E are sort-
decreasing, ground confluent and terminating modulo B and B-coherent, and
there is a B-matching algorithm; and (ii) the rules in R are coherent with
the equations E modulo B and have only equalities and memberships in their
conditions, and if they have extra variables in their righthand side or condition
which do not appear in the lefthand side, then they are admissible rules in the
sense of [106, Section 6.3].

An interesting question to ask is: how expressive is rewriting logic to specify
computable transition systems and computable Kripke structures (for more on
Kripke structures see Section 3.11)? For equational logic the same question was
asked and answered by Bergstra and Tucker in [54]: any computable algebra,
i.e., any computable data type, can be specified by a finitary equational theory
(Σ, E), where the equations E are confluent and terminating. For rewriting logic
the same question has been asked and answered in [332]: any computable tran-

the coherence between two rewrite relations modulo B, namely, one with equations E0, and
another with rules R. Early work on the coherence of a set of equations E0 modulo axioms
B includes, e.g., [244, 383, 248].

22

sition system, resp., computable Kripke structure, is isomorphic to one specified
by a finitary rewrite theory R = (Σ, E ∪ B,R, φ) satisfying conditions (i)–(ii)
and with a chosen kind [State] of states, so that the transition system’s set of
states is the algebraic data type TΣ/E∪B[State]

, and its transition relation is →1
R.

3.3. Unification, Generalization, Narrowing, and Symbolic Reachability
The rewrite rules of a rewrite theory R, and the rewrite sequents we can de-

duce from it using the inference rules discussed in Section 3.1, are all (implicitly)
universally quantified. But what about existential formulas of the form

∃x : t(x)→ t′(x)

with x some variables; what do such formulas mean? and how can we reason
formally about them? An existential formula ∃x. t(x) → t′(x) is of course a
reachability property. It says that there is some instance of the state pattern
t from which we can reach, by some possibly complex computation, another
state which is an instance of the state pattern t′. A negated existential for-
mula ¬∃x. t(x) → t′(x), which is of course equivalent to the universal formula
∀x. ¬(t(x) → t′(x)), is then an unreachability property. Reachability and un-
reachability properties are among the most useful properties of rewrite theories.
Typically, an unreachability property expresses a safety property such as an in-
variant (invariants are further discussed in Section 3.11.3). An invariant says
that for all the states reachable from a specified set of initial states something
bad can never happen. By describing our, possibly infinite, set of initial states
as the ground instances of the state pattern t, and likewise describing the bad
states as the ground instances of the state pattern t′, the unreachability prop-
erty ∀x. ¬(t(x)→ t′(x)) says that bad states in t′ are never reachable from the
initial states in t or, equivalently, that the complement of the set of bad states
which are ground instances of t′ is an invariant, relative to the initial states in
t. Understood this way, proving the formula ∃x. t(x) → t′(x) means proving
that such a supposed invariant can be violated.

So the question now is: how can we prove existential formulas of the form
∃x. t(x) → t′(x) for a rewrite theory R = (Σ, E ∪ B,R, φ) (where we assume
the good executability properties already discussed in Section 3.2, i.e., that E
is confluent and terminating modulo B, and R is coherent with E modulo B)?
Prasanna Thati and I studied this question in [340, 450] and gave several con-
ditions on R and several forms of narrowing modulo E ∪B providing complete
proof methods for formulas of the form ∃x. t(x)→ t′(x). Let me summarize the
simplest condition that can be given onR, namely, the frequently occurring case
of topmost rewrite theories. These are theories having a kind k (a topmost sort
in some connected component in the poset of sorts) such that: (i) no operator
has k as sort for any of its arguments; and (ii) the terms in all rewrite rules in
R are of kind k. For example, the DPLL module satisfies these two conditions
with k = Sequent. Our object-based example in Section 2.1 does not quite sat-
isfy requirements (i) and (ii) because the constructor for configurations __ has
the sort Configuration as an argument, but can be easily transformed into a

23

semantically equivalent rewrite theory which does: we can just add a new sort,
say, State, and declare an operator embracing a whole configuration to make a
global distributed state:

op {_} : Configuration -> State .

Then, to satisfy condition (ii) we can just place all the rules in our object-based
example in the bigger context of a state by adding an extra variable C of sort
Configuration to represent “the rest of the state” (which could be empty). For
example, rule send now becomes:

rl [send] : { < Y : Sender | cell : E , cnt : N , receiver : Z > C }

=> { < Y : Sender | cell : mt, cnt : N > (to Z :: E from Y cnt N) C } .

As shown in [340], under conditions (i)–(ii), narrowing with R modulo E ∪
B is a complete method for proving formulas of the form ∃x. t(x) → t′(x),
that is, for symbolic reachability analysis. Specifically, under such conditions
∃x : t(x) → t′(x) holds for R iff there is a narrowing sequence t ;∗R,E∪B
u such that u and t′ have a E ∪ B-unifier. Narrowing is just like rewriting,
but replacing matching modulo an equational theory by (semantic) unification
modulo such a theory. That is, the one-step (R,E ∪ B)-narrowing relation is
defined as t ;R,E∪B t′ iff there is a non-variable position6 p of t, a (possibly
renamed) rule l → r in R, and a unifier σ ∈ Unif E∪B(t|p, l) such that t′ =
σ(t[r]p), where Unif E∪B(t|p, l) denotes a complete set of unifiers of the equation
t|p = l, that is, of substitutions θ solving such an equation in the equational
theory E ∪ B, in the sense that θ(t|p) =E∪B θ(l). This has many applications
to automated deduction, verification of safety properties, model checking, and
security. Some of these applications were discussed in [340, 188]. I discuss some
of the applications to model checking in Section 3.11.2, and to the analysis of
cryptographic protocols in Section 7.3.

There is, however, a nontrivial problem, namely, how to obtain practical
unification algorithms to compute Unif E∪B(t|p, l). If E = ∅, and B is a set of
axioms for which a unification algorithm exists, then things are easy. For exam-
ple, for the object-based system of sender and receiver objects with buffers in
Section 2.1, E = ∅ and B consists of the axioms of associativity, commutativity
and identity for the operators and , for which there is a finitary unification
algorithm generating a finite set of solutions. There is, however, the remaining
problem that the signature of the above example is order-sorted (indeed, the
operators and , have different sorts), whereas the standard unification al-
gorithms modulo associativity, commutativity and identity are unsorted. The
paper [235] gives an algorithm, under very general conditions on B, by which
one can use an unsorted B-unification algorithm to obtain a complete set of

6By viewing a term as a tree, we can represent a positions p in it by a string of natural
numbers. For example, in the term f(a, g(b, c)), a is at position 1, g(b, c) at postion 2, b at
position 2.1, and c at position 2.2. The subterm of t at position p is then denoted t|p. A
position p is non-variable, iff t|p is not a variable.

24

order-sorted B-unifiers. Currently, Maude supports order-sorted unification for
B any combination of: (i) free function symbols; (ii) commutativity axioms;
(iii) associativity-commutativity axioms; and (iv) associativity, commutativity
and identity axioms [152].

When E is nonempty, the matter of finding a E ∪ B-unification algorithm
is more complex. In principle, one can assume good properties about E such
as confluence, termination, and coherence modulo B and use the results in
[249] to compute E ∪B-unifiers by (E,B)-narrowing.7 But there are two main
problems: (i) in general the number of E ∪ B-unifiers is not finite; and (ii) for
B 6= ∅ unrestricted narrowing can be horribly inefficient in the sense of leading
to huge search spaces, and known strategies making narrowing efficient such as
basic narrowing can be incomplete. For example, basic narrowing is incomplete
when B is the theory of associativity-commutativity (AC) [121]. To make things
even worse, it is very easy to give examples of narrowing modulo, e.g., AC such
that there is a finite set of most general narrowing solutions to a unification
problem, but the narrowing algorithm modulo AC will loop forever looking for
more solutions.

In fact, narrowing with (oriented) equations E modulo axioms B when B 6= ∅
has been for a long time a terra incognita, where little was known about any
practical methods to deal with these problems. Using the idea of variants8

of a term proposed by Comon and Delaune in [121], Santiago Escobar, Ralf
Sasse and I have defined a complete narrowing strategy with equations E mod-
ulo B called folding variant narrowing9 [189] (see also the longer paper [190]
in this issue), that is optimally terminating, that is, if any complete narrow-
ing strategy terminates on an input term, then folding variant narrowing will
terminate on that term. Furthermore, if E ∪ B has the so-called finite vari-
ant property [121], folding variant narrowing will terminate on all input terms.
For E ∪B-unification purposes this means that, if E ∪B has the finite variant
property, folding variant narrowing then provides a finitary E ∪ B-unification
algorithm.10 Escobar, Sasse and I have also given methods to check the finite
variant property of a theory in [187]. It turns out that many cryptographic

7 This reduces the problem of computing E∪B-unifiers to a symbolic reachability problem.
Specifically, we add a new binary operator ≈ and a fresh constant true to our syntax, and
add a new rule x ≈ x → true to our equations E oriented as rewrite rules. Then the E ∪ B-
unification problem ∃x. t(x) = t′(x) is transformed into the symbolic reachability problem
∃x : t(x) ≈ t′(x)→ true for the rewrite theory with equations B and rules E∪{x ≈ x→ true},
which is solved by narrowing with rules E ∪ {x ≈ x→ true} modulo B.

8The E ∪ B-variants of a term t are pairs (u, θ) with u = canE/B(θ(t)) and θ some
substitution. Therefore, the variants of t are essentially the irreducible patterns to which any
instance of t may evaluate.

9Variant narrowing is a narrowing strategy which, given an input term t, computes a
complete set of E ∪ B-variants of t. The folding version of this strategy uses subsumption
modulo B to avoid computing any variant which is a substitution instance modulo B of a
more general variant.

10Using the ideas in Footnote 7, computing the E ∪ B-unifiers of the equation u = v by
folding variant narrowing amounts to computing (a complete set among) those E′∪B-variants
of the term u ≈ v which are of the form (true, θ), for E′ = E ∪ {x ≈ x→ true}.

25

theories of interest have the finite variant property [121]. I explain in Section
7.3 how —using folding variant narrowing to compute E ∪ B-unifiers and nar-
rowing with protocol rules R modulo E ∪ B to perform symbolic reachability
analysis— this has been exploited in the Maude-NPA protocol analyzer [183]
to provide complete formal analysis for security protocols modulo a variety of
cryptographic theories. More generally, Maude 2.6 supports variant narrowing,
and symbolic reachability analysis of topmost rewrite theories, modulo a large
class of equational theories E ∪B having the finite variant property [152].

Generalization is the dual of unification. Given two terms t and t′, a set of
most general B-unifiers for the equation t = t′ is, as already mentioned, a set
Unif B(t, t′) giving us a set of most general instances {θ(t) | θ ∈ Unif B(t, t′)},
which are common instances of t and t′ up to B-equivalence, i.e., θ(t) =B θ(t′).
But we can ask the dual question: given terms t and t′, can we compute a
set GralB(t, t′) of least general patterns of which t and t′ are instances mod-
ulo B, i.e., least general terms u such that there are substitutions θ, ρ with
θ(u) =B t and ρ(u) =B t′? For example, for B = ∅ and Σ untyped, the terms
f(f(a, a), b) and f(f(b, b), c) have a least general generalization in the pattern
f(f(x, x), y). Generalization has many useful applications, for example, to au-
tomated deduction, machine learning, testing, and partial evaluation. Maŕıa
Alpuente, Santiago Escobar, Pedro Ojeda and I have developed generalization
algorithms for two cases that are important for rewriting logic, namely, order-
sorted generalization [17], and generalization modulo B, for B any combination
of associativity and/or commutativity and/or identity axioms [16].

3.4. Reflection
Reflection is a very important property of rewriting logic [113, 102, 115, 116].

Intuitively, a logic is reflective if it can faithfully represent its metalevel at
the object level. Specifically, rewriting logic can faithfully represent its own
theories and their deductions by having a finitely presented rewrite theory U
that is universal, in the sense that for any finitely presented rewrite theory R
(including U itself) we have the following equivalence

R ` t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉,

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection [113, 102, 115], since we have

R ` t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉 ⇔ U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

Reflection is a very powerful property: (i) it allows defining rewriting strate-
gies by means of metalevel theories that extend U and guide the application
of the rules in a given object-level theory R (this is further discussed in Sec-
tion 3.5); (ii) it is efficiently supported in the Maude implementation by means
of descent functions [104] in the META-LEVEL module; (iii) it can be used to build
a variety of theorem proving and theory transformation tools (this is further

26

discussed in Sections 4.1 and 6.1); (iv) it can endow a rewriting logic language
like Maude with powerful theory composition operations [159, 150, 151, 160];
(v) it can be used to prove metalogical properties about families of theories in
rewriting logic, and about other logics represented in the rewriting logic meta-
logical framework [50, 109] (this is further discussed in Section 4.1); and (vi)
has important connections with distributed object-based reflection and adapta-
tion [338].

3.5. Strategies
Recall the DPLL rewrite theory in Section 2.2. The most complex aspect of a

SAT solver is precisely its heuristics or strategy. In the case of the rewrite theory
specified in DPLL this means that performance will crucially depend on the strate-
gies used to apply the split1 and split2 rewrite rules. In a more sophisticated
SAT solver supporting back-jumping, conflict resolution and clause learning, the
situation is similar: performance will crucially depend on the strategies guid-
ing the application of the Abstract DPLL inference rules in [356]. Of course,
this is a general issue that applies not just to SAT solving but to any rewrite
theory; and that involves not only performance but also any goal-oriented use
of a rewrite theory. The key issue is the potential nondeterminism of rules, as
opposed to the determinism of confluent and terminating equations.

Strategies are still relevant for equations for performance and termination
reasons, even when the equations are confluent and terminating, or to ensure
their termination as in the case of context-sensitive rewriting for equations (see,
e.g., [290] and references there). Context-sensitive rewriting of equational spec-
ifications is supported by OBJ, CafeOBJ, and Maude. Note that the addition
of a frozenness map φ to a generalized rewrite theory, as explained in Section
3.1.2, provides a similar form of context-sensitive rewriting at the rule level,
as opposed to the equation level.11 But for nondeterministic rules, strategies
become a much more essential issue, because such rules, depending on when
and where they are applied, can yield totally different outcomes. Frozenness
provides a very simple form of strategic rewriting with rules, but more than
frozenness is needed.

The role of strategies is to tame the potentially wild nondeterminism of rules
for various purposes, which may include: (i) realistic modeling of the behavior
of a truly nondeterministic system, whose nondeterminism we cannot or we do
not intend to control, but where some behaviors may be utterly unrealistic; and
(ii) goal-oriented (and perhaps performance-oriented) control of the nondeter-
minism in a system’s execution. It is of course possible to mix purposes (i) and
(ii): for example, we may have an asynchronous object system where the asyn-
chronous behavior is only restricted by a few fairness assumptions, but where
the objects are intelligent and use sophisticated game-theoretic strategies when
interacting with each other. In all cases, what strategies do is to restrict the

11Maude supports both forms of context-sensitive rewriting: with equations using the strat

attribute, and with rules using the frozen attribute.

27

set of all possible dynamic behaviors of the system axiomatized by the given
rewrite theory. That is, roughly speaking a strategy determines a subset of the
set of all the possible computations of a system specified by a rewrite theory R,
where those computations need not be just the finite ones but may also include
infinite computations.

If we are modeling a concurrent, asynchronous system whose nondetermin-
ism is an intrinsic fact of life which cannot really be controlled, and we want
to simulate such a system, strategies may still be relevant, not so much to con-
trol the outcome of system executions as to observe the behavior of the system
under realistic assumptions about its execution. Recall the example of sender,
receiver, and buffer objects in Section 2.1. It is easy to extend such a system to
one where there are also sensor objects that are periodically writing numerical
data observations into the sender’s buffer. In this way the system immediately
becomes a nonterminating reactive system. Such a system can have executions
that are totally unrealistic. For example, a sensor can be regularly writing new
data into the sender’s buffer, the sender object can be sending this potentially
infinite stream of data to the receiver, but the receiver never receives anything!
Intuitively, such a behavior is unfair. Therefore, fair strategies, which restrict
the set of behaviors to those were starvations such as this are ruled out, are
very important to model a system’s behavior realistically, and to reason for-
mally about system properties such as termination or satisfaction of temporal
logic formulas (I further discuss fair termination in Section 3.8, and model check-
ing of temporal logic formulas under fairness assumptions in Section 3.11). As
explained in [323], fair rewriting is not just a matter of rule fairness, that is,
of making sure that all rewrite rules are given a chance to be executed. For
example, in the above concurrent object system with sensor, buffer, sender and
receiver objects, if we have two different sensors hooked up to two different
senders through their respective buffers and two corresponding receiver objects
with their own buffers, we can be rule fair by making sure that the receive
and write rules are executed infinitely often; but we can still starve one of the
receivers, just by only executing receive and write rules for the other. That is,
we here need not only rule fairness but also object fairness: each object should
be treated fairly. The general notion is that of localized fairness in rule appli-
cations [323]. This is of course important to obtain realistic simulations. For
example, Maude provides rule fair executions through its rewrite command;
and rule and position fair executions through its frewrite command, which
becomes also object fair for object-based concurrent systems specified with a
multiset union operator using the config keyword, as illustrated in the exam-
ple of Section 2.1. But what can be done if we want to obtain fair behaviors
besides the ones provided by a language implementation? Fairness is just a par-
ticular kind of temporal logic property. More generally, we can view a temporal
logic formula as a strategy expression which defines a corresponding class of
behaviors. In Section 3.11.2, I explain how an expressive temporal logic such as
TLR can be used as a strategy language, which is then implemented by a model
checker.

If instead our purpose is to control the nondeterministic behavior of a rewrite

28

theory R for goal-oriented and perhaps performance-oriented purposes, an ap-
propriate way to achieve that end is to provide a strategy language that can be
used to guide and control the way in which the rules of R are applied. To give a
logical example, R can be the inference system of a theorem prover or of a SAT
solver, and then the strategies correspond to proof tactics or to solving heuris-
tics. In concurrent system applications the relevant strategies may have other
purposes, such as, for example, having a winning strategy in a game-theoretic
interaction between agents. Given all these useful purposes, different rule-based
languages such as, for example, ELAN [71, 70], Maude [113, 114, 303], and
Stratego [468], provide strategy languages to guide and control rule executions.
The ELAN researchers deserve much credit as pioneers in this area for having
made key contributions to rewriting strategy ideas from the beginning of the
ELAN language.

For modularity and reasoning purposes it is very useful to keep a clear sep-
aration between the rewrite theory R and the strategies used to control it. As
discussed in Section 2.2, this was one of the key motivations of Tinelli in seek-
ing formal specifications of SAT solvers by inference systems, so that the proof
of correctness of a SAT solver is completely decoupled from its, possibly quite
complex, heuristics. Following this point of view, a strategy language SL is
understood in [303] as a theory transformation of the form:

(R, SM) 7→ SL(R, SM)

where SM is a strategy module completely separated from the rewrite theory
R, and SL(R, SM) is a transformed rewrite theory which executes the rules
in R using the strategy expressions of SM . Modularity and separation of con-
cerns are thus achieved, because we can have different strategy modules, say,
SM1, . . . , SMn, to control the executions of the same rewrite theory R in dif-
ferent ways for different purposes. The fact that SL(R, SM) is another rewrite
theory means that the operational semantics of the strategy language SL is also
defined by rewriting, as done, for example, in [71, 70, 114, 303]. But what is
now rewritten is not just a term t in R, but a pair s@ t, consisting of a strategy
expression s in SM which is applied to a term t in R. What the term s@ t
rewrites to are solutions (plus possibly pending strategy tasks); that is, terms
t′ in R that are reachable from t when the rules in R are applied according to
the strategy s. Therefore, one can also give to SL a more abstract set-theoretic
semantics that assigns to s@ t the set of all its solutions, as done, for example,
in [71, 70, 303].

Of course, the theory SL(R, SM) manipulates or controls the theory R.
It needs to know and handle notions such as term, subterm, rule, position,
matching substitution, and so on. This makes an explicit use of reflection in
the definition of SL(R, SM) very natural, in the sense that SL(R, SM) can
be viewed as a rewrite theory that extends the universal theory U with special
combinators aimed at controlling the execution of R at the metalevel. This
has been the approach taken in Maude since its first strategy languages until
its current one [113, 114, 303]. In this way, strategies are made internal to

29

rewriting logic itself. There are of course various requirements that one would
like a strategy language to satisfy, the most basic one being its soundness,
i.e., only terms reachable from t in R should be among the solutions of s@ t.
The paper [303] discusses several such requirements, emphasizing the fact that
the determinism of SL(R, SM) is a highly desirable feature: since we want to
control the nondeterminism of R, once we fix a strategy s, the solutions of s@ t
should not depend on how s@ t is executed in SL(R, SM), in the sense that any
possible solution not yet seen should always be obtainable by further rewriting.

An important area where more advances are needed is that of formal reason-
ing about rewriting with strategies. Useful formal reasoning techniques and tools
already exist for proving termination under some notion of strategy: I discuss
work on termination under fairness, context-sensitive termination, and termi-
nation under ELAN strategies in Section 3.8. However, other formal reasoning
methods are less developed; for example, the paper [289] studies conditions for
context-sensitive confluence, but the conditions are quite strong.

3.6. The ρ-Calculus
One of the attractive aspects of the λ-calculus is that it is very simple, both

in its syntax and its rules, yet all of higher-order functional programming can
be encoded in it, or in some variant of it such as a typed version. Couldn’t
there be a similar calculus for rewriting? And could such a calculus be general
enough as to naturally embed the λ-calculus as a subcalculus? Horatiu Cirstea
and Claude Kirchner both posed these intriguing questions and gave an elegant
positive answer to them in their ρ-calculus [95, 96, 97]. The key idea is to
replace the λ-abstraction operator λx.u by a ρ-abstraction t ⇀ u, where the
role of the bound variable x in λx.u is now played by the bound term t in
t ⇀ u. As in the λ-calculus, there is also an application operator [] . The
intended meaning of an application [t ⇀ u](v) is to rewrite the term v at the
top with the rewrite rule t → u. The λ-calculus is then naturally encoded in
the ρ-calculus as a special case. For example, the λ-term λx.(y x) is encoded as
the ρ-term x ⇀ [y](x). The entire ρ-calculus is then described by a small set of
evaluation rules; furthermore, such evaluation rules, particularly the Fire rule,
can be made parametric on the matching algorithm employed, i.e., the ρ-calculus
can express not only syntactic rewriting, but also rewriting modulo axioms such
as associativity-commutativity. In similarity to the λ-calculus, there are also
typed versions of the ρ-calculus [99, 287], and even a “ρ-cube” [98].

From the point of view of reflection, the ρ-calculus can be understood as
a convenient simple calculus specifying a universal theory (modulo using an
explicit substitution calculus such as, e.g., CINNI [430] to turn the ρ-calculus
itself into a first-order rewrite theory). Indeed, it is shown in [96, 97] that the
ρ-calculus can faithfully simulate at the metalevel the rewriting behavior of any
other rewrite theory. Since, as pointed out in Section 3.5, from a reflective point
of view a strategy language SL can be understood as the addition of appropriate
strategy combinators to a universal theory U , it is entirely natural to see that
one of the important uses of the ρ-calculus has been to give a rewriting semantics
at the metalevel to strategy languages such as ELAN, and that the ρ-calculus

30

itself has been extended with such strategy combinators to become in effect a
powerful strategy language [100].

3.7. Sufficient Completeness
Given a rewrite theory R = (Σ, E ∪ B,R, φ), with good executability con-

ditions such as E being ground confluent and terminating modulo B, and R
being coherent with E modulo B, we can represent its states uniquely up to
B-equality as canonical forms canE/B(t) with t a ground term. The equations
E may define various auxiliary functions (for example, numerical functions),
which operate on some parts of the state, that is, that manipulate elements of
the initial algebra TΣ/E∪B . Therefore in canE/B(t) all such auxiliary functions
should have already disappeared and only state constructors should remain.
This is the (equational) sufficient completeness problem: given a subsignature
Ω ⊆ Σ of operators called constructors, is it the case that for any ground Σ-term
t, the term canE/B(t) is an Ω-term? If this holds, (Σ, E ∪ B) is called suffi-
ciently complete with respect to the constructor subsignature Ω; if it fails to
hold, this is clear indication that we have not given enough equations to define
some auxiliary function f ∈ Σ − Ω, so that there is something wrong with the
specification. For a rewrite theory R = (Σ, E ∪B,R) this means that there are
extra states that we had not intended to have in our system and which are not
built by the state constructors Ω alone.

It is therefore important to check that an equational theory (Σ, E ∪ B), or
the equational part of a rewrite theory R = (Σ, E ∪ B,R, φ), is sufficiently
complete. When B = ∅, Σ is unsorted, and the equations E are unconditional,
several algorithms to check sufficient completeness are known (see, e.g., [120]
and references there). An attractive possibility is to further assume that the
equations E are left-linear (i.e., if (t = t′) ∈ E, then each variable x in t oc-
curs at a single position p of t), because then the problem can be reduced to an
emptiness problem for tree automata (see [120]). In general, however, one would
like to have sufficient completeness proof methods that can apply more broadly
to: (i) order-sorted or even membership-equational signatures; (ii) modulo ax-
ioms B; and (iii) with E containing conditional equations and even conditional
memberships. In such a broad generality the problem becomes undecidable,
but proof obligations can be generated. For example, the tool described in [232]
addresses (i) and (iii) by providing a decision procedure to check the sufficient
completeneess of unconditional order-sorted equational theories without requir-
ing left linearity, and generates proof obligations which are sent to the Maude
Inductive Theorem Prover (ITP) (see Section 6.1.5), to prove sufficient com-
pleteness of order-sorted and membership-equational conditional specifications.
Instead, the Maude Sufficient Completeness Checker tool (SCC) [236, 234] ad-
dresses (i) and (ii) by providing a decision procedure which can check sufficient
completeness of order-sorted equational specifications modulo combinations of
associativity and/or commutativity and/or identity axioms when the equations
E are unconditional and left-linear. The SCC tool reduces the problem to an
emptiness problem for propositional tree automata [238], and uses the CETA
library that efficiently implements tree automata operations for propositional

31

tree automata [231]. As already mentioned, sufficient completeness for mem-
bership equational logic (MEL) is in general undecidable, but proof obligations
can be generated. The MEL sufficient completeness problem has been studied
in [72, 237, 231].

For a rewrite theory R = (Σ, E ∪ B,R, φ) there are actually two different
sufficient completeness problems. The first, of course, is the equational sufficient
completeness of its equational part (Σ, E∪B) relative to a constructor subsigna-
ture Ω described above. The second problem is the sufficient completeness of the
rules R. But what does that mean? If (Σ, E ∪B) is sufficiently complete in the
equational sense, are not all states of R already representable as Ω-constructor
terms of the form canE/B(t)? Yes indeed, but what about the set of final states,
that is, states for which it is not possible to perform any further transitions with
R? They are in general a subset of all ground Ω-terms, so that they may be
describable by an even smaller constructor subsignature Λ ⊆ Ω ⊆ Σ. By speci-
fying Λ, a user makes clear a set of state constructors that is enough to generate
all such final states. What is then a failure of sufficient completeness for the
rules R? What does it mean? It means exactly a violation of deadlock freedom.
A deadlock is an unintended and unwanted final state. Lack of sufficient com-
pleteness for R means that there is a final state of R which is not a Λ-term, that
is, R has a deadlock. Therefore, checking sufficient completeness of R means
checking deadlock-freedom. This has been proposed by Camilo Rocha and me
in [397], where we show that the same propositional tree automata techniques
used to verify sufficient completeness for order-sorted equational specifications
modulo axioms can be extended to check sufficient completeness of the rules R
in R under the assumption that they are unconditional, left-linear, and weakly
terminating; we also extend the Maude SCC tool to also support such checking.
For the case of rewrite theories of the form R = (Σ, ∅, R), with Σ unsorted and
R unconditional, a different method to check the sufficient completeness of R
using narrowing techniques has been proposed by I. Gnaedig and H. Kirchner
in [213].

3.8. Termination
Termination of a rewrite theory R = (Σ, E ∪ B,R, φ) is a very important

problem, and there is a rich body of termination techniques for term rewriting
systems that can be used. However, the standard termination proof methods
address the much simpler case of untyped rewrite theories of either the form
R = (Σ, ∅, R), or the form R = (Σ, B,R) for some restricted set B of axioms.
These standard methods are clearly insufficient for rewrite theories and need
to be substantially generalized in several dimensions such as: (i) support for
sorts, subsorts, and memberships; (ii) support for conditional rules with ex-
tra variables in their conditions12 in both E and R; (iii) the existence, when

12The use of extra variables in conditions, which are instantiated incrementally, greatly
increases the expressive power of specifications. See [106, Sections 4.6 and 6.3] for the exe-
cutability conditions required in Maude for such specifications.

32

E and R are conditional, of two separate rewrite relations →E and →R that
cannot be easily combined into a single one; (iv) the need to support a wide
range of equational axioms B containing at the very least any combination of
associativity and/or commutativity and/or identity axioms; and (v) support for
context-sensitive rewriting. Furthermore, standard termination methods were
developed in the context of equational logic and automated deduction and do
not address important kinds of termination relevant for rewriting logic appli-
cations such as: (a) termination under fairness assumptions; (b) termination
under strategies; and (c) probabilistic termination.

To address problems (i)–(v) in the context of generalized rewrite theories
R = (Σ, E ∪ B,R, φ) whose equational part is a (possibly conditional) mem-
bership equational theory (Σ, E), the first thing to observe is that the “vanilla
flavored” description of the computations by a single rewrite relation →R, or
even by two relations→E and→R, is utterly inadequate, because the computa-
tion of the membership relations t : s is just as important and is entwined with
that of rewrites using→E and→R. What one needs to make explicit is an infer-
ence system involving both rewrites (with R and E) and memberships. This, in
turn, poses the problem of conditional termination not in terms of a rewrite re-
lation→R, but in terms of different logics with different inference systems. This
has led to proposing the notion of operational termination in [155], not only for
membership rewriting, but for logical inference systems in general. Although
very general, this notion is also very practical, because it captures the idea of
an interpreter carrying out the inference steps, so that operational termination
means that such an interpreter will never loop. Even for the vanilla-flavored
case of untyped conditional rewrite theories R = (Σ, ∅, R) this notion provides
useful insights: as shown in [291], operational termination coincides there with
the notion of quasi-decreasing conditional term rewriting systems, making it
clear that other conditional rewrite systems, which are soi disant terminating,
such as those enjoying “effective termination,” are not effective at all, since
interpreters can loop on such systems [155]. The relations of operational ter-
mination with other notions of conditional termination for untyped conditional
term rewriting systems have been futher investigated in [414].

Although the approach to the operational termination of membership rewrite
theories in [155] already dealt with rewriting modulo axioms B, and was ex-
tended in [157] to deal simultaneously with the relations →E and →R plus the
memberships t : s, there is great practical interest in being able to use existing
state-of-the-art termination tools for term rewriting systems to prove the termi-
nation of generalized rewrite theories R = (Σ, E ∪B,R, φ) beyond their scope.
To bridge this gap, several important problems need to be solved. First, the
rewrite theories R = (Σ, E ∪B,R, φ), or even the membership equational theo-
ries (Σ, E) need to be transformed into untyped vanilla-flavored term rewriting
systems, eliminating features such as sorts, subsorts, memberships, and even
conditions. This is accomplished in [155, 157] by appropriate non-termination
preserving theory transformations. The second problem is that the sets of ax-
ioms B for which proofs of termination modulo B are supported in existing
tools are quite restricted. To solve this problem, semantics-preserving theory

33

transformations based on the notion of variant (see Section 3.3) that trans-
form a rewrite theory R = (Σ, E ∪ B,R, φ) into a semanticaly equivalent one
R̂ = (Σ, Ê ∪ D̂ ∪ B0, R̂, φ) with simpler axioms B0, where B = B0 ∪ D, are
presented in [158]. However, transformational methods come at a nontrivial
cost, since the transformed theories are usually more complex. Therefore, more
intrinsic proof methods to handle the above two problems are also of great
interest. For example, in [294] the transformations in [155] are replaced by
transformations into order-sorted rewrite theories, which still keep a lot of sort
information, and in [292] dependency-pair-based methods are generalized from
the unsorted to the order-sorted level. Similarly, in [10] intrinsic methods to
prove termination modulo useful combinations of equational axioms by depen-
dency pair techniques are proposed. The advantages of intrinsic methods over
transformational ones are also clear in proofs of context-sensitive termination
(see, e.g., [8, 225]). Many of the above-mentioned techniques for proving ter-
mination of rewrite theories are already supported by the Maude Termination
Tool (MTT), which I discuss in Section 6.1.3.

My current view is that the class of order-sorted rewrite theories of the
form R̂ = (Σ, B0, R, φ), where: (i) B0 is the widest possible class of axioms for
which dependency pair proof methods are available; and (ii) the rules R are
unconditional, is a good target class for which intrinsic methods should be fur-
ther developed, since the transformations of general rewrite theories into that
class become much simpler than the transformations into untyped rewrite the-
ories, and therefore the proof methods will become considerably more effective
in practice.

Another, orthogonal set of techniques that need to be further developed in
order for termination proofs to scale up to large rewrite theories are modularity
techniques that work at the richer level of at least order-sorted rewrite theories
modulo axioms B0. At the vanilla-flavored level of untyped rewrite theories of
the form R = (Σ, ∅, R), there is already a substantial body of such techniques
available (see, e.g., [358, 456]), and even some very useful work for untyped
rewrite theories of the form R = (Σ, AC,R), with AC associative-commutative
axioms [296]. Felix Schernhammer and I have initiated the study of modularity
techniques for the termination of unconditional order-sorted specifications mod-
ulo combinations of associativity and/or commutativity and/or identity axioms
in [415].

All the termination techniques described above provide an important neces-
sary core. However, this core is not sufficient to cover important applications.
Suppose that our rewrite theory R specifies a communication protocol whose
termination we want to prove. Very often R will not terminate in the standard
sense, but will terminate under appropriate fairness assumptions. That is, infi-
nite rewrite sequences do exist, but all such sequences are unfair and therefore
unrealistic. For example, the simple communication protocol in Section 2.1 can
be easily extended to a fault-tolerant one that can operate in a lossy medium by:
(i) modeling the lossy medium by a rewrite rule which can destroy a message
(rewrite it to the none configuration); (ii) modifying the receive rule, so that

34

an acknowledgment is sent back to the sender; and (iii) modifying the send rule
so that the sender keeps resending the n-th item without emptying its cell until
an acknowledgment for it is received. Since now any message can be destroyed
before it is received, plus a sender can keep resending a message forever, the
system is no longer terminating. However, under fairness assumptions about
how each receiver object will apply the receive rule, and each sender object will
receive acknowledgments and clear its cell, the fault-tolerant system is indeed
fairly terminating. Proof techniques for termination of rewrite theories under
fairness assumptions have been studied in [293], substantially extending prior
work in [386, 387]. Another way in which termination techniques need to be
extended is to reason about termination of R when executed under a given
strategy (see Section 3.5). This extension has been carried out in [199, 214] and
is supported by the CARIBOO tool, which I discuss in Section 6.1.2. Yet an-
other topic requiring a substantial extension of standard termination techniques
is the termination of probabilistic rewriting, a topic investigated in [212] (for
a discussion of probabilistic rewriting and the different notions that have been
proposed see Section 3.10).

3.9. Real-Time Rewrite Theories
In many reactive and distributed systems, including, for example, sched-

ulers, networks, and so-called cyber-physical systems, real-time properties are
essential to their design and correctness. Therefore, the question of how systems
with real-time features can be best specified, analyzed, and proved correct in the
semantic framework of rewriting logic is an important one. This question has
been investigated by several authors from two related perspectives. On the one
hand, an extension of rewriting logic called timed rewriting logic has been inves-
tigated, and has been applied to several examples and specification languages
[273, 366, 274, 429]. On the other hand, Peter Ölveczky and I found a simple
way to express real-time and hybrid system specifications directly in rewriting
logic [367, 359, 368, 371]. Such specifications are called real-time rewrite theories
and have rules of the form

{t} r→{t′} if C

with r a term denoting the duration of the transition (where the time can be
chosen to be either discrete or continuous), {t} representing the whole state of
a system, and C an equational condition. Peter Ölveczky and I showed that, by
making the clock an explicit part of the state, these theories can be desugared
into semantically equivalent ordinary rewrite theories [367, 359, 368]. That is,
in the desugared version we can model the state of a real-time or hybrid system
as a pair ({t}, r0), with {t} the current state and r0 the current global clock
time. Then the above rule becomes desugared as

({t}, r0)→ ({t′}, r0 + r) if C

Rewrite rules can then be either instantaneous rules, that take no time and
only change some part of the state t, or tick rules, that advance the global time

35

of the system according to some time expression r and may also change the
global state13 t. By characterizing equationally the enabledness of each rule
and using conditional rules and frozen operators [79], it is always possible to
define tick rules so that instantaneous rules are always given higher priority;
that is, so that a tick rule can never fire when an instantaneous rule is enabled
[369]. When time is continuous, tick rules may be nondeterministic, in the sense
that the time r advanced by the rule is not uniquely determined, but is instead
a parametric expression (however, this time parameter is typically subjected to
some equational condition C). In such cases, tick rules need a time sampling
strategy to choose suitable values for time advance.

Besides being able to show that a wide range of known real-time models
(including, for example, timed automata, hybrid automata, timed Petri nets,
and timed object-oriented systems) and of discrete or dense time values, can be
naturally expressed in a direct way in rewriting logic (see [368]), an important
advantage of the above approach is that one can use an existing implementation
of rewriting logic to execute and formally analyze real-time specifications. Be-
cause of some technical subtleties, this seems difficult for the alternative of timed
rewriting logic, although a mapping into the above framework does exist [368].

Of course, one would like to simulate and formally analyze real-time systems
specified as real-time rewrite theories. The Real-Time Maude tool [359, 371]
has been developed for this purpose (I further discuss Real-Time Maude in
Section 6.1.8). In this way, a wide range of applications, including schedulers,
networks, cyber-physical systems, and real-time programming and modeling
languages, have been specified (I discuss such applications in Section 7.4), and
have been formally analyzed by model checking their temporal logic properties
(I discuss the model checking of temporal logic properties, including the model
checking of such properties for real-time systems in Section 3.11.2).

3.10. Probabilistic Rewrite Theories
Many systems are probabilistic in nature. This can be due either to the

uncertainty of the environment in which they must operate, such as message
losses and other failures in an unreliable environment, or to the probabilistic
nature of some of their algorithms, or to both. In general, particularly for dis-
tributed systems, both probabilistic and nondeterministic aspects may coexist,
in the sense that different transitions may take place nondeterministically, but
the outcomes of some of those transitions may be probabilistic in nature. To
specify systems of this kind, rewrite theories have been generalized to proba-
bilistic rewrite theories in [276, 277, 5]. Rules in such theories are probabilistic
rewrite rules of the form

l : t(~x)→ t′(~x, ~y) if cond(~x) with probability ~y := πr(~x)

13Instantaneous rules need not involve the global state: they can be local (for example,
local to a give object, which receives a message) and can be applied concurrently; only tick
rules, which change the global time and must reflect the effects of time elapse everywhere (for
example, in all timers) need to be global and must rewrite the entire state.

36

where the first thing to observe is that the term t′ has new variables ~y disjoint
from the variables ~x appearing in t. Therefore, such a rule is nondeterminis-
tic; that is, the fact that we have a matching substitution θ such that θ(cond)
holds does not uniquely determine the next state fragment: there can be many
different choices for the next state, depending on how we instantiate the ex-
tra variables ~y in t′. In fact, we can denote the different such next states
by expressions of the form t′(θ(~x), ρ(~y)), where θ is fixed as the given match-
ing substitution, but ρ ranges along all the possible substitutions for the new
variables ~y. The probabilistic nature of the rule is expressed by the notation:
with probability ~y := πr(~x), where πr(~x) is a probability distribution which may
depend on the matching substitution θ. We then choose the values for ~y, that
is, the substitution ρ, probabilistically according to the distribution πr(θ(~x)).

The fact that the probability distribution may depend on the substitution θ
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive rational number denoting
the amount of battery charge. Each time the clock ticks, the time is increased
by one unit, and the battery charge slightly decreases; however, the lower the
battery charge, the greater the chance that the clock will stop, going into a state
of the form broken(T,C’). We can model this system in PMaude notation (see
Section 6.1.9) by means of the probabilistic rewrite rule

rl [tick]: clock(T,C) => if B then clock(T + 1,C - (C / 1000))

else broken(T,C - (C / 1000))

fi

with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the
rule’s righthand side is the Boolean variable B, corresponding to the result of
tossing the biased coin. As shown in [276], probabilistic rewrite theories can
express a wide range of models of probabilistic systems, including continuous-
time Markov chains [437], probabilistic nondeterministic systems [388, 418], and
generalized semi-Markov processes [211]; they can also naturally express proba-
bilistic object-based distributed systems [277, 5], including real-time ones. Yet
another class of probabilistic models that can be simulated by probabilistic
rewrite theories is the class of object-based stochastic hybrid systems discussed
in [336].

A completely different notion of probabilistic rewriting has been proposed
in [76, 74]. The key idea in both of these papers is that the rewrite rules
themselves, r : t → t′, are still deterministic (the lefthand side t′ has no extra
variables); what is probabilistic is the choice of which rule to apply and where.
In [76] it is shown how such choices can be defined in quite sophisticated ways by
probabilistic ELAN strategies to model, for example, probabilistic algorithms;
and in [74] ordinary deterministic rewrite rules are endowed with weights to
achieve a notion of probabilistic rewrite system. A good way to understand

37

how the ideas in [76, 74] are different from those in [276, 277, 5] is to observe
that in a rewrite theory R there are two completely different potential sources
of nondeterminism: (i) the choice of which rule to apply at any given moment
and where to apply it; and (ii) once a choice of rule, term position and matching
substitution has been made, if the rule r : t(~x) → t′(~x, ~y) has extra variables
~y on its righthand side, the choice of a ground substitution ρ to instantiate
the variables ~y. The semantics in [76, 74] makes the choice (i) probabilistic
while keeping the rules themselves deterministic; while the semantics in [276,
277, 5] keeps the choice (i) nondeterministic while making the instantiation of
nondeterministic rewrite rules governed by probability distributions that are
parametric on the lefhand side’s matching substitution. A final observation
to make is that the existence of nondeterminism in the choice (i) of which
transition to fire and where, with the transitions themselves being probabilistic
in their outcome, is well-known in the modeling of probabilistic systems, e.g.,
in probabilistic nondeterministic systems [388, 418]; and in the probabilistic
model checking of such systems, which introduces the notion of a scheduler
to eliminate the nondeterminism in the choice of transitions, and then model
checks the system considering all such possible schedulers.

It is highly desirable to be able to specify, simulate and analyze probabilistic
systems specified as probabilistic rewrite theories. The PMaude language design
[5] has exactly this purpose; I further discuss PMaude in Section 6.1.9. The
kinds of possible formal analyses go beyond simulations and include statistical
model checking with respect to properties expressed in either a probabilistic
temporal logic or even a quantitative probabilistic temporal logic where the
result of evaluating a formula on a path is a real number corresponding to
some quantity associated to a system behavior. I discuss probabilistic temporal
logics and model checking of probabilistic properties in Section 3.11. Many
applications to probabilistic systems are thus made possible; I discuss some of
them in Section 7.5.

3.11. Temporal Logic Properties
As already observed at the end of Section 3.1.2, the reachability initial model

of a rewrite theory R = (Σ, E,R, φ) has an associated one-step rewrite relation
[t] →1

R [t′] relating the states, i.e., the E-equivalence classes [t] of ground Σ-
terms t. Since R can have different sorts and kinds, we should furthermore
specify which is the preferred kind of states, so that terms of other kinds de-
scribe state fragments, or data components of the state, but not an entire state
of our system. Let [State] be such a kind. Then we can associate to R a tran-
sition system, namely, the pair (TΣ/E[State]

,→1
R) where TΣ/E[State]

denotes the
set of E-equivalence classes [t] of ground Σ-terms t of kind [State]. Without
loss of generality we may also assume that the equations E already define a
desired collection of state predicates (if they do not, we can just add new func-
tion symbols and equations defining such state predicates as Boolean-valued
functions). That is to say, we can associate to R not just a transition system

38

(TΣ/E[State]
,→1
R), but in fact a Kripke structure14 (TΣ/E[State]

,→1
R, LR), where

LR is a labeling function, associating to each state predicate p the set of all
states where p holds.

All this means that, since rewrite theories model concurrent systems and we
can naturally associate to them Kripke structures, their temporal logic properties
can then be defined semantically in terms of such Kripke structures (or for real-
time or probabilistic rewrite theories the analogous real-time or probabilistic
transition systems). For expressing such properties, suitable temporal logics
can be used. Then, both model checking, or theorem proving, or a combination
of both approaches, can be used to verify that a rewrite theory (more precisely,
its reachability initial model) satisfies some desired temporal logic properties.

3.11.1. Temporal Logics
Which temporal logic is best suited for specifying which properties of a

rewrite theory is itself a very good question. Here are several choices with
specific advantages.

State-Based Logics. There are many choices. The most common is CTL∗ [101],
or one of its subsets such as CTL or LTL. These logics are well suited for
properties based on state predicates; but not well suited for properties based on
events, which need to be encoded unnaturally in the state itself to be expressible.

TLR and Parameterized Fairness. To avoid the limitations of state-based log-
ics in expressing events, while keeping all their good state-based features; and
to take advantage of the expressive power of rewrite theories in expressing pa-
rameterized events by rewrite rules, and spatial information by term patterns,
the temporal logic of rewriting TLR [325] can be used. TLR is a simple ex-
tension of CTL∗ where just one more construct is added to the syntax of for-
mulas, namely, spatial action patterns. The simplest such patterns are just
labels of rewrite rules, stating that a transition event with a rule having that
label has taken place. For example, for the object-based system of Section 2.1,
we can state the liveness property that each message send is always eventu-
ally followed by a receive event by the (implicitly universally path quanti-
fied) TLR formula 2(send → � receive). However, more complex patterns
are possible taking advantage of both the parametric nature of rewrite rules
(whose parameters are the mathematical variables of each rule) and the context
where the rewrite takes place. For example, we can localize the above property
both to sender object ’b and its associated receiver object ’d by the formula
2(send(’b)→ � receive(’d)). It is also very easy to express localized (that is,
parameterized) fairness conditions as universally quantified TLR properties. For
example, the (weak) object fairness of the receive and write actions needed
for a realistic modeling of the object-based system of Section 2.1 when sensor

14For technical reasons, in some approaches, e.g., [101], the transition relation of a Kripke
structure is assumed to be a total relation; there is no problem in extending the relation →1

R
to a total relation for this purpose.

39

objects are added, as explained in Section 3.5, can be succinctly captured by
the TLR formulas (∀x : Oid) � 2 receive.enabled(x) → 2 � receive(x), and
(∀x : Oid) � 2 write.enabled(x) → 2 � write(x), where receive.enabled(x)
and write.enabled(x) are the obvious state predicates stating that the object
x can perform the receive, resp., write action. Of course, the reachabil-
ity initial model of a rewrite theory R and its associated Kripke structure
(TΣ/E[State]

,→1
R, LR) throw away all information about actions and therefore

cannot be used to give semantics to TLR. We need to use the initial model TR
of R and its associated labeled Kripke structure, where labeled transitions are

of the form [t]
[α]→R [t′], with α a one-step proof term [325].

Metric Temporal Logic and TCTL. For real-time systems, standard temporal
logics, although able to express many useful properties (particularly when the
state predicates refer to timers or even to the global clock), are not expressive
enough: one often wants to express the requirement that a certain property must
hold within certain time bounds. Various temporal logics for real-time systems
can be used. A simple possibility is to use the metric temporal logic MTL [275],
which extends LTL to timed paths by qualifying LTL’s until operator U with a
time interval [t, r]. The meaning of a formula ϕ U[t,r] ψ is then that ϕ U ψ holds
in the standard LTL sense and, furthermore, ψ must hold at a time t′ ∈ [t, r],
and ϕ must continuously hold until time t′. Instead, Timed CTL (TCTL [25])
extends CTL by qualifying the until operator U with a time bound t plus an
indication of whether the second formula must hold before, after, or exactly at
time t, that is, we have formulas of the form ϕ U1t ψ, where 1∈ {≥, >,≤, <,=},
with the expected meaning. For example, ϕ U≥t ψ is equivalent to ϕ U[t,+∞) ψ
in an interval formulation.

PCTL, CSL, and QuaTEx. For probabilistic systems, temporal logics that ex-
tend standard ones are also needed. One well-known such logic is Probabilistic
CTL (PCTL) [227]. The basic idea is that sets of computation paths in a proba-
bilistic system have probability measures associated to them, and we can qualify
temporal logic formulas by requiring that the set of paths satisfying a certain
formula has a probability greater (resp., smaller) than or equal to a certain
p ∈ [0, 1]. For example, the PCTL formula P≥0.7(ϕ U ψ) states that the set of
paths where ϕ U ψ holds has a probability measure greater than or equal to 0.7.

Since many probabilistic systems are also real-time systems, for such systems
there is also a need to have temporal logics which combine both probabilistic
and time-bounded features. Continuous Stochastic Logic (CSL) [1, 43] is one
such logic extending PCTL by qualifying temporal logic operators by a time
bound. For example, the formula P≥0.7(ϕ U≤3.2 ψ) states that the set of paths
where ϕ U ψ holds and, furthermore, ψ holds at a time t ∈ [0, 3.2], and ϕ holds
continuously until time t, has a probability measure greater than or equal to
0.7.

In the analysis of probabilistic systems we are often interested not just in
the probabilities associated to the satisfaction of certain temporal logic formu-
las, but in quantitative properties such as, for example, the expected latency of

40

a communication protocol when hardened against DoS attacks under specific
assumptions about the attacker and the network. Such a latency is not a prob-
ability but a real number. To be able to express such quantitative properties,
PCTL and CSL have been generalized to a logic of Quantitative Temporal Ex-
pressions (QuaTEx) in [5]. The key idea is to generalize state formulas and path
formulas to real-valued state expressions and path expressions, where the appro-
priate real-valued functions can be defined by the user, just as the appropriate
state predicates are defined by the user in standard temporal logics. Boolean-
valued and probability-valued formulas are now regarded as special cases of real-
valued QuaTEx formulas by using the subset containments {0, 1} ⊂ [0, 1] ⊂ R.
For example, Boolean-valued CSL formulas such as P≥0.7(ϕ U≤3.2 ψ) are also
expressible in QuaTEx, but QuaTEx can express properties beyond CSL [5].

3.11.2. Model-Checking Verification of Rewrite Theories
Model Checking of State-Based Temporal Properties. The simplest, yet very
useful, form of model-checking analysis of rewrite theories is the verification of
invariants. As usual in model checking, what we search for is the violation of
a property, in this case the invariant. An invariant I is a Boolean-valued state
predicate, so we can express a search for its violation as a search for a proof of
the existential formula

(∃x : [State]) (init → x ∧ I(x) = false)

where init is the initial state, and [State] is our chosen kind of states. If the
number of states reachable from init is finite, breadth first search is a com-
plete model-checking procedure to verify the invariant. If the number of states
reachable from init is infinite, breadth first search still gives us a semidecision
procedure to check the failure of the invariant: if I fails, we are guaranteed to
find a counterexample in finite time.

More generally, we can model check properties in state-based temporal logics
such as CTL, LTL, or CTL∗ using the model-checking algorithms described in
[101] by using the Kripke structure (TΣ/E[State]

,→1
R, LR) associated to the given

rewrite theory R, provided the number of states reachable from the given initial
state init is finite.

Model Checking of TLR Properties. To verify TLR properties on a rewrite the-
ory R, assuming again that the number of states reachable from the given initial
state init is finite, we have two different possibilities: (i) to transform R and
the property ϕ into a new rewrite theory R̃ and a CTL∗ formula ϕ̃ and then
model check R̃, ĩnit |= ϕ̃ as described in [325] and implemented in Maude in
[37] for the linear time temporal logic fragment LTLR; or (ii) to use a more
efficient algorithm that can directly verify LTLR formulas on a rewrite theory
R on the fly, as the one developed and implemented in the Maude system in
[38]. One of the good features of TLR is that it is very easy to express fairness
assumptions in it [325], so a first approach to the verification of a TLR property
ψ under fairness assumptions ϕ is to verify the implication ϕ → ψ. However,

41

this suffers from two major drawbacks: (i) in a logic like LTL the Büchi au-
tomaton associated to ϕ→ ψ grows exponentially with the size of the formula;
and since ϕ typically contains several fairness formulas and can be relatively
complex, we can easily hit severe performance barriers; and (ii) to make things
worse, the approach of model checking ϕ → ψ has no reasonable way of deal-
ing with localized fairness formulas which are parametric, i.e., what we have is
not a propositional formula ϕ, but a universally quantified first-order formula
(∀x) ϕ(x). For example, (∀x) ϕ(x) may express an object fairness assumption
in a system with dynamic object creation. Even if we could predict the set
O of all such objects, which may not be possible unless we explore the entire
state space, the only way to encode this directly at the propositional level would
be as a conjunction

∧
o∈O ϕ(o), something quite unfeasible to model check in

practice because of the typically huge size of the corresponding Büchi automa-
ton. For these reasons, Kyungmin Bae and I have developed a completely new
model-checking algorithm for LTLR which can model check LTLR formulas un-
der parametric fairness assumptions of the form (∀x) ϕ(x). The algorithm and
its Maude implementation are described in [39].

An interesting, additional aspect of LTLR model checking is its use as a
strategy language. Since TLR formulas contain action patterns corresponding
to how rules are applied, with which substitutions, and where in the state,
and describe complex behaviors involving such elementary actions and tests ex-
pressed by state predicates, a TLR path formula ϕ can be naturally understood
as a strategy expression, which defines a corresponding set of computations in
the given rewrite theory R. Assuming that ϕ does not contain any path quanti-
fiers, we can use an LTLR model checker to generate a behavior for the strategy
expression ϕ by giving to the model checker the LTLR state formula ∀¬ϕ. If the
strategy expression ϕ can be realized by a concrete behavior, the LTLR model
checker will provide such a behavior as a counterexample for ∀¬ϕ, that is, as a
constructive proof of the existentially path quantified TLR state formula ∃ϕ.

Narrowing-Based Symbolic Model Checking of Rewrite Theories. One impor-
tant limitation of standard model-checking algorithms such as those described
in [101] is that they work under the assumption that the set of states reachable
from the initial state is finite. There are several ways to avoid this limitation:
(i) to use deductive methods such as those I discuss in Section 3.11.3; (ii) to
use some kind of abstraction or simulation that transforms the system into a
finite-state one (I discuss this in Section 3.12); and (iii) to use a model-checking
approach that does not require the system to be finite-state. Regarding ap-
proaches of type (iii), Section 3.3 has explained how narrowing can be used as
a complete symbolic reachability analysis method to model check the failure of
an invariant for a possibly infinite-state rewrite theory R. This is of course a
very different notion of “symbolic model checking” than the usual one based
on BDDs, which uses the representation of a finite set of states as a proposi-
tional formula assuming a finite state space. But Section 3.3 dealt only with
reachability and invariants. What about other temporal logic properties? In
[186] Santiago Escobar and I show how the same narrowing approach can be ex-

42

tended to model check ACTL∗ properties of a possibly infinite system specified
as a topmost rewrite theory R, where ACTL∗ denotes the universal fragment
of CTL∗.

Model Checking of Real-Time Rewrite Theories. The simplest models of real-
time systems are timed automata [26], whose TCTL properties are decidable by
model checking [25]. The paper [52] shows how timed automata model check-
ing can be expressed as a symbolic procedure using appropriate strategies in
the ELAN rewriting logic language. Timed automata can be seen as very sim-
ple real-time rewrite theories [368], but their simplicity also involves a severe
limitation: they are finite-state systems. Even a relatively simple system such
as a scheduler whose state includes unbounded queues cannot be modeled by
a timed automaton [364]. What real-time rewrite theories offer is a more ex-
pressive high-level way of specifying many real-time systems of interest, such as
network protocols and distributed object systems, whose states are in princi-
ple unbounded and often contain complex data structures. The challenge is to
identify temporal logic properties and conditions on the real-time rewrite theory
that make the verification of such properties decidable by model checking. A
very broad class of real-time rewrite theories (whose time may be continuous)
has been identified in [370], where it is shown that the following temporal logic
properties are decidable for such systems: (i) time-bounded LTL\© formulas15

of the form ϕ in time r, where ϕ is an LTL\© formula and r is a time bound
(for a detailed explanation of the semantics of such formulas see [371]); and
(ii) LTL\© formulas whose state predicates do not refer to the global clock,
provided the set of discrete states reachable from the initial state is finite. Re-
call that a state of a system specified by a real-time rewrite theory is a pair
({t}, r), with {t} a ground term describing the global state and r a (possibly
continuous) clock value. By the “discrete state” I mean the global state {t}.
Formulas of types (i) or (ii) can already express many properties of practical
interest, but formalisms such as MTL and TCTL are obviously more expressive.
More recent work has developed two new model-checking algorithms for real-
time rewrite theories. In [283], a model-checking algorithm to verify properties
in a subset of MTL for object-oriented real-time rewrite theories whose state is
a multiset of objects and messages is presented; and [282] presents an algorithm
to model check real-time rewrite theories for the satisfaction of TCTL formulas,
except for formulas of the form ϕ U=t ψ. In Section 6.1.8 I discuss the Real-
Time Maude tool, which supports all the model-checking procedures mentioned
above; and in Section 7.4 I discuss many real-time system applications that have
been specified and analyzed in Real-Time Maude.

Statistical Model Checking of Probabilistic Rewrite Theories. Temporal logic
properties of a probabilistic system can be model checked either by exact model-
checking algorithms, or in an approximate, but more scalable and more widely

15LTL\© is the sublogic of LTL obtained by not using the © operator.

43

applicable way, by statistical model checking (see, e.g., [419, 475, 5]). The idea
of statistical model checking is to verify the satisfaction of a temporal logic prop-
erty by statistical methods up to a user-specified level of statistical confidence.
For this, a large enough number of Monte-Carlo simulations of the system are
performed, and the formula is evaluated on each of the simulations.

Recall the discussion in Section 3.10 about how a probabilistic rewrite the-
ory in general has a nondeterministic aspect corresponding to the choice of
which probabilistic transition to fire. One important requirement of statistical
model-checking algorithms is that they assume that the system is purely prob-
abilistic: there is no nondeterminism in the choice of transitions. This seems
like a strong requirement. However, using the methodology presented in [5], a
wide class of object-oriented probabilistic real-time rewrite theories specifying
many concurrent, actor-based systems of interest can be expressed so that no
nondeterminism is involved in the application of rewrite rules. The key idea
is to take advantage of three facts: (i) time is continuous; (ii) the probability
distributions governing message arrival latencies are also continuous; and (iii)
since the message arrival latency distributions are continuous, the probability
that two messages will arrive at the same time to any two objects (or to the
same object) is then zero. Since the rewrite rules specify how an actor changes
state when it receives a message, and at each instant in time at most one mes-
sage has arrived to at most one object, there is at most one rewrite rule that
can be applied at each continuous instant and all nondeterminism disappears.

Properties expressed in either CSL or QuaTEx can then be statistically
model checked for such probabilistic real-time rewrite theories, using the algo-
rithms presented in, respectively, [419] and [5]. Furthermore, as shown in [23],
the above algorithms are naturally parallelizable and can scale up very well us-
ing such paralelization. A related algorithm for statistical model checking of
quantitative properties is presented in [261]. In Section 6.1.10 I discuss how
the VeStA and PVeStA tools support the statistical model checking of CSL and
QuaTEx properties for the above-mentioned class of probabilistic rewrite theo-
ries; and in Section 7.5 I discuss various applications that have been specified
and analyzed this way.

3.11.3. Deductive Verification of Rewrite Theories
Model checking, while extremely useful, is not sufficient for all verification

purposes. This is clear from the fact that satisfaction of properties is in general
undecidable, from the infinite-state nature of many systems, and, even when a
system is finite-state for each initial state, from the fact that in general there
may be an infinite number of initial states. Furthermore, even if we succeed
in reducing the verification problem to a finite-state model-checking problem
by the use of an abstraction as discussed in Section 3.12, deduction still plays
a fundamental role in verifying the correctness of such an abstraction. The
late Amir Pnueli expressed the situation succinctly in his motto “deduction is
forever” [385].

44

Given a rewrite theory R (resp. a parameterized16 rewrite theory R[P] with
P its parameter theory), there are different kinds of properties that one may
want to verify deductively about its initial model TR, or the Kripke structure
associated to its initial reachability model (resp. the free models of R[P] or
their associated Kripke structures). Properties we may want to verify include:
(i) temporal logic properties; (ii) inductive properties about the rewrite relation
itself; and (iii) inductive equational properties about the states of R. The ter-
mination methods for rewrite theories discussed in Section 3.8 can be naturally
regarded as proof methods for a particular kind of type (i) property.

Regarding deductive verification of temporal logic (type (i)) properties, the
general idea is to use a sound and relatively complete proof system for a temporal
logic to get rid of the temporal logic operators as much as possible and try to
reduce the proof task to the verification of proof obligations of type (iii). The
term “relatively complete” expresses the fact that the original temporal logic
property holds for the given model iff the proof obligations of type (iii) generated
by the inference system do; but since these are inductive proof obligations, a
complete proof system for properties of type (iii) does not exist in general.
A good example of a sound and relatively complete deductive proof system
for CTL∗ is the one proposed by Gabbay and Pnueli in [204]. An important
remaining problem in using a deductive system of this kind is how to deal with
the resulting proof obligations of type (iii). In this regard, rewrite theories are
particularly attractive, because there is a rich body of inductive proof methods
for equational logic which can then be used to discharge such proof obligations.
For example, for Maude specifications one can use various formal tools described
in Section 6.1 for this purpose.

For rewrite theories, this approach to the verification of type (i) properties
has so far focused mostly on safety properties, including invariants. For the
deductive proof of invariants there is a rich body of work, including several
substantial case studies, using proof scores in CafeOBJ to verify invariants of
observational transition systems (OTSs) (see, e.g., [357, 202]). The CafeOBJ
researchers have also shown how deductive verification of invariants for an OTS
can be combined with model-checking verification of the rewrite theory asso-
ciated to the OTS, or an abstraction of it [476, 202]. Another approach to
invariant and temporal logic verification which can be viewed as both deductive
and algorithmic is the narrowing-based reachability analysis method already
discussed in Sections 3.3 and 3.11.2. Rusu and Clavel [410], and Rusu [409],
present a different approach to invariant verification that reduces the problem
to a type (iii) proof task by associating to a rewrite theory R a corresponding

16A parameterized rewrite theory R[P] can be understood as a theory inclusion P ↪→R of
the parameter theory P into the “body” R and specifies a parametric family of concurrent
systems. R[P] can then be instantiated by views, i.e., theory interpretations V : P −→ Q,
by the usual “pushout construction.” Semantically, what is used is the fact that rewriting
logic is a “liberal institution,” i.e., that it has not only initial models, but also free models
along theory interpretations. For the treatment of parameterized rewrite theories in Maude
see [106, Section 8.3].

45

membership equational theoryM(R) with a sort Reachable of reachable states
characterized by appropriate membership predicates. In a sense, this can be
seen as using an enrichment of the characterization of the initial reachability
model of R as the initial model of a membership equational theory given in [80]
and discussed in Section 3.1.2. Camilo Rocha and I have presented a different
approach to the verification of safety properties in [398]. The basic idea is to
use narrowing-based proof methods to reduce the proof of: (a) invariants, (b)
stability properties of the form P ⇒ 2P , and (c) strengthenings of invariants,
to proof obligations of type (iii); and to then discharge many such proof obli-
gations automatically, so that a considerably smaller set of proof obligations is
left for an inductive theorem prover.

Finally, Camilo Rocha and I have initiated a study of constructor-based
proof methods for inductive properties about the rewrite relation of the initial
reachability model of a rewrite theory R (type (ii) properties) in [397]. That is,
we want to prove that the initial reachability model of R satisfies some property
of the form (∀~x) t → t′, which is equivalent to proving R ` θ(t) → θ(t′) for all
ground substitutions θ. A related task is to prove that the initial reachability
model of R satisfies inductive joinability properties of the form (∀~x) t ↓ t′,
stating that all ground instances of t and t′ can be rewritten to a common term.
The key idea is that, the same way that equational constructors are crucial for
proving inductive equalities t = t′, both equational constructors for (Σ, E ∪B),
and constructors for R associated to final states (see Section 3.7) are crucial
for proving inductive properties of the form (∀~x) t → t′ for a rewrite theory
R = (Σ, E ∪B,R, φ).

3.12. Simulation and Abstraction
As already mentioned, the application of standard model checking methods

to the verification of a temporal logic property ϕ by (the initial model of) a
rewrite theory R may be hindered by R being infinite-state. Even if R is finite-
state, the huge size of its state space may still make it unfeasible to model check
such a property. Under such circumstances a very useful approach is to find
a different rewrite theory R̂ which has a much smaller (and finite) state space
than R, to verify ϕ for R̂, and to show that we have an implication

R̂, înit |= ϕ ⇒ R, init |= ϕ.

As shown in, e.g., [101, 295, 332], this can be done if we can relate the sets of
states of R and R̂ and the initial states init and înit by a binary relation H
such that either: (i) H is a simulation and ϕ ∈ ACTL∗; or (ii) H is a stuttering
simulation and ϕ ∈ ACTL∗\© (i.e., ϕ is an ACTL∗ formula which does not
contain the operator ©). In addition, the above implication can be turned into
an equivalence if H is a bisimulation (resp. stuttering bisimulation).

Given a rewrite theory R = (Σ, E ∪ B,R, φ), a very simple, yet powerful,
approach to obtaining such a theory R̂ is to realize that rewriting logic comes
with a built-in “abstraction dial” which allows us to turn some rewrite rules in
R into equations that can be removed from R and added to E. That is, we

46

can decompose R into a disjoint union R = G ∪ R0 and define R̂ = (Σ, E ∪
Ĝ ∪ B,R0, φ), where Ĝ denotes the set of equations associated to the rules G.
A good example of the use of such an abstraction dial is the DPLL module in
Section 2.2, where G consisted of the subsume, resolve, assert, and close
rules. Of course, for the use of this abstraction dial to be natural, the rules G
should be deterministic in nature, so that the equations E ∪ Ĝ are still ground
confluent and terminating modulo B. But in order for the Kripke structure
associated to R̂ to be computable (an essential requirement for model checking
it) we also need R0 to be coherent with E∪Ĝ modulo B. If these two conditions
are satisfied, and, furthermore, the rules G preserve all the state predicates in
ϕ, Azadeh Farzan and I proved in [192] that the quotient Σ-homomorphism
q : TΣ/E∪B −→ TΣ/E∪ bG∪B defines a stuttering bisimulation, so that for any

ϕ ∈ ACTL∗\© we have the equivalence R̂, înit |= ϕ ⇔ R, init |= ϕ, where
înit = q(init).

If the theory R̂ thus obtained by turning the abstraction dial as much as
possible is still too big to be model checked, a second, also very useful approach is
to further collapse the set of states by an equational abstraction. Given a rewrite
theory R = (Σ, E ∪ B,R, φ) and a set G ∪ B′ of Σ-equations, we can collapse
R into the rewrite theory R/G∪B′ = (Σ, E ∪G∪B ∪B′, R, φ) which typically
has a much smaller state space than R. Again, we need the equations G∪B′ to
preserve the state predicates appearing in the formula ϕ we want to model check;
and we need R/G∪B′ itself to yield a computable Kripke structure, i.e., E ∪G
should be ground confluent and terminating modulo B ∪ B′, and R should be
coherent with E ∪G modulo B ∪B′. Under these conditions, Miguel Palomino,
Narciso Mart́ı-Oliet and I proved in [331] that the quotient Σ-homomorphism
q : TΣ/E∪B −→ TΣ/E∪G∪B∪B′ defines a simulation, so that for any ϕ ∈ ACTL∗

we have the implication R/G ∪B′, q(init) |= ϕ ⇒ R, init |= ϕ.
In the two methods just discussed for collapsing the state space of a rewrite

theory R = (Σ, E ∪ B,R, φ), the signature Σ did not change at all: we ei-
ther changed some rules into equations or added some more equations to the
equational part. But this is not a necessary requirement: our more abstract
rewrite theory R̂ may be based on a different signature Σ′, so that it is of the
form R̂ = (Σ′, E′ ∪B′, R′, φ′). All we need is to find an appropriate simulation
relation H between R and R̂. Several methods for finding such simulation,
or stuttering simulation, relations are presented in [302, 332] under the gen-
eral banner of “algebraic simulations.” The general idea is to use algebraic
and/or rewriting logic methods to define such an H as either a function or a
relation. Another idea explored in depth in [377, 332] is that simulations and
stuttering simulations are arrows in appropriate categories, so that they can be
composed, i.e., the entire approach is compositional, so that we can combine
several of the above-mentioned abstraction methods to arrive at the desired
abstraction. A general emphasis common to all the abstraction methods pre-
sented in [192, 331, 302, 332] is on the inductive proof obligations that need to
be discharged in order to prove that the proposed simulation H is correct. That
is, although H is used to verify a property by model checking, the correctness

47

of the verification requires the interplay between model checking and inductive
theorem proving: deduction is forever!

Another stuttering-simulation-based method frequently used to reduce the
state space is partial order reduction (POR). The general idea is that a concur-
rent system can have a huge number of states due to the many different inter-
leavings involved; however, many concurrent transitions are independent, in the
sense that they can be interleaved with each other in arbitrary order without
affecting the resulting state. This leads to the idea of cutting down the number
of interleavings by only considering a subset of the computations involving in-
dependent transitions (see [101] for a detailed discussion). To support POR at
the level of rewrite theories, Azadeh Farzan and I proposed in [193] a general
theory transformation mapping rewrite theories of a certain type into their cor-
responding POR versions. In particular we showed how this transformation can
be applied as a generic method to model check programs much more efficiently
in a wide range of concurrent programming languages whose semantics has been
defined in rewriting logic by the methods outlined in Section 4.3.

In Section 3.11.2 I explained how for topmost rewrite theories ACTL∗ prop-
erties can be model checked symbolically by narrowing by the methods presented
in [186]. The reason why the CTL∗ property must be in the universal fragment
ACTL∗ is precisely that what is used is a simulation relating the ground term
instances of a term to such a term. That is, the original system we want to
verify is the Kripke structure associated to the given rewrite theory R, whose
states are E ∪ B-equivalence classes of ground terms; but we simulate it sym-
bolically by another Kripke structure where the states are terms with variables.
The abstraction relation H is precisely the “being an instance of modulo E∪B”
relation, denoted �E∪B , where E ∪ B are the equations in R. Given a ground
term t and a term t′, t �E∪B t′ holds iff there is a substitution σ such that
t =E∪B σ(t′). Since the transition system defined on terms with variables by
the narrowing relation ;R,E∪B in general has still an infinite number of states
reachable from a symbolic initial state, a further abstraction can be obtained
by adding a folding relation17 between terms with variables. This gives rise
to an even more abstract simulation relation, where now the symbolic transi-
tion system can in some cases become finite-state. In order for the number of
E ∪B-unifiers to be finite, the finite variant property is required of E ∪B [186].

I have already mentioned in Section 3.11.2 that, under very general con-
ditions, time-bounded LTL\© properties and standard LTL\© properties of a
real-time rewrite theory can be effectively verified by model checking, even when
time is continuous. The reason for this is also related to simulations and ab-
stractions. Specifically, we show in [370] that there is a stuttering bisimulation
between the fair timed computations of a “time-robust” real-time rewrite the-
ory and the much smaller set of computations obtained by always advancing the

17Several relations can be used to “fold” the state space whose states are terms with vari-
ables. One is the already-mentioned relation �E∪B ; another, the relation of one term being
equal (up to E ∪B-equality) to a term obtained by renaming the variables of another term.

48

clock as much as possible until the next zero-time transition becomes enabled.
For continuous time rewrite theories and time-bound LTL\© properties, this
provides an abstraction from an infinite-state system to a finite-state one; but
even for discrete time rewrite theories this provides a huge abstraction, marking
in practice the difference between feasible and unfeasible model checking. One
can further prove that when the state predicates in ϕ ∈ LTL\© do not depend
on the value r of the global clock, but only on the global state {t}, the projection
map ({t}, r) 7→ {t} provides a further abstraction allowing the model checking
of time unbounded properties in LTL\© when the set of discrete states (of the
form {t}) reachable from the initial state is finite.

4. Rewriting Logic as a Logical and Semantic Framework

I further discuss here the logical and semantic framework uses already illus-
trated by means of simple examples in Section 2.

4.1. Representing Logics
Using rewriting logic as a logical framework can be best understood within

a metatheory of logics such as the theory of general logics [310], which provides
an axiomatic framework to formalize the proof theory and model theory of a
logic, and which also provides adequate notions of mapping between logics, that
is, of logic translations. This theory contains Goguen and Burstall’s theory of
institutions [216] as its model-theoretic component.

The theory of general logics allows us to define the space of logics as a
category, in which the objects are the different logics, and the morphisms are
the different mappings translating one logic into another. We can therefore
axiomatize a translation Φ from a logic L to a logic L′ as a morphism

(†) Φ : L −→ L′

in the category of logics. A logical framework is then a logic F such that a very
wide class of logics can be mapped to it by maps of logics

(‡) Ψ : L −→ F

called representation maps, that have particularly good properties such as con-
servativity.18

A number of logics, particularly higher-order logics based on typed lambda
calculi, have been proposed as logical frameworks, including the Edinburgh log-
ical framework LF [230, 34, 206], generic theorem provers such as Isabelle [381],
λProlog [348, 196], and Elf [384], and the work of Basin and Constable [51] on

18A map of logics is conservative [310] if the translation of a sentence is a theorem if and
only if the sentence was a theorem in the original logic. Conservative maps are sometimes
said to be adequate and faithful by some authors.

49

metalogical frameworks. Other approaches, such as Feferman’s logical frame-
work FS0 [195] (that has been used in the work of Matthews, Smaill, and Basin
[305]), earlier work by Smullyan [425], and the 2OBJ generic theorem prover
of Goguen, Stevens, Hobley, and Hilberdink [219] are instead first-order. The
role of rewriting logic as a logical framework should of course be placed within
the context of the above related work, and of experiments carried out in dif-
ferent frameworks to prototype formal systems (for more discussion see the
survey [327]).

As I have already pointed out in Section 2, one key property by which
the practicality of a logical framework should be judged is by how short its
representational distance is, and of course by how general it is in representing
other logics. Regarding generality, since various typed lambda calculi have been
extensively used as logical frameworks, a logical framework that can represent
them with 0 representational distance can a fortiori represent anything they can
represent, and possibly better. As Mark-Oliver Stehr and I have shown in [434],
rewriting logic can represent with 0 representational distance not just some
particular typed lambda calculus, but the parametric family of typed lambda
calculi called pure type systems [53], which generalize the λ-cube and therefore
contain virtually all typed lambda calculi of interest. The reverse is not at all
the case: there is no representation of rewriting logic, or even of equational
logic, into such calculi which could be said to have ε representational distance.
The obvious reason for this is the well-known difficulty of lambda calculi in
dealing with equational reasoning, since the only equational reasoning native to
such calculi is that between lambda expressions by β-reduction. Furthermore,
in LF there is no adequate representation for linear logic in a precise technical
sense of “adequate” [206, Corollary 5.1.8]. Instead, linear logic can be faithfully
represented in rewriting logic with 0 representational distance [300].

All these representations of logics are easily mechanizable using a rewrit-
ing logic language like Maude, leading to useful prototypes supporting formal
reasoning for the logic in question. The nontrivial matter of quantifiers and
substitutions is elegantly supported by Stehr’s CINNI calculus of explicit sub-
stitutions [430]. In particular, using CINNI pure type systems can not only
be represented: they can also be efficiently executed in a rewriting logic lan-
guage like Maude. This trivial representation in one direction, and the serious
difficulties for lambda calculi to deal with equality in the converse direction,
were seen by Stehr as an opportunity to generalize the Coquand-Huet Calcu-
lus of Constructions (CC) [122] into his own Open Calculus of Constructions
(OCC) [431, 432, 433] within rewriting logic (implemented in Maude as a theo-
rem prover) to naturally support both CC reasoning and equational reasoning
in a seamless way.

The above remarks make it obvious that rewriting logic has very good prop-
erties as a logical framework. Several other examples of well-known logics which
can be represented in rewriting logic with ε representational distance are given
in [298, 300], and a more detailed discussion of logical framework applications
is given in Section 7.1. An additional good feature of rewriting logic as a logical
framework is its ability to deal naturally with state changes, and therefore to

50

solve in a straightforward way the thorny “frame problem,” which has plagued
for decades AI researchers using first-order logic as a knowledge representation
formalism; this is explained in detail in [299].

Yet another very useful representational feature is rewriting logic’s “abstrac-
tion dial” (see Section 3.12). This was already obvious in the DPLL example of
Section 2.2 and is systematically exploited for model-checking purposes as ex-
plained in Section 3.12. For logical framework uses the general point is that: (a)
there is a very useful distinction to be made between (i) computation, which is
deterministic and can be blindly and exhaustively applied with high efficiency,
and (ii) deduction, which is nondeterministic, requires search, and can be very
inefficient; and (b) this computation vs. deduction distinction is naturally sup-
ported by a rewrite theory R = (Σ, E ∪ B,R, φ) as the distinction between
its deterministic equations E ∪ B and its nondeterministic rules R. The prac-
tical meaning of all this is that one can make the implementation of a logic
much more efficient, and the level at which a user interacts with a tool much
higher, if millions of trivial computations are automatically performed, so that
the strategic thinking about proofs can be focused at a much higher level. This
was emphasized since the early papers on logical framework uses of rewriting
logic [327, 298, 300], has been later dubbed “deduction modulo” by some re-
searchers [148], and has been illustrated with interesting examples of rewrite
theories representing logics such as those in [466, 396].

All the above remarks are fine and well, but even with all those good features
a mapping Ψ : L −→ F of a logic L into a logical framework F is still a complex
metalevel entity: how can Ψ itself be represented? It is neither in L nor in the
framework F but hovers abstractly above both. More generally, how can a map
of logics Φ : L −→ L′ be represented? This is not a theoretical question but an
eminently practical one: how are Ψ or Φ going to be implemented? And how
can we reason about them? Here is where rewriting logic’s reflective features
play a key role, so that it is not just a good logical framework, but a reflective
metalogical framework in the precise, technical sense given to the term in [50].

The key advantage of having a reflective logical framework such as rewrit-
ing logic is that we can represent—or as it is said reify—within the logic in
a computable way maps of the form (†) and (‡). We can do so by extending
the universal theory U (see Section 3.4) of our reflective framework logic F
(namely, rewriting logic), which has a sort Theory representing rewrite theories
R as terms R of sort Theory , with equational abstract data type definitions for
the data type of theories TheoryL for each logic L of interest. Then, a map
Φ : L −→ L′ can be reified as an equationally-defined function

Φ : TheoryL −→ TheoryL′ .

And, similarly, a representation map Ψ : L −→ F , with F rewriting logic, can
be reified as an equationally-defined function

Ψ : TheoryL −→ Theory .

If the maps Φ and Ψ are computable, then, by a metatheorem of Bergstra
and Tucker [54] it is possible to define the functions Φ and Ψ by means of

51

corresponding finite sets of confluent and terminating equations. That is, such
functions can be effectively defined and executed within rewriting logic.

The point worth emphasizing again is that all this is not a theoretical di-
vertimento but an enormously practical feature. For example, Pavel Naumov,
Mark-Oliver Stehr and I used exactly the above approach to represent the logics
of the HOL and NuPrl theorem provers within rewriting logic, define a conser-
vative map of logics between them, prove its correctness, make such a formal
definition executable in Maude, and automatically translate several megabytes
of HOL theories into correct-by-construction NuPrl theories in [353] (a mechan-
ical proof of correctness of such a map of logics was later given in [417]). Many
more examples of how reflection is enormously useful to define and implement
within F itself maps of logics, particularly maps of the form Ψ : F −→ F
mapping the reflective framework to itself and corresponding to theory trans-
formations are discussed in Sections 3.4, 6.1 and 7.1.

The last point worth making is that rewriting logic is not just a logical
framework but a metalogical one. As explained in [51], what a metalogical
framework adds to a logical framework is the capacity to reason formally within
itself about the metalogical properties of the logics represented in it. Typically
such reasoning requires induction. As explained in [50], the reflective features
of membership equational logic and of rewriting logic, combined with the fact
that both logics have initial models supporting inductive reasoning principles,
and with the fact that, in particular, their universal theories do come with
their own induction principles, is what makes them into reflective metalogical
framewoks. For several practical applications of rewriting logic’s metalogical
reasoning capabilities see [50, 112, 109].

4.2. Representing Models of Concurrency
Since rewriting logic is a coin with two sides, a logical side and a computa-

tional one, the exact same reasons making it a very flexible logical framework
with 0 or ε representational distance make it also a very flexible semantic frame-
work. Since this is one of the main uses of rewriting logic since the beginning
[315], so much work has been done that it is hardly possible to survey it all.
But perhaps what is most important is for me to explain the philosophical dis-
tinction between a model and a logic, and why that distinction is crucial for
representing concurrency models within rewriting logic.

The way concurrency models have been traditionally compared is by build-
ing encodings from one model into another. For example, some researchers en-
coded the CCS process calculus into Petri nets; and others encoded the lambda
calculus and some variants of the actor model into the π-calculus. These are
Turing-machine-like representations, where in principle one can show that some
model can be simulated by another model by some kind of compilation process,
but in general there is a substantial representational distance and much is lost in
translation. If rewriting logic were to be one more such model into which other
models are similarly compiled, there would be little point in such a futile repre-
sentational exercise. The key observation is that rewriting logic is not a model
at all. It is instead a logic within which widely different models can be specified

52

as rewrite theories without any encoding. One can think of it as an “ecumenical
movement” with no sectarian ax to grind: it makes no commitments to specific
concurrency mechanisms. Is it better to be synchronous or asynchronous? Is
message-passing the best communication mechanism? Should channels be con-
ceived as names, or as communication links containing messages? Should the
order of messages be preserved or not? Should processes have unique names?
All these are questions for each specific model, that is, each specific rewrite
theory, to address or ignore. Rewriting logic remains politely silent about the
choices made in each model, but tries to be as flexible as possible in repre-
senting different choices. My own opinion is that concurrency is such a motley
phenomenon (much more so than, say, functional computation) that the ques-
tion “what is the best model of concurrency?” is both meaningless and unwise.
Chivalrous quests for the Holy Grail of Concurrency, while commendable and
probably quite useful in their side effects, are likely to remain inconclusive. The
point is that any model must make some commitments about what concurrency
mechanisms to favor; and this will automatically create a representational dis-
tance between it and other models making other equally valid commitments,
perhaps for different purposes and reasons.

Just to give some feeling for the vast amount of work which has been done
in defining different models of concurrency as rewrite theories, typically with
0 or ε representational distance, I mention first some well-known models not
involving real time or probabilities, and then discuss real-time and probabilistic
models. Next to each model I mention some references for illustration purposes,
without any attempt to cover them all (see the bibliography in this issue for a
hopefully complete list of references).

1. Actors and Concurrent Objects [316, 440].

2. CCS [128, 460, 77].

3. LOTOS [460, 458].

4. Dataflow [318].

5. Gamma and the CHAM [315].

6. Graph Rewriting [318, 421].

7. Neural Networks [318, 411].

8. Parallel λ-Calculus [278].

9. Petri Nets [315, 435].

10. π-Calculus [465, 430, 451].

11. Tile Logic [328, 83, 78, 82].

12. The UNITY Model [315].

53

An important point not made explicit by the above list is that the initial
model semantics of rewriting logic (see Section 3.1.1) plays also a crucial role,
because it unifies within a single semantics very different denotational models
that have been independently proposed for various models of concurrency. For
example, rewriting logic’s initial model semantics specializes to: (i) for Actors
to the event diagram partial order of events model of [44, 119], as shown in
[337]; (ii) for Petri nets to the Best-Devillers commutative process model [57],
as shown in [129, 435]; (iii) for the parallel lambda calculus to its traditional
model, shown to be a simple quotient of the initial model of the corresponding
rewrite theory in [278]; and (iv) for CCS to the proved transition causal model
of Degano and Priami [130], shown to be a simple quotient of the initial model
of the corresponding rewrite theory in [84].

For real-time models, real-time rewrite theories also provide a very general
and flexible semantic framework. For example, the following models of real time
can all be naturally specified as real-time rewrite theories:

1. Hybrid Automata [368].

2. Timed Petri Nets [368, 435].

3. Timed Automata [368].

4. Timed Transition Systems [368].

5. Object-Oriented Real-Time Systems [368].

6. The Orc Model of Concurrent Real-Time Computation [20, 21].

7. Phase Transition Systems [368].

Probabilistic rewrite theories can also be used as a semantic framework for
a wide range of probabilistic systems, including:

1. Continuous Time Markov Chains [276].

2. Generalized Semi-Markov Processes [276].

3. Object-Oriented Probabilistic Systems [277, 5].

4. Object-Oriented Stochastic Hybrid Systems [336].

5. Probabilistic Nondeterminisitc Systems [276].

4.3. Rewriting Logic Semantics of Programming Languages
The flexibility of rewriting logic to naturally express many different models

of concurrency can be exploited not just at the theoretical level, for expressing
such models both deductively, and denotationally in the model theory of rewrit-
ing logic [315, 318]: it can also be applied to give formal definitions of concurrent
programming languages by specifying the concurrent model of a language L as
a rewrite theory (ΣL, EL, RL), where: (i) the signature ΣL specifies both the

54

syntax of L and the types and operators needed to specify semantic entities
such as the store, the environment, input-output, and so on; (ii) the equations
EL can be used to give semantic definitions for the deterministic features of
L (a sequential language typically has only deterministic features and can be
specified just equationally as (ΣL, EL)); and (iii) the rewrite rules RL are used
to give semantic definitions for the concurrent features of L such as, for exam-
ple, the semantics of threads. By specifying the rewrite theory (ΣL, EL, RL)
in a rewriting logic language like Maude, it becomes not just a mathematical
definition but an executable one, that is, an interpreter for L. Furthermore,
one can leverage Maude’s generic search and LTL model-checking features to
automatically endow L with powerful program analysis capabilities. For exam-
ple, the search command can be used in the module (ΣL, EL, RL) to detect
any violations of invariants, e.g., a deadlock or some other undesired state, of
a program in L. Likewise, for terminating concurrent programs in L one can
model check any desired LTL property. All this can be effectively done not just
for toy languages, but for real ones such as Java and the JVM, Scheme, and
C (see Section 7.2 for a discussion of such “real language” applications), and
with performance that compares favorably with state-of-the-art model-checking
tools for real languages.

There are essentially three reasons for this surprisingly good performance.
First, rewriting logic’s distinction between equations EL, used to give seman-
tics to deterministic features of L, and rules RL, used to specify the semantics
of concurrent features, provides in practice an enormous state space reduction.
Note that a state of (ΣL, EL, RL) is, by definition, an EL-equivalence class [t]EL ,
which in practice is represented as the state of the program’s execution after all
deterministic execution steps possible at a given stage have been taken. That is,
the equations EL have the effect of “fast forwarding” such an execution by skip-
ping all intermediate deterministic steps until the next truly concurrent inter-
action is reached. For example, for L = Java, EJava has hundreds of equations,
but RJava has just 5 rules. The second reason is of course the high performance
of rewriting logic languages such as Maude, which can reach millions of rewrite
steps per second. The third reason is that the intrinsic flexibility of rewriting
logic means that it does not prescribe a fixed style for giving semantic defini-
tions. Instead, many different styles such as, for example, small-step or big-step
semantics, reduction semantics, CHAM-style semantics, modular structural op-
erational semantics, or continuation semantics, can all be naturally supported
[423]. But not all styles are equally efficient; for example, small-step semantics
makes heavy use of conditional rewrite rules, insists on modeling every single
computation step as a rule in RL, and is in practice horribly inefficient. Instead,
the continuation semantics style described in [423] and used in, e.g., [191] is very
efficient.

As for models of concurrency, the general idea for SOS definitions is that
rewriting logic provides a general framework for such definitions, but has no
ax to grind regarding specification style choices. From its early stages rewriting
logic has been recognized as ideally suited for SOS definitions [326, 300], and has
been used to give SOS definitions of programming languages in quite different

55

styles, e.g., [459, 77, 460, 461, 191, 194]. What the paper [423] makes explicit
is both the wide range of SOS styles supported, and the possibility of defining
new styles that may have specific advantages over traditional ones. Where the
“abstraction dial” is placed in such choices is of course crucial for the efficiency of
model-checking analyses: traditional styles will tend to force the least abstract
choices that specify all computation steps with rules; but many more choices
are available when the underlying logic supports a distinction between equations
and rules.

The good theoretical and practical advantages of using rewriting logic to give
semantic definitions to programming languages have stimulated an international
research effort called the rewriting logic semantics project (see [333, 334, 423,
335] for some overview papers). Not only have semantic definitions allowing
effective program analyses been given for many real languages such as Java, the
JVM, Scheme, and C, and for hardware description languages such as ABEL
and Verilog: it has also been possible to build a host of sophisticated program
analysis tools for real languages based on different kinds of abstract semantics.
The point is that instead of a “concrete semantics” (ΣL, EL, RL), describing the
actual execution of programs in a language L, one can just as easily define an
“abstract semantics” (ΣAL , E

A
L , R

A
L) describing any desired abstraction A of L.

A good example is type checking, where the values manipulated by the abstract
semantics are the types. All this means that many different forms of program
analysis, much more scalable than the kind of search and model checking based
on a language’s concrete semantics, become available essentially for free by using
Maude to execute and analyze one’s desired abstract semantics (ΣAL , E

A
L , R

A
L).

I further discuss different applications of both concrete and abstract rewriting
semantics of programming languages in Section 7.

Two further developments of the rewriting logic semantics project, both pi-
oneered by Grigore Roşu with several collaborators, are worth mentioning. One
is the K semantic framework for programming language definitions [408], which
provides a very concise and highly modular notation for such definitions. The
K-Maude tool then automatically translates language definitions in K into their
corresponding rewrite theories in Maude for execution and program analysis
purposes (I further discuss K and the K-Maude tool in Section 6.2.2). Another
is matching logic [406, 404], a program verification logic, with substantial ad-
vantages over both Hoare logic and separation logic, which uses a language’s
rewriting logic semantics, including the possibility of using patterns to symboli-
cally characterize sets of states, to mechanize the formal verification of programs,
including programs that manipulate complex data structures using pointers (I
further discuss matching logic and the MatchC tool in Section 6.2.3).

4.4. Representing Distributed Systems, Software Architectures, and Models
It is well known that the most expensive errors in system development are

design errors. They are not coding errors having to do with some mistake in
the details of a program: they happened much earlier, when the system was
designed and no programs yet existed. Because design errors affect the overall
structure of a system and are often discovered quite late in the development

56

cycle, they can be enormously expensive to fix. All this is uncontroversial:
there is widely-held agreement that, to develop systems, designs themselves
should be made machine-representable, and that tools are needed to keep such
designs consistent and to uncover design errors as early as possible. This has led
to the development of many software modeling languages and of architectural
notations to describe software designs.

There are however two main limitations at present. The first is that some of
these notations lack a formal semantics: they can and do mean different things
to different people. The second is that this lack of semantics manifests itself at
the practical level as a lack of analytic power, that is, as an incapacity to uncover
expensive design errors which could have been caught by better analysis. It is of
course virtually impossible to solve the second problem without solving the first:
without a precise mathematical semantics any analytic claims about satisfaction
of formal requirements are meaningless.

The practical upshot of all this is that a semantic framework such as rewriting
logic can play an important role in: (i) giving a precise semantics to modeling
languages and architectural notations; and in (ii) endowing such languages and
notations with powerful formal analysis capabilities. Essentially the approach is
the same as for programming languages. If, say,M is a modeling language, then
its formal semantics will be a rewrite theory of the form (ΣM, EM, RM). If the
modeling languageM provides enough information about the dynamic behavior
of models, the equations EM and the rules RM will makeM executable, that is,
it will be possible to simulate models inM before they are realized by concrete
programs, and of course such models thus become amenable to various forms
of formal analysis. There is a large body of research in rewriting logic that has
done just this, including:

1. giving formal semantics to various object-oriented design notations, archi-
tectural notations, and software modeling languages, e.g., [197, 268, 269,
474, 33, 110, 154, 61, 346, 60, 42, 393, 394, 169, 345, 62, 65, 347, 66, 40,
363], and

2. giving formal semantics to various middleware and distributed coordination
mechanisms, e.g., [350, 13, 14, 167, 168, 402, 153].

I discuss all this work in more detail in Section 7, and the MOMENT-2 tool in
Section 6.2.

Since many of the software architectures needed in practice are distributed
architectures, the flexibility of rewriting logic to naturally represent a wide range
of distributed communication and interaction mechanisms has proved very use-
ful in all the applications mentioned above. But the medium of a modeling
language or an architectural description language is not a necessary require-
ment. It is also possible to specify and analyze a wide range of distributed
system designs and algorithms directly in rewriting logic. In practice this has
been often the case for many:

1. network algorithms, e.g., [131, 133, 462, 221, 373, 375, 258, 391], and

57

2. middleware designs and distributed reflective architectures, e.g., [134, 338,
441, 163].

I further discuss all this work in Section 7.

5. Rewriting Logic Languages

In this section I discuss CafeOBJ, ELAN, and Maude, three languages that
implement rewriting logic and whose researchers, through their language de-
sign and implementation work and through a host of important new techniques
and applications, have made fundamental contributions to the rewriting logic
research program. These are not the only rule-based languages that I could
discuss. For example, OBJ [218], ASF+SDF [457], Tom [46], and Stratego [468]
are other important rule-based languages; but they are somewhat more special-
ized in nature: OBJ and ASF+SDF deal with equational specifications; Tom
enriches Java with rewriting capabilities; and Stratego is a rewriting strategy
language aimed particularly at program transformation applications.

5.1. CafeOBJ
CafeOBJ http://www.ldl.jaist.ac.jp/cafeobj/ [141] is a language con-

taining in essence OBJ [218] as a functional sublanguage but extending substan-
tially order-sorted equational logic in two orthogonal and complementary direc-
tions: (i) it supports behavioral specifications and their execution by behavioral
rewriting in behavioral equational logic; and (ii) it also supports rewriting logic
specifications. Furthermore, these orthogonal logical features are combined in
the “CafeOBJ Cube” [141]. As OBJ, CafeOBJ has powerful module composition
features through module hierarchies, parameterization, and module expressions.
Two additional important features are CafeOBJ’s support for object-oriented
modules, and its support for observational transition systems (OTS), a special
type of behavioral specifications ideally suited to specify transition systems such
as network protocols and other distributed systems. CafeOBJ specifications can
be formally analyzed in various ways. An important theme is the use of proof
scores [201, 202] which reduce the proof of inductive properties about a CafeOBJ
specification to rewriting on the underlying CafeOBJ engine. Of particular in-
terest from the rewriting logic point of view is CafeOBJ’s search feature, which
supports breadth-first search modulo a user-specified equality predicate [202], a
very useful form of abstraction-based model checking. Also interesting in this
direction is the synergistic way, already mentioned in Section 3.11.3, in which
CafeOBJ and Maude can be used together to analyze OTS specifications by
model checking [476]. I discuss some CafeOBJ applications in Section 7.

5.2. ELAN
I have already mentioned in Section 3.5 the importance of strategies for

controlling the rewriting process when the rules can be highly nondeterminis-
tic, and the key contributions that the ELAN researchers have made in this

58

area. ELAN http://elan.loria.fr/ [70, 69] supports the specification of so-
phisticated strategies that can guide the rewriting process to achieve complex
tasks. This has applications in many areas that have been developed by the
ELAN researchers; I discuss some of them in Section 7. In particular, from
the beginning of the language the ELAN researchers have developed many ap-
plications of rewriting logic as a logical framework which greatly benefit from
the use of strategies. The key idea is that the logical inference system used in
a theorem prover or in some other logical procedure is typically nondetermin-
istic. Therefore search, as opposed to deterministic computation, is essential.
ELAN supports a corresponding distinction at the language level between com-
putation rules, which are applied exhaustively without using strategies, and
strategy-guided rules. At the language implementation level, besides the contri-
butions to efficiently support strategies, an important additional contribution
has been the development of novel compilation techniques for efficient rewriting
modulo associativity-commutativity [265].

5.3. Maude
Maude http://maude.cs.uiuc.edu/ [105, 106] supports both membership

equational logic (its functional sublanguage of functional modules), and rewrit-
ing logic (system modules) in the fullest possible generality: equations and
rules can be conditional and can have extra variables in their righthand sides
and conditions, and rewriting modulo any combination of associativity and/or
commutativiy and/or identity axioms is supported [106]. All this is achieved
without sacrificing high performance thanks to Maude’s use of advanced semi-
compilation techniques and novel matching modulo algorithms [111, 171, 105,
172]. Maude has also powerful module composition operations and support for
parameterized modules, theories and views. A key feature is its efficient support
for reflection (see Section 3.4) through its META-LEVEL module. Besides providing
powerful higher-order metaprogramming features (functions can take not just
other functions as arguments, but entire modules as arguments), this makes the
Maude module composition operations extensible [160], which is exploited in the
Full Maude language extension [106] to support, for example, very convenient
syntax for object-oriented specifications. Reflection is also exploited in an es-
sential way in Maude’s strategy language [175, 303]. A unique feature of Maude
is its efficient built-in support for model checking. Reachability analysis and
invariant verification are supported by its breadth-first search command; and
LTL model checking by its MODEL-CHECKER module. Another important feature
is its support for order-sorted unification modulo axioms, and for variant com-
putations and symbolic reachability analysis modulo equational theories with
the finite variant property [103, 152]. I discuss Maude’s formal enviroment in
Section 6.1, and some Maude applications in Section 7.

6. Tools

In Section 6.1 I discuss some tools supporting various kinds of formal rea-
soning about rewriting logic specifications. In Section 6.2 I discuss several more

59

specialized tools that use rewriting logic and its reasoning methods to support
formal analysis in various application domains.

6.1. Formal Tools for Rewriting Logic
In Section 3 I discussed in detail various formal properties that one often

wants to verify about a rewrite theory. Tools supporting verification of such
properties are very important. I discuss some of them here with the excep-
tion of the search and model-checking capabilities already native to rewriting
logic languages: CafeOBJ, ELAN, and Maude support various forms of search
analysis, and Maude also supports LTL model checking. Some of these formal
tools, particularly the Maude-based ones, systematically use reflection (see Sec-
tion 3.4) in their design: since formal analysis tools manipulate and transform
theories, a reflective approach making such theories data structures manipulable
within rewriting logic is very useful in practice. Indeed, several of the Maude
formal tools use the Full Maude reflective extension of Maude [106, Part II]
as their basis, and then use the general methodology outlined in [162] to add
tool-specific reflective features. The tools mentioned below are an incomplete
set of tools; see the rewriting logic bibliography in this issue for references to
other tools.

6.1.1. The Maude Church-Rosser Checker and Coherence Checker (CRChC)
These two tools http://maude.cs.uiuc.edu/maude-tools.html are com-

bined into one tool [161]. The CRC tool checks the confluence and sort-
decreasingness of conditional order-sorted speciications modulo axioms, assum-
ing they are operationally terminating (see Section 3.8). Instead, the ChC tool
checks the coherence, or ground coherence, of a rewrite theory’s rules R with
respect to their equations E modulo axioms B, assuming that the equations
themselves are (ground) confluent, sort-decreasing and operationally terminat-
ing.

6.1.2. The CARIBOO Termination Tool
CARIBOO [198, 214] http://cariboo.loria.fr/index.html is a termina-

tion tool written in ELAN which can prove ground termination of rewrite theo-
ries written in ELAN with respect to a given strategy (see Section 3.5). Based
on an induction principle, it uses an abstraction mechanism to represent sets
of terms symbolically with abstraction variables, and narrowing controlled by
abstraction and ordering constraints. Orderings need not be chosen in advance
but can be partially and incrementally determined by means of constraints.

6.1.3. The Maude Termination Tool (MTT) and µ-Term
MTT http://maude.cs.uiuc.edu/maude-tools.html, the Maude termi-

nation tool, [156, 157] supports termination proofs for generalized rewrite the-
ories and for membership equational theories, which can both be conditional
and have axioms such as associativity, commutativity and identity. As al-
ready explained in Section 3.8, the main technique used by MTT is that of

60

non-termination-preserving theory transformations that transform such theories
to either order-sorted or unsorted context-sensitive unconditional specifications
modulo axioms. Termination tools such as µ-Term [9] or AProVE [210] can
then be invoked by the user to try to prove the transformed theory terminating.
µ-Term is in some ways closer to MTT because of its unrivaled support for
context-sensitive termination and its support for order-sorted termination.

6.1.4. The Maude Sufficient Completeness Checker (SCC)
SCC http://maude.cs.uiuc.edu/maude-tools.html, the Maude Sufficient

Completeness Checker [236] can check the sufficient completeness (see Section
3.7) of context-sensitive unconditional left-linear order-sorted equational theo-
ries modulo axioms [234], and in its most recent version also the sufficient com-
pleteness of both equations and rules in unconditional order-sorted left-linear
theories modulo axioms [397]. SCC uses the CETA library of propositional tree
automata operations developed by Joe Hendrix as part of his Ph.D. dissertation
[231] to reduce all the above sufficient completeness problems to tree automata
emptiness problems.

6.1.5. The Maude Inductive Theorem Prover (ITP)
ITP , http://maude.cs.uiuc.edu/maude-tools.html, the Maude Induc-

tive Theorem Prover, was originally developed by Manuel Clavel and has been
substantially extended by Joe Hendrix [107, 117, 231]. It supports inductive rea-
soning about membership equational theories in Maude and has been applied to
a wide range of problems and also to build more specialized theorem provers for
imperative programming languages and for modeling languages [118, 413, 110].
Its original support for structural induction has been more recently extended
to also support coverset induction [231, 233]. An important feature of the ITP
is its natural support for partiality, which is nicely demonstrated by the ex-
tended powerlist case study developed by Joe Hendrix as part of his Ph.D.
thesis [231, 233].

6.1.6. The Maude Formal Environment (MFE)
Often a verification task requires interoperating different tools. For example,

the proof of an inductive theorem using the ITP may be based on a structural
induction scheme using constructors whose sufficient completeness proof is pro-
vided by the SCC tool, but the sufficient completeness proof relies on a weak
termination assumption for which the MTT tool may be invoked. Similarly,
a proof of ground coherence using the ChC tool may generate inductive proof
obligations for the ITP , and requires a proof of confluence of the equations us-
ing the CRC , which itself relies on a proof of operational termination of those
equations using the MTT . To support the seamless interoperation of formal
tools for rewriting logic within a single formal environment, the Maude Formal
Environment (MFE) [164, 165] has been developed as an extensible framework
to which different Maude-based tools can be added. Besides allowing the user
to ship proof tasks from one tool to another, MFE keeps track of the overall

61

proof effort, and stores a record of the tool interactions and subproof invoca-
tions involved in such an overall proof, so that proof scripts can be stored and
reused. MFE already exists as a prototype, and will be released as a Maude
tool in the near future.

6.1.7. The Declarative Maude Debugger
In addition to the debugging capabilities already provided by Maude [106],

the Declarative Maude Debugger http://maude.sip.ucm.es/debugging/ [392]
can interact with a user to find the causes of wrong answers in a Maude pro-
gram execution and also of missing answers, which are particularly important
for nondeterministic programs such as rewrite theories (system modules), but
are also meaningful for deterministic ones (functional modules) because of sort
information. The debugger traverses an abbreviated proof tree, which stores an
abbreviated declarative summary of the computation, and interacts with the
user asking questions until the cause of the bug is found.

6.1.8. Real-Time Maude
Real-Time Maude http://heim.ifi.uio.no/peterol/RealTimeMaude/ [371]

is a specification language and a formal tool built as an extension of Full Maude
by reflection. It provides special syntax to specify real-time systems, including
distributed object-oriented ones, where the time can be either discrete or con-
tinuous. It offers a range of formal analysis capabilities, including simulation,
reachability analysis, and model checking. Real-Time Maude systematically ex-
ploits the underlying Maude efficient rewriting, search, and LTL model-checking
capabilities to both execute and formally analyze real-time specifications, which
are internally desugared into ordinary Maude specifications and Maude search
and model-checking queries using reflection [371]. It furthermore supports model
checking in a subset of MTL [283], and in TCTL [282] (see Section 3.11). Real-
Time Maude has been applied in a wide range of industrial applications, includ-
ing networks, embedded car software, and scheduling algorithms. It has also
been used to give formal semantics to, and provide formal analysis for, several
real-time programming languages and software modeling languages. I further
discuss these applications in Section 7.4.

6.1.9. The PMaude Language Design
The PMaude language [277, 5] is an experimental specification language

whose modules are probabilistic rewrite theories. It is still a language design,
since it has not yet passed the prototyping level. However, since its methodology
has already been successfully applied to a wide range of applications such as
sensor networks, defenses agains Denial of Service (DoS) attacks, and stochastic
hybrid systems (I further discuss these applications in Section 7.5), it seems
appropriate to discuss it here. Recall from Section 3.10 that, due to their
nondeterminism, probabilistic rewrite rules are not directly executable. However,
probabilistic systems specified in PMaude can be simulated in Maude. This
is accomplished by transforming a PMaude specification into a corresponding
Maude specification in which actual values for the new variables appearing in

62

the righthand side of a probabilistic rewrite rule are obtained by sampling the
corresponding probability distribution functions (see Section 3.3 in [324] for a
detailed explanation). Using the transformed Maude module one can perform
Monte-Carlo simulations of the given PMaude module. Using the methodology
presented in [5] and discussed in Section 3.11.2, one can then use the VeStA and
PVeStA tools discussed below to perform statistical model-checking verification
of temporal logic properties of a real-time PMaude module expressed in either
CSL or QuaTEx (see Section 3.11.1).

6.1.10. VeStA and PVeStA
The VeStA tool [420, 5] supports statistical model checking (see Section

3.11.2) of probabilistic real-time systems specified as either: (i) discrete or con-
tinuous Markov chains; or (ii) probabilistic rewrite theories in Maude. Fur-
thermore, the properties that it can model check can be expressed in either:
(i) CSL/PCTL, or (ii) the QuaTEx quantitative temporal logic (see Section
3.11.1). One important practical issue for any model-checking analysis is scal-
ability. Since statistical model checking is parametric on a user-specified level
of statistical confidence, if such a level is high, the number of Monte-Carlo sim-
ulations that have to be performed before VeStA can return an answer to a
model-checking query can be very large. Fortunately, Monte-Carlo simulations
can be run in parallel on different processors. This has led to the design and im-
plementation of PVeStA http://maude.cs.uiuc.edu/maude-tools.html [23],
which parallelizes the statistical model-checking analysis of probabilistic rewrite
theories, making it highly efficient and scalable. For example, a realistic model-
checking problem can be sped up by a factor of 46 on a 60-node parallel machine
using PVeStA, compared with the time required for VeStA to perform the same
task on a single node [23].

6.2. Some Domain-Specific Tools
This section is much more of a random sample than Section 6.1: there are

many more domain-specific tools based on a rewriting logic semantics than the
ones mentioned below, and discussing them all is out of the question. For exam-
ple, any rewriting logic semantics of a programming language or of a modeling
language expressed in Maude or Real-Time Maude automatically provides a tool
supporting simulation, reachability analysis, and LTL model checking for such a
language. A number of other tools are discussed much more briefly in Section 7,
and the bibliography in this issue gives a more comprehensive picture. My main
goal here is to give the reader a feeling through concrete examples for some of
the advanced applications that can be supported by tools of this kind.

6.2.1. JavaFAN
JavaFAN http://fsl.cs.uiuc.edu/index.php/JavaFAN, the Java Formal

Analyzer [191, 194] is a tool supporting the execution and analysis of the source
code and the JVM code of Java programs. It is based on rewriting logic semantic
definitions in Maude at both the Java and the JVM levels. The entire language,

63

except for the libraries, is supported. Such definitions provide interpreters for
Java and for the JVM. Also, multithreaded Java and JVM programs can be
formally analyzed to detect violations of invariants using Maude’s breadth-
first search command; and terminating multithreaded programs can likewise
be model checked with respect to LTL properties using Maude’s LTL model
checker. To facilitate the use of the tool and make knowledge of the underlying
semantics unnecessary for users, Java and JVM code can be directly entered into
JavaFAN and is then automatically translated into Maude. Similarly, JavaFAN
provides an intuitive Java-like syntax for defining atomic predicates which makes
it easy for users to define search commands and LTL queries only in terms of
their programs. The performance of JavaFAN compares favorably with other
state-of-the-art tools such as Java PathFinder on various benchmarks [191, 194],
which is encouraging since JavaFAN is just a formal semantic definition of Java.
One of the reasons for this is rewriting logic’s distinction between equations
and rules (the “abstraction dial” mentioned in Section 3.12), which, while still
faithfully capturing the concrete semantics, allows a huge equational abstrac-
tion of the state space by expressing all deterministic features equationally and
reserving rules for the nondeterministic, concurrent features.

6.2.2. K-Maude
As mentioned in Section 4.3, one of the important recent contributions to

the rewriting logic semantics project is the K framework [408], which provides a
concise and highly modular notation for programming language definitions. K is
a new definitional style offering specific advantages over SOS-based styles such
as those discussed in [423]. Furthermore, the relation between a K definition
and its corresponding rewriting logic semantics is essentially one of desugaring,
where what is conveniently implicit in the more compact K notation is made
fully explicit in its rewriting logic counterpart. The K-Maude tool [422, 421]
http://fsl.cs.uiuc.edu/index.php/K-Maude allows a user to define the se-
mantics of a programming language in K and provides two main features. The
first one is the automatic generation of a LATEX rendering of the given K defini-
tion for ease of readability in two different styles, one more textual and another
more graphical and intuitive. The second and main feature is that the rewriting
logic semantics of K is supported by the tool, so that the rewrite theory corre-
sponding to a language definition in K is automatically generated as a Maude
module. In this way, K definitions can be executed as interpreters, and programs
can be formally analyzed by reachability analysis and LTL model checking. K-
Maude has already been applied to give K definitions for entire languages such
as, for example, Scheme and C.

6.2.3. The MatchC Tool
As mentioned in Section 4.3, matching logic [406, 404] is another key contri-

bution to the rewriting logic semantics project. It is a logic of programs with
clear advantages over Hoare logic and separation logic. The key idea is to lever-
age a programming language’s rewriting logic definition as the mathematical
basis for the matching logic inference system. What matching logic essentially

64

does is to extend such a definition into a full-fledged first-order reasoning sys-
tem which manipulates symbolic descriptions (with existential and universal
variables) of programs and their properties, and uses the term matching (mod-
ulo axioms) native to rewriting logic to express both properties about program
configurations, and the application of semantic rules to such configurations.
This accomplishes at a simpler, structural level all the separation properties
achieved by separation logic at the logical level. In this way, programs involving
pointers and complex data structures on the heap can be easily reasoned about.
A very appealing feature of matching logic is that there is essentially no gap be-
tween the level of a language’s semantic definition and that of its logic, whereas
proving soundness and relative completeness of a Hoare logic with respect to
an operational semantics is a highly nontrivial task. Although the matching
logic ideas are very general, the current MatchC tool [404] realizes them for
the C language with a remarkable level of automation and with very high effi-
ciency http://fsl.cs.uiuc.edu/index.php/Matching_Logic. An impressive
web-accessible collection of benchmarks has already been assembled [404].

6.2.4. The Maude-NPA
The Maude-NPA http://maude.cs.uiuc.edu/maude-tools.html [183] is a

tool to verify security properties of cryptographic protocols modulo the algebraic
properties of their cryptographic functions. The point is that one can “verify”
that a protocol is correct with respect to the traditional Dolev-Yao model which
treats the cryptography as a “black box,” but an attacker can sometimes break
such a protocol by making use of algebraic properties. For example, if the
protocol uses an exclusive or operation ⊕, and the attacker has already seen
a message m, then it can get message m′ from the message m ⊕ m′ just by
performing the operation m⊕m′ ⊕m, since ⊕ is associative and commutative,
and satisfies the equations x⊕x = 0 and x⊕0 = x. All this means that reasoning
modulo such axioms is an essential feature of security proofs, since attacks can be
mounted using them. The Maude-NPA does exactly this by: (i) axiomatizing a
protocol P as a (topmost) rewrite theory (ΣP , EP∪B,RP), where P’s equational
properties are axiomatized by the equations EP ∪ B, and P’s transitions are
axiomatized by the rules RP ; (ii) characterizing attack patterns as terms with
variables describing a possibly infinite set of concrete attack states; and (iii)
using the rules RP in reverse19 to search for an initial state from the given
attack pattern p. This is accomplished by narrowing p with the reversed rules
R−1
P modulo EP∪B, which, as explained in Section 3.3 and in [340], is a complete

reachability analysis method for topmost rewrite theories. Of course this still
leaves the problem of computing EP ∪B-unifiers. Fortunately, many equational
theories EP∪B of interest satisfy the finite variant property (see Section 3.3), so
that the Maude-NPA uses narrowing at two levels: with R−1

P modulo EP∪B for
reachability analysis; and with EP modulo B to compute EP ∪B-unifiers. Since
the narrowing tree generated by a search from an attack pattern p is typically

19That is, a rule t→ t′ is now viewed in reverse as a rule t′ → t.

65

infinite, an important additional feature of the Maude-NPA is the use of very
powerful state space reduction techniques [182] that often make such a symbolic
search space finite, so that not finding an attack is in fact a proof that the
protocol is safe from the given attack modulo the algebraic properties EP ∪B.
I further discuss applications of the Maude-NPA in Section 7.3.

6.2.5. MOMENT2
MOMENT2 http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/

is an algebraic model management framework and tool written in Maude and
developed by Artur Boronat [60]. It permits manipulating software models in
the Eclipse Modeling Framework (EMF). It uses OMG standards, such as Meta-
Object Facility (MOF), Object Constraint Language (OCL) and Query/View/Transformation
(QVT), as a clean interface between rewriting-logic-based formal methods and
model-based industrial tools. Specifically, it supports formal analyses based on
rewriting logic and graph transformations to endow model-driven software en-
gineering with strong analytic capabilities. MOMENT2 supports not just one
fixed modeling language, but any modeling language whose metamodel is spec-
ified in MOF. In more detail, a modeling language is specified as a pair (M, C),
where M is its MOF-based metamodel, and C are the OCL constraints that
M should satisfy. Using rewriting-logic-based reflection and its efficient sup-
port in Maude, MOMENT2 provides an executable algebraic semantics for such
metamodel specifications (M, C) in the form of a theory in membership equa-
tional logic (MEL) A(M, C), so that a model M conformant with the metamodel
(M, C) is exactly a term of sort Model in A(M, C), and so that satisfaction of
OCL constraints is also decidable using the algebraic semantics [64, 66].

Due to the executability of MEL specifications in Maude, the realization of
MOF metamodels as MEL theories enhances the formalization and prototyp-
ing of model-driven development processes, such as: (i) model transformations;
(ii) model-driven roundtrip engineering; (iii) model traceability; and (iv) model
management. These processes permit, for example, merging models, gener-
ating mappings between models, and computing differences between models;
they can be used to solve complex scenarios such as the roundtrip problem. In
MOMENT2 the formal semantics of model transformations is given by rewrite
theories specified in a user-friendly QVT-based syntax [62]. Such model trans-
formations can describe the dynamic evolution of systems at the level of their
models. Using the search and LTL model checking features of Maude, properties
about the dynamic evolution of a model M conformant with a metamodel speci-
fication (M, C) can then be formally analyzed by model checking [62]. Real-time
modeling languages can likewise be supported and analyzed [67]; this is further
discussed in Section 7.4.4.

7. Some Applications

I discuss applications in areas such as automated deduction, software and
hardware specification and verification, security, real-time and cyber-physical

66

systems, probabilistic systems, and bioinformatics. Neither the choice of areas
nor the work discussed in each of them aim at any completeness: again, this is
just a sample.

7.1. Automated Deduction Applications
Perhaps the most important automated deduction applications are formal

tools for different logics and automated deduction procedures that use rewrit-
ing logic as a logical framework. As explained in Section 4.1, the systematic
idea common to all such tools is the faithful representation of their underlying
inference systems as rewrite theories. Furthermore, using reflection very sophis-
ticated tools can be built this way for many logics and for rewriting logic itself
[108]. All the rewriting-logic-based tools discussed in Section 6.1 exemplify this
general approach. But many other tools or prototypes for different automated
deduction procedures have likewise been developed this way using either ELAN
or Maude, including, for example,

• Constraint solving [68, 266, 267, 472, 242].

• Higher-order logics, procedures, and provers, explicit substitution calculi,
and translations between such logics [45, 56, 146, 430, 147, 353, 434, 432,
433].

• Proof certification [354, 405].

• Rule Completion [264].

• Timed automata verification [52].

• Other theorem proving systems and procedures [94, 140, 466, 148, 395,
396].

7.2. Software and Hardware Specification and Verification
Systems need to be specified and verified at various levels of abstraction.

Rewriting logic has very good properties as a semantic framework to support
such specification and verification at different levels: at the level of models in
the early stages of software design; at the level of code written in different pro-
gramming languages; and at the hardware level. Furthermore, specification and
verification of different network systems, and of distributed architectures, mid-
dleware, and coordination and reflection mechanisms can likewise be supported.
All this has been described in broad outlines in Sections 4.3 and 4.4. Here I dis-
cuss in more detail some of the concrete applications that have been developed
at all these levels.

67

7.2.1. Modeling Languages
As explained in Section 4.4, software design notations and modeling lan-

guages are quite useful, but they can be made even more useful by substantially
increasing their analytic power through formal analysis, since this can make
it possible to catch expensive design errors very early. Formal analysis is im-
possible or fraudulent without a formal semantics. Early work in developing
rewriting-logic-based formal semantics focused on object-oriented design nota-
tions and languages [473, 352, 351], and stimulated subsequent work on UML
and UML-like notations, e.g., [197, 268, 269, 474, 33, 110, 346, 345, 169, 347].

A more ambitious question is: can we give semantics not just to a single
modeling language, but to an entire modeling framework where different mod-
eling languages can be defined? This question has been answered positively in
[61, 60, 62, 65, 66, 394], and has led to the MOMENT2 and the e-Motions tools
(see Sections 6.2.5 and 7.4.4).

I further discuss the semantics of real-time modeling languages [42, 393,
394, 40, 363, 67, 41] in Section 7.4. Some recent work has also considered the
semantics of multi-modeling languages [63], that is, languages that can combine
different models describing various perspectives about the same system.

7.2.2. Programming Languages
I have already given an overview of the rewriting logic semantics project

in Section 4.3. Here I discuss concrete applications within this project. Early
work focused on SOS definitions of process calculi and of small programming
languages [326, 300, 459, 77, 460, 461]. The first application to a “real” pro-
gramming language showing that this approach could scale up to large languages
and could be used to analyze programs with competitive performance was the
semantics of Java and the JVM [191, 194] described in Section 6.2.1. Since then,
many other languages have been partially or totally defined in rewriting logic,
sometimes using the K notation. For example, Beta [239] and KOOL [241] have
been so defined; all of Scheme has been defined in [307, 308], and the formal
semantics of C in [176] is arguably the most complete ever and will soon cover
the entire C language. Another real language whose rewriting semantics has
been fully defined in Maude is PLEXIL, a synchronous language developed by
NASA to support autonomous spacecraft operations. The Maude-based formal
executable semantics of PLEXIL [149] has become the de facto PLEXIL stan-
dard at NASA, against which the correctness of PLEXIL implementations is
judged, and is the basis of other PLEXIL tools [399].

As mentioned in Section 4.3, the rewriting semantics of a language can be ex-
tended and/or abstracted to provide other kinds of static and dynamic analysis,
for example, for units of measurement [91, 240], type checking [177], and runtime
verification [407, 421]. Two extensions of a programming language’s rewriting
logic semantics to model fault detection (resp. hang detection) have been devel-
oped by Pattabiraman et al. [379] (resp. Wang et al. [469]). In [379], the authors
use rewriting logic to model both the semantics of an assembly language and
the hardware on which it runs, as well as various hardware errors. The overall
goal is to provide a formal semantic framework (called SymPLFIED) to analyze

68

the effectiveness of error detection mechanisms. Maude’s search command is
used for complete reachability analysis. In [469], a Linux-like operating system,
as well as the underlying hardware, are formally specified in Maude in order
to verify the detection effectiveness of an operating system’s hang detector. In
order to exhaustively explore all the possible hanging behaviors, Maude’s search
command is used (up to a specified depth) to explore all behaviors. It is also
possible to use a language’s rewriting logic semantics as the basis for program
refactoring, as shown for C in [208] and for Java in [207].

Regarding tools supporting rewriting-logic-based language definitions, be-
sides the direct use of rewriting logic languages for this purpose and the K-
Maude tool discussed in Section 6.2.2, the Maude MSOS tool [89] supports
definition, execution and analysis of language definitions on the MSOS style.
Also, tools to simulate and analyze CCS processes and LOTOS specifications
based on their rewriting semantics are discussed in [106, Section 21.2.3]. De-
ductive tools based on rewriting logic semantic definitions include the MatchC
tool discussed in Section 6.2.3, and two Hoare logic provers built on top of the
Maude ITP [118, 413]. Furthermore, the rewriting logic semantics of Java was
used in [7] to automatically validate the semantics of a Java verification tool.

7.2.3. Hardware Specification and Verification
Prior to the use of rewriting logic, its equational logic subset (plus inductive

principles) has been used for hardware specification and verification by various
researchers, e.g., [215, 428, 250]. The earliest work I know on hardware specifi-
cation and verification using Maude is by Neil Harman [228, 229]. Subsequent
work has focused mostly on extending the rewriting logic semantics project from
the level of programming languages to that of hardware description languages
(HDLs). In this way, hardware designs written in an HDL can be both simu-
lated and analyzed using the executable rewriting semantics of the HDL and
tools like ELAN, CafeOBJ, or Maude. The first HDL to be given a rewriting
logic semantics in Maude was ABEL [254]; this semantics was used not only
for hardware designs, but also for hardware/software co-designs. An important
new development has been the use of the rewriting logic semantics of an HDL
for generating sophisticated test inputs for hardware designs. The point is that
random testing can catch a good number of design errors, but uncovering deeper
errors after random testing is hard and costly and requires a good understand-
ing of the design to exercise complex computation sequences. The key insight,
due to Michael Katelman, is that the rewriting semantics can be used symbol-
ically to generate desired test inputs, not on a device’s concrete states, but on
states that are partly symbolic (contain logical variables) and partly concrete.
Broadly speaking, this is an instance of the symbolic reachability analysis of
rewrite theories I have discussed in Section 3.3; but for hardware verification
the approach, first outlined in [257] and more fully developed in [256], has a
number of unique features including: (i) the use of SAT solvers to symbolically
solve Boolean constraints; (ii) support for user-guided random generation of
partial instantiations; and (iii) a flexible strategy language, in which a hardware
designer can specify in a declarative, high-level way the kind of test that needs

69

to be generated. The effectiveness of this approach for generating sophisticated
tests on real hardware designs, and for finding unknown bugs in such designs,
has been demonstrated for medium-sized Verilog designs, including the I2C-Bus
Master Controller, and a microprocessor design [256, 251].

But the value of the rewriting semantics of an HDL is not restricted to test-
ing. For example, the recent Maude-based rewriting logic semantics of Verilog
in [309] is arguably the most complete formal semantics to date, both in the
sense of covering the largest subset of the language and in its faithful modeling
of nondeteministic features. Besides being executable and supporting formal
analysis, this semantics has uncovered several nontrivial bugs in various mature
Verilog tools, and can serve as a practical and rigorous standard to ascertain
what the correct behavior of such tools should be in complex cases.

A more exotic application of rewriting logic semantics, for which it is ide-
ally suited due to its intrinsically concurrent nature, is that of asynchronous
hardware designs. These are digital designs which do not have a global clock,
so that different gates in a device can fire at different times. Such devices can
behave correctly in much harsher environments (e.g., a satellite in outer space)
and with much wider ranges of physical operating conditions, than clocked de-
vices. Asynchronous designs can be specified with the notation of production
rules, which roughly speaking describe how each gate behaves when inputs to its
wires are available. In [252] a rewriting logic semantics of asynchronous digital
devices specified as sets of production rules is given and is realized in Maude
(see also the longer paper [253] in this issue). This is the first executable formal
semantics of such devices I am aware of. It can be used both for simulation
purposes and for model-checking verification of small-sized devices (about 100
gates). An interesting challenge is how to scale up model checking for larger
devices; this is nontrivial due to the large state space explosion caused by their
asynchronous behavior.

7.2.4. Networks, Distributed Architectures, Middleware and Coordination
Networks and network protocols are among the most basic distributed sys-

tems, on top of which other systems communicate. There is a long history
of work on formal specification and verification of network protocols. Early
work using rewriting logic in this area includes [131, 133, 304, 462]. What
rewriting logic seems to be particularly good at is its support for distributed
objects, which naturally describes network nodes, and its flexibility in handling
many different network and communication models: in-order or out-of-order,
link-based communication, broadcast, multicast and unicast, active networks,
wireless communication, and so on; and to also handle naturally real time and
probabilistic features. For example, to faithfully model wireless communication
in a sensor network the geometry of the network, the varying power at each
node, the time required for transmission, and the radius that a wireless mes-
sage broadcast can travel without being lost depending on the power with which
it is transmitted, all need to be modeled as done in [375]; likewise, probabilistic
algorithms for sensor networks, modeling of packet contention, clock synchro-
nization, and formal analysis by statistical model checking are all naturally han-

70

dled in [258]. Network specifications and analyses have tackled not just single
protocols, but composable collections of them in actual active network systems,
where important design problems not revealed by standard testing have been
uncovered [373].

In some cases, e.g., [373], the network protocols specified and analyzed in
rewriting logic had already been implemented before the formal analysis was
done; but the most useful application of these methods is before a protocol is
implemented. The reason is obvious, although not always perceived by the un-
enlightened: it is much easier to debug a design expressed as a formal executable
specification which can be very quickly specified and can then be subjected to
exhaustive formal analysis, than it is to adopt the standard alternative of testing
successive prototypes written in, say, C. Also, using formal executable specifi-
cations one can much more easily explore different design alternatives and get
a better understanding of the design choices. Everybody knows that debugging
distributed code is notoriously hard to do, but the brute force approach still
remains a widespread, wasteful and unreliable way to develop protocols. One of
the key contributions of [221] was to make exactly this point in a very thorough
way by taking to heart the idea of using formal specification and model-checking
analysis in Maude to design a completely new protocol (L3A) and using this
as a method to make the right choices between design alternatives and to fully
debug the design. The beauty of it was that the subsequent implementation of
L3A (reported in [222]) was essentially a transcription of the executable Maude
specification into imperative code, which was accomplished much faster and in
a much more reliable way than if the formal analysis had not been done. In the
words of one of the authors [220],

[the Maude modeling and analysis] gave us a complete story of a
model with proofs and an implementation that was really done from
the Maude model. In essence, the debugging was done in Maude and
we could focus on implementation and performance issues and not
the correctness of the protocol.

For a similar detailed case study of using Maude to fully explore a protocol
design (in this case one that was not implemented, precisely because of the
complexities uncovered by the formal analysis) see [223]. Some of the above
protocols, e.g., [131, 133, 221, 223], are security protocols. I discuss them from
a security perspective, as well as other security protocols, in Section 7.3.

Besides networks themselves, different distributed architectures and middle-
ware systems, and various distributed coordination and reflection mechanisms,
have also been modeled and formally analyzed in rewriting logic. For example,
there is work on formalizing different aspects of ODP [350, 167, 168, 154, 166,
402], SOAP [13], CORBA [14], and the SMEPP P2P middleware [153]. Simi-
larly, work on formal models of coordination includes [85, 86, 441, 444]. Closely
related to coordination models is work on formal models of distributed object
reflection and adaptation [134, 338, 441, 261, 88]. For work on formal analysis
of web applications and services using rewriting logic specifications see [15, 163].

71

7.3. Security
Security is a concern of great practical importance for many systems, making

it worthwhile to subject system designs and implementations to rigorous formal
analysis. Security, however, is many-faceted : on the one hand we are concerned
with properties such as secrecy and authenticity : malicious attackers should not
be able to get secret information or to falsely impersonate honest agents; on the
other, we are also concerned with properties such as availability, which may be
destroyed by a (DoS) attack: a highly reliable communication protocol ensuring
secrecy may be rendered useless because it spends all its time checking spurious
signatures generated by a DoS attacker. Furthermore, security concerns span
many different levels and subsystems, such as network protocols, programming
languages, browsers, web applications, operating systems, and hardware.

Rewriting logic has been successfully applied to analyze various security
properties for a wide range of systems and at different levels of abstraction.
Research in this general area includes: (i) work on cryptographic protocols; (ii)
work on network security; (iii) work on browser security; (iv) work on access
control, and (v) work on code security.

7.3.1. Cryptographic Protocol Specification and Analysis
The earliest work on the formal specification and analysis of cryptographic

protocols in rewriting logic is by Denker, Meseguer, and Talcott [132, 133]. This
stimulated further work by Rodriguez [400, 401], and inspired Millen and Denker
to use Maude to give a formal semantics to their cryptographic protocol speci-
fication language CAPSL, and to endow CAPSL with an execution and formal
analysis environment [135, 136, 137, 138]. In a similar vein, Cervesato, Stehr,
and Reich gave a rewriting logic semantics to the MSR security specification
formalism, leading to the first executable environment for MSR [87, 390].

An important breakthrough was the realization that, by specifying a crypto
protocol as a rewrite theory R = (Σ, E ∪ B,R), where E ∪ B describes the
algebraic properties of the protocol’s cryptographic functions, and R are the
protocol rules, one could use narrowing with R modulo the equations E ∪B as
a complete reachability analysis method (see Section 3.3). This was first pointed
out in [339, 340]. This advance was crucial for two main reasons: (i) protocols
could be analyzed modulo their algebraic properties E ∪ B; it is well known
(as already pointed in Section 6.2.4), that the traditional Dolev-Yao analysis
treating cryptography as a “black box” is too weak, since protocols proved se-
cure under the black box assumption can sometimes be broken by an attacker
using the properties E ∪ B; and (ii) by adopting a narrowing-based symbolic
model-checking approach, the fact that the number of protocol states, and even
the number of protocol sessions, is unbounded does not preclude performing
a complete analysis. Based on these ideas and on the rich experience about
symbolic reachability methods in the NRL Protocol Analyzer [306], Santiago
Escobar, Catherine Meadows and I have developed the Maude-NPA protocol
analysis tool, discussed in Section 6.2.4, and its foundations [180, 183]. To the
best of my knowledge the Maude-NPA is the most advanced analysis tool to

72

date for analyzing cryptographic protocols modulo algebraic properties with
an active intruder and an unbounded number of sessions in a complete way
and without using any abstractions or approximations. For many protocols,
Maude-NPA can exploit the fact that E ∪B happens to enjoy the finite variant
property to obtain a finitary E ∪ B-unification algorithm by variant narrow-
ing (see [190] and Section 3.3). But finitary algorithms for theories E ∪ B not
having the finite variant property, e.g., homomorphic encryption, are also sup-
ported by Maude-NPA. In this way, we have formally analyzed protocols of the
form R = (Σ, E∪B,R), where E∪B can be a cryptographic theory involving a
combination of functionalities such as: (i) encryption-decryption; (ii) bounded
associativity; (iii) Diffie-Hellman exponentiation; (iv) exclusive or; and (v) ho-
momorphic encryption [178, 183, 181, 412, 179]. In general, of course, protocol
analysis with an unbounded number of sessions is undecidable. However, thanks
to Maude-NPA’s use of grammars [180] and of other state space reduction tech-
niques [182, 184], a protocol’s symbolic state space can often become finite while
remaining complete. This means that one can not only be sure to find attacks if
they exist, but that one can often prove that the specified attacks are not possi-
ble modulo the algebraic properties E ∪B. Protocols are often compositions of
smaller protocols, so that, even when the subprotocols are secure, unforeseen in-
secure interactions may take place in a composition. To support compositional
reasoning in Maude-NPA, new composition constructs and associated analysis
methods have been developed in [185].

7.3.2. Network Security
I have already discussed in Section 7.2.4 the usefulness for protocol design of

the formal specifications in [221] and [223]. Since both specify network security
protocols, I briefly discuss them here from a security perspective. The work in
[221] describes in detail the design steps, using Maude and its model-checking
formal analysis, to arrive at the design of L3A, an accounting protocol built on
top of IPsec (using IPsec tunnels) to support billing which was subsequently
implemented in [222]. One of the unique features of L3A is that it is resilient
under cramming attacks, where a malicious attacker can direct traffic to a client
for the purpose of having the client billed for the spurious traffic. The work
in [223] uses Maude and its model-checking features to explore and analyze
a new protocol design called Sectrace. The problem addressed by Sectrace is
the setting up of associations and policies assumed, but not provided, by the
IPSec protocol in order to provide encryption and authentication services. Due
to the presence of nested channels and concatenated channels involving several
security gateways, setting up such security associations and policies is highly
nontrivial. Indeed, the formal analysis uncovered quite complex issues, such as
the fact that certain possibilities to set up correct security associations could
be missed; and that concurrent runs of the protocol could cause undesirable
interference effects. The design of Sectrace was not further advanced to resolve
these issues, but the lessons learned were very valuable and could not have been
learned without such kind of formal specification and analysis.

The work by Gutierrez-Nolasco et al. in [226] uses formal specification and

73

verification in Maude to address a very important and real problem: how can
the security requirements of a protocol be balanced with other equally impor-
tant requirements such as timeliness or other QoS requirements? And how can
a design be made adaptive, so that such a balancing can take place at run-
time? This problem was addressed in the context of the Secure Spread group
communication protocol [427], for which a formal specification in Maude had
been previously developed. One problem with Secure Spread was its assump-
tion of virtual synchrony (VS), which is more restrictive and expensive than
the extended virtual synchrony (EVS) semantics. What the work in [226] ac-
complished was to extend the formal Maude specification of Secure Spread to
a considerably more flexible and dynamically adaptive secure group communi-
cation protocol with two simultaneous dimensions of adaptation: (i) synchrony,
which could be chosen to have the VS or EVS semantics; and (ii) group key
security, where various levels of laziness in the key establishment protocol could
be specified.

Regarding availability properties, a big problem in network security is De-
nial of Service (DoS) attacks, which are often distributed (DDoS) and employ
many “bots,” i.e., large numbers of compromised machines from which a si-
multaneous attack is mounted. Two key questions are how to make network
protocols resilient to DoS attacks, and how to formally analyze such resilience.
A probabilistic approach to the formal specification and verification of DoS-
resilient protocols is very natural for two reasons: (i) both the attacker models
and the defense algorithms may be probabilistic; and (ii) the answers from a
formal analysis will typically not be “true” or “false” answers; they will instead
be numerical quality of service (QoS) answers, such as the expected latency
for a client to get a response from a server during an attack of given intensity.
This means that probabilistic rewrite theories (see Section 3.10) and statisti-
cal model checking of qualitative properties in QuaTEx (see Section 3.11.1) are
ideally suited for specification and analysis of DoS-resilient protocols. This is
exactly the approach taken by Agha et al. in [4] to analyze the DoS-resilience of
a hardening of the TCP/IP protocol by means of the Selective Verification (SV)
probabilistic DoS-defense mechanism. This work has been later extended by
AlTurki et al. [24] to the formal specification and verification of a more sophis-
ticated DoS-defense protocol, namely, Adaptive Selective Verification (ASV),
where both clients and servers ramp up or slow down their response to a DoS
attack based on its perceived intensity. In his recent Ph.D. thesis [18], Musab
AlTurki has modularized ASV as a meta-object wrapper that can be added to
the objects of a distributed application without changing the application code;
he has also extended the study of DoS defense mechanisms from simple client-
server architectures to complex orchestrations of web services in Orc: he has
shown how combinations of web services can be secured against DoS attacks by
wrapping its distributed objects with ASV wrappers (for Orc and its rewriting
logic semantics see Section 7.4.3).

However, neither the analysis nor the DoS-defense mechanisms need to be
probabilistic. For example, in [424], Shankesi et al. give a formal specification
in Maude of the VoIP Session Initiation Protocol, and of defense mechanisms

74

against DoS amplification attacks, and use LTL model checking in Maude with
parametric predicates, which can actually measure performance metrics, to for-
mally analyze the effectiveness of the specified defenses. Another DoS defense
mechanism not involving probabilities is that of cookies. In [88], Chadha et al.
propose a formal specification of the cookie-based DoS defense mechanisms as
a modular wrapper, which can be composed with an underlying communication
protocol without any modifications to the protocol’s code; and they prove that
this modular approach preserves all the safety properties, for example secrecy
properties, enjoyed by the underlying protocol. That is, the addition of this DoS
defense can be made modular both at the code level and at the level of verifying
safety properties, which need not be re-verified when the cookie wrappers are
added.

7.3.3. Browser Security
To achieve end-to-end security, traditional machine-to-machine security mea-

sures are insufficient if the human-computer interface is compromised. This is
particularly the case for browsers, where visual spoofing attacks that exploit
GUI logic flaws can lure even security-conscious users to perform unintended
actions. In [92], Shuo Chen, Ralf Sasse, Helen Wang, Yi-Min Wang and I called
the preventing of such visual spoofing attacks “securing the last 20 inches.” That
is, all the machine-to-machine protocols, code and hardware may be secure, but
these visual attacks take place in the last 20 inches separating a user’s eyes
from the screen where he/she is interacting with a browser using the browser’s
GUI. Before we performed a rewriting-logic based formal analysis of Microsoft’s
Internet Explorer (IE), it seems fair to say that the approach to IE security
was basically reactive, i.e., each new attack was patched up, but there was no
systematic way to predict and prevent future attacks. Based on an in-depth
study of IE’s code, we developed a formal specification of IE (including a model
of the user) in Maude as a rewrite theory. We then characterized status bar and
address bar spoofing attacks as violations of visual invariants, where the web
site that the user assumes he/she is interacting with is different from the real
web site: what you see is not what you get. Our model-checking-based formal
analysis uncovered nine status bar types of spoofing attacks and four address
bar spoofing attack types that had not been previously mounted against IE.
For each attack type, a malicious web page producing an actual attack could be
built. The IE team then confirmed all these attack scenarios and proceeded to
make IE secure for these new types of attacks.

This work stimulated new research by C. Grier, S. Tang and S. King at the
University of Illinois at Urbana-Champaign. They asked the question: can we
use rewriting logic not to uncover browser security flaws a posteriori, but to
design a browser that is secure by construction? This question was answered
in their paper [224], where they presented the design and implementation of
the OP secure browser, whose design was specified in Maude and was subjected
to model-checking analysis to uncover design flaws. A more advanced browser
variant of OP, OP2, as well as IBOS, a design and system implementation which
integrates into a single architecture a secure browser and a secure operating

75

system, are described in detail in Shuo Tang’s thesis [449]. This design is being
submitted to detailed formal analysis by Ralf Sasse, who has already verified by
model checking the same origin policy; this and other verification results will
be reported in Sasse’s upcoming doctoral dissertation at UIUC.

The security of web browsers is part of a bigger problem, namely, the secu-
rity of web applications. In [15] Alpuente et al. give a rewriting semantics of web
applications which formalizes the interactions between multiple browsers and a
web server through a request/response protocol that supports the main features
of HTTP and models browsers actions such as refresh, forward/backward navi-
gation, and window/tab openings. Their formal model also supports a scripting
language which abstracts the main common features (e.g. session data manipu-
lation, data base interactions) of the most popular web scripting languages and
formalizes adaptive navigation, where page transitions may depend on users
data or previous computation states of the web application. They also show
how the temporal logic of rewriting LTLR and its Maude-based model checker
(see Section 3.11.1) are ideally suited to express and verify various safety and
security properties of web applications specified this way.

7.3.4. Access Control
Access control policies specify the conditions under which access to informa-

tion is permitted or should be denied in a system. They are a key security feature
of many systems and apply way beyond the original setting of operating systems:
enterprise systems, web-based systems, and even cloud computing applications
all need and use access control policies. Such a policies are typically specified as
collections of access control rules. Several authors, e.g., [48, 126, 145], have for-
malized access control rules as rewrite rules. To further increase the expressive
power of access control rules, the corresponding rewrite rules may be condi-
tional, and they may be controlled by some given strategy. This leads to the
notion of rewrite-based access control policies, and to a corresponding notion
of policy composition [145]. One important advantage of this rewriting-based
formalization is that sophisticated forms of formal analysis about an access
control policy become possible. C. Kirchner, H. Kirchner, and A. Santana de
Oliveira show in [263] how narrowing-based analysis (see Section 3.3) with the
rewrite rules formalizing an access control policy and following given strategies
can provide an in-depth understanding of policies and their dynamic behavior
to policy designers. Furthermore, since the rewrite rule formalization is directly
executable and, using a language like Tom, can be automatically translated into
Java code, the paper [127] shows how rewrite-based access control policies can
be used to generate Java monitoring code for such policies. The monitoring
code can then be automatically “weaved” with the application code it monitors
using aspect-oriented methods.

7.3.5. Code Security
Many security attacks such as format string, heap corruption and buffer

overflow involve malicious code performing pointer manipulations. The insight
of Shuo Chen and his collaborators in [93] is that all these problems have a

76

common cause that they call pointer taintedness, where a pointer is tainted
whenever a user input can directly or indirectly be used as a pointer value. The
formal approach taken in [93] is a good example of the general way of giving
a rewriting logic semantics to a programming language already described in
Sections 4.3 and 7.2.2. Indeed, what it is done in [93] is to give a rewriting
semantics to a sequential programming language (since the language used is
deterministic, only equations are needed) which includes a memory model. This
formal model is then used to reason formally about pointer taintedness. This
reasoning is applied to several library functions to extract security preconditions
which guarantee the absence of pointer taintedness. In this way, various com-
monly occurring security vulnerabilities, such as format string, heap corruption
and buffer overflow vulnerabilities can be both detected and prevented.

The topic of application level insider attacks, where a malicious insider tries
to overwrite one or more data items in an application, has been systematically
studied by Pattabiraman et al. in [380]. The application code is modeled at
the assembly level by defining the rewriting logic semantics of assembly code.
An insider attack is then represented as a corruption of data values at specific
points in the program’s execution (called attack points). The behavior of an
application code subjected to security attacks in the specified attack points is
then formally modeled by replacing concrete values by appropriate symbolic
values when attack points are reached; and by systematically modeling with
rewrite rules the behaviors that such symbolic values can generate. Given the
application code and its inputs, a set of attack points, and a goal state that the
attacker intends to achieve, Maude is then used to generate a comprehensive
set of insider attacks that lead to the goal state.

A very elegant application of a programming language’s abstract rewriting
logic semantics (see Section 4.3) to Java code security is presented by Alba-
Castro et al. in [11, 12] as part of their rewriting-logic-semantics-based ap-
proach to proof carrying code. The key idea is to use an abstract rewriting
logic semantics of Java that correctly approximates security properties such as
noninterference (that is, the specification of what objects should not have any
effects on other objects according to a stated security policy [217]) and erasure
(a security policy that mandates that secret data should be removed after its
intended use). Since the abstract rewriting logic semantics is finite-state, it
supports the automatic creation of certificates for noninterference and erasure
properties of Java programs that are independently checkable and small enough
to be used in practice.

Yet another code security application is M. LeMay and C. Gunter’s verifi-
cation of the security and fault-tolerance requirements of their cumulative at-
testation kernel (CAK). This kernel runs on a flash microcontroler unit (MCU)
as part of an advanced metering infrastructure for utilities in the Power Grid.
For example, a meter for electricity consumption in a household or business
will use such an MCU, connected to a communications network, to automat-
ically gather and send power consumption data. Security threats include the
installation of malware in the MCU to send false data. The CAK code protects
the MCU against such attacks and also provides fault tolerance. The CAK’s

77

behavior has been fully specified as a rewrite theory in Maude, and Maude’s
LTL model checker has been used to verify that key security and fault tolerance
requirements of the CAK are satisfied [281].

7.4. Real-Time and Cyber-Physical Systems
I have already mentioned in Section 3.11.2 that ELAN has been used to

model check timed automata in [52]. Here I focus on the more general issue of
specification and formal analysis of real-time and cyber-physical systems which,
by having arbitrary data structures in their discrete states, may not be speci-
fiable at all as timed automata but have a natural specification as real-time
rewrite theories (see Section 3.9). The best tool currently available to spec-
ify and analyze systems as real-time rewrite theories is Real-Time Maude (see
Section 6.1.8). A wide range of applications have been specified and analyzed
in Real-Time Maude including: (i) network protocols; (ii) middleware for dis-
tributed real-time systems; (iii) real-time programming languages; (iv) real-time
modeling languages; (v) scheduling algorithms; and (vi) cyber-physical systems.
Furthermore, in some cases the Real-Time Maude specifications have been used
to easily derive actual system prototypes operating in physical time.

7.4.1. Real-Time Network Protocols
Because of their frequent use of timers, timeouts, roundtrip times, and so on,

many network protocols (discussed already in Section 7.2.4) are in fact real-time
systems. This means that their rewriting logic specification naturally takes the
form of a real-time rewrite theory, and that their model-checking analysis can
best be performed by the kind of real-time model checking supported by Real-
Time Maude. Important network protocols that have been specified and have
been thoroughly analyzed in Real-Time Maude include: (i) the AER/NCA suite
of active network protocols [359, 365, 373] already mentioned in Section 7.2.4;
(ii) the NORM multicast protocol standard [285, 286]; and (iii) the OGDC
wireless sensor network algorithm [452, 376]. This last work is quite unique,
because it seems to be the first time that a sensor network was fully formally
modeled in all its main aspects, such as geometry, power, transmission times,
effective broadcast radius for each node, and so on; and because the formal
analysis turned out to be more accurate than (and to uncover flaws in) prior
simulation-based analyses of OGCD. It is also noteworthy in terms of scalability,
since a network of up to 600 nodes was modeled and analyzed. In fact, a sensor
network is more than a network: it is a cyber-physical system, which in this
work was fully modeled as such.

7.4.2. Middleware for Distributed Real-Time Systems
Many distributed real-time systems (DRTS), such as integrated modular

avionics systems and distributed control systems in motor vehicles, are made
up of a collection of components that communicate asynchronously and that
must change their state and respond to environment inputs within hard real-
time bounds. Such systems are often safety-critical and need to be certified; but

78

their certification is currently very hard due to their distributed nature. The
Physically Asynchronous Logically Synchronous (PALS) architectural pattern
[341] can greatly reduce the design and verification complexities of achieving
virtual synchrony in a DRTS. A key property that the PALS pattern should
satisfy is to be provably correct-by-construction. This of course requires that
the pattern itself should be formally specified as a parameterized construction.
In [329, 330] Peter Ölveczky and I have used Real-Time Maude to specify PALS
as a formal model transformation that maps a synchronous design, together
with performance bounds of the underlying infrastructure, to a formal DRTS
specification that is semantically equivalent to the synchronous design. This
semantic equivalence is proved, showing that the formal verification of temporal
logic properties of the DRTS can be reduced to their verification on the much
simpler synchronous design. Furthermore, the PALS period is shown to be the
shortest possible. The issue of how to mechanize PALS at the Maude metalevel,
and an application of PALS to a wireless network protocol are discussed in [255].

7.4.3. Real-Time Programming Languages
How should the formal semantics of a real-time programming language be

defined? And how can programs in such a language be formally analyzed?
For an ordinary programming language, the rewriting logic semantics project
answers the first question by saying: “with a rewrite theory,” and the second by
saying: “by model checking and/or deductive reasoning based on such a theory.”
The obvious answers for real-time programming languages are: (i) “with a real-
time rewrite theory,” and (ii) “by real-time model checking and/or deductive
reasoning based on such a theory.” Of course, the effectiveness of such answers
has to be shown in actual languages. Three real-time programming languages
have been given semantics in exactly this way, and their semantics have been
used to verify their programs.

In [19], AlTurki et al. present a language for real-time concurrent program-
ming for industrial use in DOCOMO Labs called L. The goal of L is to serve as
a programming model for higher-level software specifications in SDL or UML.
A related goal is to support formal analysis of L programs by both real-time
model checking and static analysis, so that software design errors can be caught
at design time. The way all this is accomplished is by giving a formal semantics
to L in Real-Time Maude, which automatically provides an interpreter and a
real-time model checker for L. Static analysis capabilities are added to L by
using Maude to define an abstract semantics for L in rewriting logic, which is
then used as the static analyzer.

As already mentioned in Section 4.2, the Orc model of real-time concurrent
computation [342, 343, 470] has been given semantics in rewriting logic using
real-time rewrite theories [20, 21, 18]. Although Orc is a very simple and ele-
gant language, its real-time semantics is quite subtle for two reasons. First, in
the evaluation of any Orc expression, internal computation always has higher
priority than the handling of external events; this means that, even without
modeling time, a vanilla-flavored SOS semantics is not expressive enough to
capture these different priorities: two SOS relations are needed [343]. Second,

79

Orc is by design a real-time language, where time is a crucial feature. Using real-
time rewrite theories, this double subtlety of the Orc semantics was faithfully
captured by Musab AlTurki and I in [20], and has been expressed in an even
simpler way using subsorts and memberships in [18]. This semantics has yielded
an Orc interpreter and a real-time model checker. But Orc is not just a model
of computation: it is also a concurrent programming language. This suggested
the following challenge question: can a correct-by-construction distributed Orc
implementation be derived from its rewriting logic semantics? This question
was answered in two stages. Since, as discussed in Section 4.3, a small-step SOS
semantics is typically horribly inefficient and it was certainly so in the case of
Orc, a much more efficient reduction semantics was first defined in [21], and was
proved to be bisimilar to the small-step SOS semantics. This semantics provided
a much more efficient interpreter and model checker. Furthermore, to explicitly
model different Orc clients and various web sites, and their message passing com-
munication, the Orc semantics was seamlessly extended in [21] to a distributed
object-based Orc semantics, which modeled what a distributed implementation
should look like. The only remaining step was to pass from this model of a
distributed implementation to an actual Maude-based distributed real-time im-
plementation. This was accomplished in [22] using three main ideas: (i) the
use of sockets in Maude to actually deploy a distributed implementation; (ii)
the systematic replacement of logical time by physical time, supported by ticker
objects external to Maude, while retaining the rewriting semantics throughout;
and (iii) the experimental estimation of the physical time required for “zero-
time” Maude subcomputations, to ensure that the granularity of time ticks is
such that all “instantaneous transitions” have already happened before the next
tick. Ideas (i)–(iii) are of course much more widely applicable: they have subse-
quently been used to derive prototypes of real-time systems from their rewriting
logic specifications for other applications such as medical devices, as explained
in Section 7.4.6.

Creol is an object-oriented language supporting concurrent objects which
communicate through asynchronous method calls. Its rewriting-logic-based op-
erational semantics was defined in [245] without real-time features. However,
to support applications such as sensor systems with wireless communication,
where messages expire and may collide with each other, Creol’s design and op-
erational semantics have been extended in [58] to Timed Creol using rewriting
logic. The notion of time used by Timed Creol is described as a “lightweight”
one in [58]. Time is discrete and is represented by a time object. This approach
does not require a full use of the features in Real-Time Maude (Maude itself is
sufficient to define the real-time semantics). The effectiveness of Timed Creol in
the modeling and analysis of applications such as sensor networks is illustrasted
in [58] through a case study.

7.4.4. Real-Time Modeling Languages
The usefulness and importance of giving a formal rewriting logic semantics

to software modeling languages has already been discussed in Sections 4.4 and
7.2.1. In particular, there is strong interest in modeling languages for real-time

80

and embedded systems. The rewriting logic semantics for such modeling lan-
guages can be naturally based on real-time rewrite theories. Using a tool like
Real-Time Maude, what this means in practice is that such models can then be
simulated; and that their formal properties, in particular their safety require-
ments, can be model checked. Furthermore, the simulations and formal analysis
capabilities added to the given modeling language can be offered as “plugins”
to already existing modeling tools, so that much of the formal analysis happens
“under the hood,” and somebody already familiar with the given modeling no-
tation can make use of such formal analysis without needing to have an in-depth
understanding of the underlying formalism.

The Ptolemy II modeling language [170] supports design and simulation of
concurrent, real-time, embedded systems expressed in several models of com-
putation, such as state machines, data flow, and discrete-event models, that
govern the interaction between concurrent components. A user can visually
design and simulate hierarchical models, which may combine different models
of computations. Furthermore, Ptolemy II has code generation capabilities to
translate models into other modeling or programming languages such as C or
Java. Discrete-event (DE) models are among the most central in Ptolemy II.
Their semantics is defined by the tagged signal model [280]. The work by Bae
et al. in [42] endows DE models in Ptolemy II with formal analysis capabilities
by: (i) defining a semantics for them as real-time rewrite theories; (ii) automat-
ing such a formal semantics as a model transformation using Ptolemy II’s code
generation features; (iii) providing a Real-Time Maude plugin, so that Ptolemy
II users obtain an extended GUI to define temporal logic properties of their
models in an intuitive syntax and can invoke Real-Time Maude from the GUI
to model check their models. This work has been further advanced in [40] to
support not just flat DE models, but hierarchical ones. That is, above tasks
(i)–(iii) have been extended to hierarchical DE models; this extension is non-
trivial, because it requires combining synchronous fixpoint computations with
hierarchical structure.

AADL is a standard for modeling embedded systems that is widely used
in avionics and other safety-critical applications. However, AADL lacks a for-
mal semantics, which severely limits both unambiguous communication among
model developers and the formal analysis of AADL models. In [363] Ölveczky
et al. define a formal object-based real-time concurrent semantics for a behav-
ioral subset of AADL in rewriting logic, which includes the essential aspects of
AADL’s behavior annex. Such a semantics is directly executable in Real-Time
Maude and provides an AADL simulator and LTL model-checking tool called
AADL2Maude. AADL2Maude is integrated with the OSATE AADL tool, so
that OSATE’s code generation facility is used to automatically transform AADL
models into their corresponding Real-Time Maude specifications. Such trans-
formed models can then be executed and model checked by Real-Time Maude.
One difficulty with AADL models is that, by being made up of various hier-
archical components that communicate asynchronously with each other, their
model-checking formal analysis can easily experience a state space explosion.
However, many such models express designs of distributed embedded systems

81

which, while being asynchronous, should behave in a virtually synchronous way.
This suggests the possibility of using the PALS pattern (see Section 7.4.2) to
pass from simple synchronous systems, which have much smaller state spaces
and are much easier to model check, to semantically equivalent asynchronous
systems, which often cannot be directly model checked but can be verified indi-
rectly through their synchronous counterparts. This has led to the design of the
Synchronous AADL sublanguage in [41], where the user can specify synchronous
AADL models by using a sublanguage of AADL with some special keywords.
A synchronous rewriting semantics for such models has also been defined in
[41]. Using OSATEs code generation facility, synchronous AADL models can
be transformed into their corresponding Real-Time Maude specifications in the
SynchAADL2Maude tool, which is provided as a plugin to OSATE. Likewise, the
user can define temporal logic properties of synchronous AADL models based
on their features, without requiring knowledge of the underlying formalism, and
can model check such models in Real-Time Maude.

A more ambitious goal is to provide a framework, where a wide range of
real-time domain-specific visual languages (DSVLs), as well as their dynamic
real-time behavior, can be specified with a rigorous semantics. This is precisely
the goal of two frameworks and associated tools: (i) the e-Motions framework
[394]; and (ii) MOMENT2 ’s support for real-time DSVLs [67].

• In e-Motions, DSVLs are specified by their corresponding metamodels,
and dynamic behavior is specified by rules that define in-place model
transformations. But the goals of e-Motions do not remain at the syn-
tax/visual level: they also include giving a precise rewriting logic seman-
tics in Real-Time Maude to the different real-time DSVLs that can be
defined in e-Motions, and to automatically support simulation and formal
analysis of models by using the underlying Real-Time Maude engine. The
formal semantics translates the metamodel of a DSVL as an object class,
the corresponding models as object configurations of that class, and the
e-Motions rules as rewrite rules. Since all these translations are automatic
and define a DSVL’s formal semantics, a modeling language designer using
e-Motions does not have to explicitly define the DSVL’s formal seman-
tics: it comes for free, together with the simulation and model-checking
features, once the DSVL’s metamodel and the dynamic behavior rules are
specified.

• In [67], the MOMENT2 framework (see Section 6.2.5) has been extended
to support the formal specification and analysis of real-time model-based
systems. This is achieved by means of a collection of built-in timed con-
structs for defining the timed behavior of such systems. Timed behavior
is specified using in-place model transformations. Furthermore, the for-
mal semantics of a timed behavioral specification in MOMENT2 is given
by a corresponding real-time rewrite theory. In this way, models can be
simulated and model checked using MOMENT2 ’s Maude-based analysis
tools. In addition, by using in-place multi-domain model transformations
in MOMENT2, an existing model-based system can be extended with

82

timed features in a non-intrusive way, in the sense that no modification is
needed for the class diagram.

7.4.5. Resource Sharing Protocols
Real-time resource sharing protocols are protocols governing the way in

which multiple tasks can share common resources such as a data structure,
a memory area, a file, a set of registers in a peripheral device, and so on. The
dynamic behavior of such protocols divides naturally into a scheduling part,
and a resource access part. Although this is a very well-established area, the
emergence of multicore machines has brought about new protocols and more
sophisticated approaches, for which correctness is not obvious, so that formal
modeling and analysis can be a valuable design methodology. The first work
applying rewriting logic in this area was by P. Ölveczky and M. Caccamo, who
modeled and analyzed in Real-Time Maude the CASH capacity sharing schedul-
ing algorithm [364], corresponding to the scheduling part of a resource sharing
protocol. Search analysis of CASH’s Real-Time Maude specification uncovered
a previously unknown behavior that led to missed deadlines. This was a subtle
error that it would have been virtually impossible to detect by testing. In-
deed, extensive Monte-Carlo simulation was utterly incapable of detecting the
flaw. The CASH protocol furthermore illustrated a broad class of applications
beyond the pale of (timed) automata-based analysis techniques. The point is
that model-checking algorithms for such techniques work only for finite-state
real-time systems, but the Real-Time Maude formal analysis showed that the
queues in the state of the CASH protocol could grow in an unbounded manner.

A broader framework for formally modeling and analyzing real-time resource
sharing protocols, in both their scheduling and resource access parts, is pre-
sented by P. Ölveczky, P. Prabhakar and X. Liu in [374]. In particular, [374]
shows how crucial properties such as: (i) unbounded priority inversion; (ii) dead-
locks; and (iii) schedulability, can be analyzed for such protocols when they are
specified as real-time rewrite theories. The effectiveness of this framework is
illustrated by means of the analysis of the priority inheritance protocol (PIP).

7.4.6. Cyber-Physical Systems
Cyber-physical systems are real-time systems, often distributed, which inter-

act with the physical world by sensing and possibly by means of actuators. A
number of such systems have been specified and modeled in Real-Time Maude.
One example is the OGCD wireless sensor network algorithm in [452, 376] al-
ready described in Section 7.4.1. Another example is the family of traffic system
designs specified and analyzed in [372], where one of the experiences gained was
the ease with which the use of distributed objects and class inheritance pro-
vided a very high degree of genericity and extensibility of the different designs
(including European and American light regimes, a special regime for emer-
gency vehicles, and so on), and allowed for a distributed control without any
need for a centralized controller. A third example is the modeling in Real-Time
Maude of object-oriented real-time systems that follow the Actor model, and
the application of this modeling style to the specification and analysis of the

83

simplex architecture [142], a software architecture for fault-tolerant real-time
control systems. Yet a fourth example is the use of Real-Time Maude to ana-
lyze embedded code in a Japanese car design; the analysis uncovered flaws in
the embedded code but has not been published for proprietary reasons.

The safe interoperation of medical devices has been the topic of several
research papers, which have formally modeled and analyzed various device con-
figurations in Real-Time Maude. For example, in [360] P. Ölveczky describes
the application of Real-Time Maude to the formal modeling and analysis of
a network integrating an X-ray machine, a ventilator, and a controller. This
configuration automates a similar manual interoperation between an X-ray ma-
chine and a ventilator for which an accidental death in an operating room was
reported in the literature. As part of the formal specification and analysis,
[360] introduces novel techniques for: (i) modeling nondeterministic transmis-
sion delays while maintaining completeness and reasonable performance of the
analysis; (ii) modeling clock drifts; and (iii) analyzing bounded response proper-
ties. Subsequent work by M. Sun, J. Meseguer, and L. Sha in [439] has focused
on the development of patterns for interoperation of medical devices (among
themselves and with a patient) that are safe by construction, and generic, so
that they can be instantiated for many different devices. Specifically, one such
pattern, called the Command-Shaper pattern, is formally specified as a param-
eterized Real-Time Maude module and proved correct in [439]. The key idea of
the Command-Shaper is to intercept the commands from external devices (pos-
sibly including the patient), so that the patient is never placed in a medically
dangerous state, including states where the patient’s medical constants may be
stressed for a dangerously long time. Instances of the Command-Shaper pattern
include a mechanism for enforcing that a sophisticated pacemaker, which can
adapt to changes in the patient’s activity, will never place the patient’s heart in
stressful situations, and a patient-operated infusion pump for morphine. As al-
ready pointed out for the Orc orchestration language in Section 7.4.3, Real-Time
Maude specifications of distributed real-time systems can be easily transformed
into distributed real-time implementations using Maude’s socket mechanism.
For the Command-Shaper pattern this has been done by Mu Sun and me in
[438]. One attractive feature of this transformation is that formal specifications
can be interoperated with actual physical devices in a system that emulates a
final implementation.

Using the PALS pattern discussed in Section 7.4.2, Peter Ölveczky and I
have specified in Real-Time Maude synchronous and asynchronous versions of
an active standby avionics system [329, 330], and, using the synchronous version
plus its bisimulation equivalence with the asynchronous one, have verified by
model checking that it satisfies (appropriately enhanced versions of) all the
informal requirements listed by the designers. This example underscores the
power and usefulness of the PALS pattern, since the synchronous version had
just a few hundred states and each property was model checked in less than 0.8
seconds, whereas the simplest possible asynchronous version (with no message
delays) had over 3 million states.

84

7.5. Probabilistic Systems
Probabilisitic rewrite theories (see Section 3.10) can model a wide variety

of probabilistic systems, including many cyber-physical systems. As already
mentioned, both the environments in which such systems operate and the very
algorithms they use are often probabilistic. Furthermore, the verification of
their quantitative properties may be just as important as that of Boolean-valued
properties such as safety requirements. For this purpose, one can use statisti-
cal model-checking methods (see Section 3.11.2) of quantitative properties ex-
pressed in a formalism such as QuaTEx (see Section 3.11.1). As the PVeStA
tool demonstrates, such statistical model-checking analyses can be quite scalable
(see Section 6.1.10).

Up to now, the probabilistic system applications that have been specified
and analyzed using the just-mentioned methods fall into three areas: (i) DoS-
resistant protocols; (ii) distributed embedded systems; and (iii) distributed
stochastic hybrid systems. There are of course many other possibilities, in-
cluding applications for the quite different notion of probabilistic rewriting pro-
posed in [76, 74] and discussed in Section 3.10. Since DoS-resistant protocols
have already been discussed in Section 7.3.2, I focus here on areas (ii) and (iii).

7.5.1. Distributed Embedded Systems
For many distributed embedded systems, particularly those including energy-

constrained components such as hand-held devices, quality of service (QoS)
properties are essential. For achieving such properties in an end-to-end man-
ner, adaptive resource management policies across different layers of the system,
such as the application, middleware, and OS layers, are needed. M. Kim, M.-O.
Stehr, C. Talcott, N. Dutt, and N. Venkatasubramanian have used probabilis-
tic rewrite theories specified in Maude, and statistical model-checking analysis
of quantitative properties of such theories (using the algorithm described in
[261]), to model and formally analyze various sophisticated adaptive designs of
distributed embedded systems that can provide desired QoS guarantees. Their
general methodology is presented in [261], where it is applied to a multi-mode
multimedia case study. Furthermore, in [259] they show how these methods can
be combined with direct observation of system executions to refine the prob-
abilistic models of the system, and how this can be used to achieve system
adaptation under timing constraints by iteratively tuning system parameters.
This line of research is continued in [260], where they present a compositional
method for cross-layer system optimization based on a constraint refinement
technique which can be used to fine tune system parameters in a composi-
tional manner, allowing coordinated interaction among sublayer optimizers to
achieve cross-layer optimization. Experiments on a realistic multimedia appli-
cation demonstrate that constraint refinement can generate robust and near
optimal parameter settings.

An important class of energy-constrained distributed embedded systems is
that of wireless sensor networks, since the power of the sensors must be used very
carefully to ensure an acceptable network lifetime. In [258], Michael Katelman,

85

the late Jennifer Hou and I used probabilistic rewrite theories and qualitative
analysis in VeStA to study in depth and under realistic conditions the design of
the local minimum spanning tree (LMST) topology control protocol, which tries
to maintain connectivity in an ad-hoc wireless sensor network while minimizing
power consumption and maximizing data bandwidth. Our starting point was an
idealized LMST design with perfect clocks and perfect communication, which
did in fact maintain connectivity at an abstract level. However, our formal
analysis revealed that, as soon as more realistic implementation details such
as clock synchronization and network contention were introduced, the idealized
LMST design failed rather badly to maintain network connectivity. The problem
we then addressed was how to use probabilistic modeling and statistical model
checking to redesign LMST at a realistic level, so that it would meet its intended
goals. For this purpose we developed a system redesign methodology supporting
three mutually-reinforcing tasks: (i) to uncover flaws in a given design; (ii) to
conjecture the causes of the various malfunctions and to confirm such conjectures
by means of statistical correlations between further analyses; and (iii) to then
use the confirmed conjectures of the hypothesized causes of flaws to redesign a
system and verify by statistical model checking that the final design satisfies the
desired requirements. Our application of this methodology to LMST resulted
in a new, implementable design that satisfied all the desired requirements under
realistic operating conditions.

7.5.2. Distributed Stochastic Hybrid Systems
Stochastic hybrid systems generalize ordinary hybrid systems by allowing

continuous evolution to be governed by stochastic differential equations (SDEs)
and/or by allowing instantaneous changes in system modes to be probabilistic.
This fits well the intrinsic uncertainty of the environments in which many hy-
brid systems must operate, and is also very useful when some of the systems
algorithms are probabilistic. Indeed, there is a wide range of application areas,
including communication networks, air traffic control, economics, fault-tolerant
control, and bioinformatics. However, in practice many stochastic hybrid sys-
tems are not autonomous: they are distributed as collections of objects that com-
municate with other objects by exchanging messages through an asynchronous
medium such as a network. In [336], Raman Sharikin and I used probabilistic
rewrite theories to investigate several open issues such as: (i) how to composi-
tionally specify distributed object-based stochastic hybrid systems; (ii) how to
formally model them, and (iii) how to verify their properties. Specifically, in
[336] we addressed these issues by: (i) defining a mathematical model for such
systems; (ii) proposing a formal specification language in which system tran-
sitions are specified in a modular way by probabilistic rewrite rules; and (iii)
showing how these systems can be subjected to statistical model-checking anal-
ysis to verify their probabilistic temporal logic properties. Maude and VeStA
were used to illustrate the approach with specific examples such as: (i) an inter-
national auction system in which bidders reside in different countries and their
different currencies fluctuate according to an SDE; and (ii) a system consisting
of N rooms, each equipped with a thermostat, plus a central server unit con-

86

trolling them, where each thermostat can be in either heating, cooling, or idle
mode, and the temperature in each room changes randomly according to an
SDE.

In Section 7.6.1 I discuss another very useful application of probabilistic
rewriting to the modeling of biological systems as stochastic hybrid systems [2].

7.6. Bioinformatics, Chemical Systems, and Membranes
I discuss here several related research strands where rewriting logic has been

applied to bioinformatics, to modeling the dynamics of chemical systems, and
to chemically and biologically inspired membrane systems.

7.6.1. Bioinformatics
Biology lacks at present adequate mathematical models that can provide

something analogous to the analytic and predictive power that mathematical
models provide for, say, Physics. Of course, the mathematical models of Chem-
istry describing, say, molecular structures are still applicable to biochemistry.
The problem is that they do not scale up to something like a cell, because they
are too low-level. One can of course model biological phenomena at different
levels of abstraction. Higher, more abstract levels seem both the most crucial
and the least supported. The most abstract the level, the better the chances to
scale up.

All this is analogous to the use of different levels of abstraction to model dig-
ital systems. There are great scaling up advantages in treating digital systems
and computer designs at a discrete level of abstraction, above the continuous
level provided by differential equations, or, even lower, the quantum electro-
dynamics (QED) level. The discrete models, when they can be had, can also
be more robust and predictable: there is greater difficulty in predicting the be-
havior of a system that can only be modeled at lower levels. Indeed, the level
at which biologists like to reason about cell behavior is typically the discrete
level; however, at present descriptions at this level consist of semi-formal no-
tations for the elementary reactions, together with informal and potentially
ambiguous notations for things like pathways, cycles, feedback, etc. Further-
more, such notations are static and therefore offer little predictive power. What
are needed are new computable mathematical models of cell biology that are at
a high enough level of abstraction so that they fit biologists’ intuitions, make
those intuitions mathematically precise, and provide biologists with the predic-
tive power of mathematical models, so that the consequences of their hypotheses
and theories can be analyzed, and can then suggest laboratory experiments to
prove them or disprove them.

As first pointed out in [173], and vigorously developed in the subsequent
Pathway Logic research which I discuss later, rewriting logic seems ideally suited
for this task. The basic idea is that we can model a cell as a concurrent system
whose concurrent transitions are precisely its biochemical reactions. In fact, the
chemical notation for a reaction like AB → C D is exactly a rewriting notation.
In this way we can develop symbolic bioinformatics models which we can then

87

analyze in their dynamic behavior just as we would analyze any other rewrite
theory.

Implicit in the view of modeling a cell as a rewrite theory (Σ, E,R) is the
idea of modeling the cell states as elements of an algebraic data type specified
by (Σ, E). This can of course be done at different levels of abstraction. We can
for example introduce basic sorts such as AminoAcid, Protein, and DNA and
declare the most basic building blocks as constants of the appropriate sort. For
example,

ops T U Y S K P : -> AminoAcid .

ops 14-3-3 cdc37 GTP Hsp90 Raf1 Ras : -> Protein .

But sometimes a protein is modified, for example by one of its component
amino acids being phosphorylated at a particular site in its structure. Consider
for example the c-Raf protein, denoted above by Raf1. Two of its S amino acid
components can be phosphorilated at sites, say, 259 and 261. We then obtain a
modified protein that we denote by the symbolic expression,

[Raf1 \ phos(S 259) phos(S 621)]

A fragment, relevant for this example, of the signature Σ needed to symboli-
cally express and analyze such modified proteins is given by the following sorts,
subsorts, and operators:

sorts Site Modification ModSet .

subsort Modification < ModSet .

op phos : Site -> Modification .

op none : -> ModSet .

op __ : ModSet ModSet -> ModSet [assoc comm id: none] .

op __ : AminoAcid MachineInt -> Site .

op [__] : Protein ModSet -> Protein [right id: none] .

Proteins can stick together to form complexes. This can be modeled by the
following subsort and operator declarations

sort Complex .

subsort Protein < Complex .

op _:_ : Complex Complex -> Complex [comm] .

In the cell, proteins and other molecules exist in “soups,” such as the cytosol,
or the soups of proteins inside the cell and nucleus membranes, or the soup inside
the nucleus. All these soups, as well as the “structured soups” making up the
different structures of the cell, can be modeled by the following fragment of sort,
subsort, and operator declarations,

sort Soup .

subsort Complex < Soup .

op __ : Soup Soup -> Soup [assoc comm] .

op cell{_{_}} : Soup Soup -> Soup .

op nucl{_{_}} : Soup Soup -> Soup .

88

that is, soups are made up out of complexes, including individual proteins, by
means of the above binary “soup union” operator (with juxtaposition syntax)
that combines two soups into a bigger soup. This union operator models the
fluid nature of soups by obeying associative and commutative laws. A cell is then
a structured soup, composed by the above cell operator out of two subsoups,
namely the soup in the membrane, and that inside the membrane; but this
second soup is itself also structured by the cytoplasm and the nucleus. Finally,
the nucleus itself is made up of two soups, namely that in the nucleus membrane,
and that inside the nucleus, which are composed using the above nucl operator.
Then, the following expression gives a partial description of a cell:

cell{cm (Ras : GTP) {cyto

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3)

nucl{nm{n}}}}

where cm denotes the rest of the soup in the cell membrane, cyto denotes the
rest of the soup in the cytoplasm, and nm and n likewise denote the remaining
soups in the nucleus membrane and inside the nucleus.

Once we have cell states defined as elements of an algebraic data type spec-
ified by (Σ, E), the only missing information has to do with cell dynamics, that
is, with its biochemical reactions. They can be modeled by suitable rewrite
rules R, giving us a full model (Σ, E,R). Consider, for example, the following
reaction described in a survey by Kolch [271]:

Raf-1 resides in the cytosol, tied into an inactive state by the binding
of a 14-3-3 dimer to phosphoserine-259 and -621. When activation
ensues, Ras-GTP binding [. . .] brings Raf-1 to the membrane.

We can model this reaction by the following rewrite rule:

rl[10]: {CM (Ras : GTP) {CY

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3) }}

=>

{CM ((Ras : GTP) :

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3))

{CY}} .

where CM and CY are variables of sort Soup, representing, respectively, the rest of
the soup in the cell membrane, and the rest of the soup inside the cell (including
the nucleus). Note that in the new state of the cell represented by the righthand
side of the rule, the complex has indeed migrated to the membrane.

Given a type of cell specified as a rewrite theory (Σ, E,R), rewriting logic
then allows us to reason about the complex changes that are possible in the sys-
tem, given the basic changes specified by R. That is, we can then use (Σ, E,R)
together with Maude and its supporting formal tools to simulate, study, and an-
alyze cell dynamics. In particular, we can study in this way biological pathways,
that is, complex processes involving chains of biological reactions and leading
to important cell changes. In particular we can:

89

• observe progress in time of the cell state by symbolic simulation, obtaining
a corresponding trace;

• answer questions of reachability from a given cell state to another state
satisfying some property; this can be done both forwards and backwards;

• answer more complex questions by model checking LTL properties; and

• do meta-analysis of proposed models of the cell to weed out spurious
conjectures and to identify consequences of a given model that could be
settled by experimentation.

Since the first paper in this direction [173], on which the above summary is
based, this line of research has been vigorously advanced by the Pathway Logic
(PL) team of computer scientists and molecular biologists at SRI led by Car-
olyn Talcott [174, 448, 446, 447, 443, 442, 2, 455, 445, 454] (for a good overview,
see Talcott’s tutorial [445]). The PL researchers have used rewriting logic to
develop sophisticated analyses of cell behavior in biological pathways, and have
built useful notations and visualization tools, such as the Pathway Logic Assis-
tant [446], that can represent the Maude-based analyses in forms more familiar
to biologists. The papers [448, 447] contain good discussions of related work in
this area, using other formalisms, such as Petri nets or process calculi, that can
also be understood as particular rewrite theories; and show how cell behavior
can be modeled with rewrite rules and can be analyzed at different levels of ab-
straction, and even across such levels. A very exciting more recent development
is the use of several probabilistic rewriting methods to model cell behaviors as
stochastic hybrid systems [2]. Yet another very exciting development is the use
of rewriting logic in neuroinformatics, at a much higher level of abstraction than
that of reactions in molecular biology. What are now modeled are neural sys-
tems, with neurons as objects, in the object-oriented sense, plus what might be
called “wiring information” about neuron interconnections. Changes in neuron
states due to firings are then described by rewrite rules. A Maude model of
the neural system responsible for the feeding behavior of the marine mollusk
Aplysia has been used to model quite accurately Aplysia’s neural behavior in a
way consistent with other studies [2]; furthermore, using symbolic model check-
ing, more ambitious properties of Aplysia’s neural behavior have been verified
in [454]. In general, one of the important contributions of the PL project is the
combination of various modeling and analysis techniques to model biological
systems; in addition to all the already-mentioned techniques, SAT-solving is yet
one more weapon in PL’s arsenal [455].

The PL research has stimulated the use of rewriting logic and Maude by other
bioinformatics researchers. For example, M.G. Sriram has used Maude to model
protein functional domains in signal transduction, and to obtain testable hy-
potheses at various levels of abstraction [426], and, my UIUC colleague Thomas
Anastasio has used Maude to analyze and obtain useful hypotheses about bio-
logical pathways whose malfunction is related to Alzheimer’s disease [27].

90

Although the research by O. Andrei and H. Kirchner in [30] makes also
valuable contributions to the bioinformatics applications of rewriting logic, I
discuss it in the next section because of its similarities with other work on
chemical systems.

7.6.2. Chemical Systems
The already-mentioned fact that the chemical notation for a reaction like

AB → C D is a rewriting notation suggests that rewrite theories can be used
to symbolically model not just cell biology but any chemical systems, with
the reactions modeled as rewrite rules. This is exactly the research approach
taken by O. Bournez et al. in [73], and further developed by O. Bournez, L.
Ibanescu and H. Kirchner in [75], and by O. Andrei, L. Ibanescu and H. Kirchner
in [29]. This research makes a number of novel contributions. First of all,
it emphasizes the fact that chemical compounds are graphs, so that chemical
reactions can be more properly modeled as graph rewrite rules. Second, it
identifies an appropriate term representation for chemical graphs so that: (i)
equivalent representations can be effectively identified; (ii) “soups” of different
chemical compounds can be represented as multisets by an AC operator; and (iii)
the graph rewriting modeling of chemical reactions can be faithfully represented
as term rewriting modulo AC. In particular, the paper [75] provides a detailed
study of this dual graph/term representation and proves the faithfulness of the
associated term rewriting in capturing the desired graph rewriting. A third
contribution is the use of strategies to characterize chemical processes, which
do not correspond to arbitrary sequences of rewrites, but have to obey certain
dynamic constraints. A fourth contribution is the implementation of all these
ideas in the GasEl system, first implemented in ELAN in [73], but subsequently
implemented in TOM for enhanced efficiency, as reported in [29].

The already-mentioned work by O. Andrei and H. Kirchner in [30], al-
though belonging to the more specific area of biochemistry and bioinformatics
applications—indeed, to the modeling of biochemical networks—has some simi-
larities with the just-mentioned work on chemical modeling, but makes different
contributions. It models the molecular complexes appearing in cell biology as
labeled multigraphs with ports, with molecules represented as nodes, sites as
ports, and bonds as edges. Biochemical reactions are then modeled as graph
transformation rules and biochemical networks are finally modeled as strate-
gies which express the appropriate control between the different reactions and
the dynamic evolution of molecular complexes. In analogy with [75], careful
attention is paid to finding a faithful term representation, that is, a faithful
representation as an (order-sorted) rewrite theory of the corresponding graphs
and graph transformation rules associated to a given biochemical network. A
biochemical calculus where rules and strategies are port graphs has been defined
and applied to autonomic computing in [31].

7.6.3. Membrane Systems
Transfer of ideas can sometimes go in both directions. Not only can rewriting

logic provide formal models for cell biology and bioinformatics, but chemical

91

and biological metaphors may suggest models of computation. Indeed, chemical
metaphors understood as multiset rewriting—so that a multiset of entities is
visualized as a chemical “soup,” and atomic computation steps as chemical
reactions—go back to the Gamma model of computation of J.-P. Banâtre and
D. Le Mètayer [47], which inspired the Chemical Abstract Machine (CHAM) of
G. Berry and G. Boudol [55]. A further development of this line of research has
been the study of membrane systems in the sense of O. Andrei, G. Ciobanu, and
D. Lucanu [28], who base their ideas on the cell-inspired proposal of membrane
computing by Gh. Paun [382]. The basic idea is that membrane systems are
hierarchical systems consisting of nested cells, each surrounded by a membrane
enclosing a multiset of elements, which may include other cells. This bears
some similarities to the Meseguer-Talcott “Russian dolls” model of distributed
object-oriented reflection [338] already mentioned in Section 7.2.4. Another
important idea is that rules describing local changes in a membrane system have
priorities, and that maximal parallelism is the desired model of computation. A
careful study of all these issues within the rewriting logic framework has been
presented in [28]. The issue of maximal parallelism using the idea of “promoters
and inhibitors” is further studied by O. Agrigoraei and G. Ciobanu in [6]. Of
course, since rules in membrane systems have priorities and should fire with
maximal parallelism, not all rewriting computations are desirable; this leads
to the issue of characterizing membrane computations by appropriate rewriting
strategies, a topic studied by O. Andrei and D. Lucanu in [32], and by D. Lucanu
in [288].

8. Some Future Research Directions

Of course, all the research areas already discussed are promising future di-
rections. The question is rather, which new or recent areas seem most in need
of development and look particularly promising? Answers to such questions are
necessarily subjective, and can only be guesses. In fact, the emergence of other
areas which one has not anticipated should be a cause for rejoicement. With
that said, here are some directions I think need development and are promising:

1. Rewriting logic as a new paradigm for declarative concurrent program-
ming, as well as new multicore and distributed rewriting logic language
implementations. Everybody agrees that concurrent and distributed pro-
gramming are at present quite difficult and messy. What most people
fail to realize is that this is not an intrinsic necessity: programming con-
current systems in a declarative way can be simpler than programming
a sequential system in a conventional, imperative way. At the sequential
implementation level, the great simplicity of rewrite rules as a program-
ming paradigm has been amply demonstrated; what now is needed is to
develop efficient concurrent implementations of rewriting languages that
show in practice their intrinsic superiority over conventional concurrent
programming languages.

92

2. Advancing the rewriting logic semantics project, including future advances
in K, matching logic, and compiler generation from language definitions.
The advances in this area have already been quite impressive: it has al-
ready been shown that this approach can scale up to produce full exe-
cutable semantics for entire languages like C or Java, and that a wide
range of semantics-based tools can then be derived from such formal def-
initions. But more ambitious goals lie ahead such as, for example: (i)
language-generic program verifiers; (ii) language-generic static analysis
tools; (iii) more efficient language-generic model checkers; and (iv) effi-
cient language-generic compilers; where in all such cases those meta-tools
would be instantiated to specific languages by providing a rewriting logic
definition of the given language.

3. Embedded and cyber-physical systems, including safety verification and
correct-by-construction code generation. Further research in formal pat-
terns such as PALS that can greatly simplify the design and verification of
safety properties for cyber-physical systems seems very promising to tame
the many complexities involved. New formal verification methods are also
needed. But this still leaves open the additional challenge of deriving
correct-by-construction real-time implementations from formal rewriting
logic specifications.

4. Deductive and symbolic verification methods for rewrite theories, including
narrowing-based methods, their combination with SMT solving, deductive
temporal logic verification, and inductive proof methods. Symbolic meth-
ods can bring theorem proving and model checking verification so close to
each other that it will be difficult to classify some tools as either model
checkers or theorem provers. Furthermore, they can be naturally com-
bined with temporal logic and inductive reasoning. New proof techniques,
new algorithms, and new tool implementations are needed to make all
this happen. The great advantage of developing them for suitable classes
of rewrite theories is that they will be highly generic, so that they can
be amortized over many different instance languages and application do-
mains.

5. New verification methods and tools for probabilistic rewrite theories, in-
cluding languages, verification methods, and tools. This area is still rela-
tively undeveloped, yet quite promising advances have already been made.
A PMaude implementation should be developed in the near future. New,
probabilisitc model checkers complementing the already exisiting statisti-
cal model checkers should also be developed. And a more intimate inte-
gration between probabilisitc and real-time systems, including stochastic
hybrid systems, should be sought.

9. Conclusions

In the introduction I raised the following questions about rewriting logic:

93

• How well-developed are its mathematical foundations?

• To what extent have its goals as a semantic framework for concurrency,
and as a logical framework, been achieved?

• Which languages and tools supporting rewriting logic programming, spec-
ification, and verification have been developed?

• In which application areas has it been shown useful?

• What do its future prospects look like?

I believe that I have given quite extensive answers to all these questions,
except perhaps for a briefer treatment of the last one on future prospects. The
foundations are in my mind rock-solid. At this point the wide range of mod-
els of concurrency and of logics that have been naturally expressed within the
rewriting logic framework provides overwhelming evidence that it is a very suit-
able framework. The languages supporting rewriting logic are mature, provide
many features, and are furthermore still growing. The spectrum of formal tools
is quite adequate, although more advances are and will be happening. And the
range of applications is quide wide and exciting. I think some of us will be busy
pushing the envelope for years to come; and I hope this survey will encourage
other researchers to use rewriting logic in their own work and to make new
contributions.
Acknowledgements. I thank the organizers of WRLA 2010 for giving me the oppor-

tunity and the stimulus to do some reflecting, surveying, and guessing about rewriting

logic at this point, when twenty years have passed since the first papers were published,

for their further encouragement to turn my WRLA lecture into a survey paper, and for

their patience in allowing me the necessary time to finish it. As already mentioned, I

feel a debt of gratitude to the many gifted researchers who have made important con-

tributions to the rewriting logic research program. I have benefitted from very helpful

comments to improve the exposition by the referees and by Francisco Durán, Santiago

Escobar, Maribel Fernández, Kokichi Futatsugi, Alwyn Goodloe, Hélène Kirchner, Al-

berto Lluch, Narciso Mart́ı-Oliet, Peter Ölveczky, Miguel Palomino, Camilo Rocha,

Carolyn Talcott, Cesare Tinelli and Alberto Verdejo (I apologize if I inadvertedly

omitted anybody). This work has been supported in part by NSF Grants CNS 07-

16638, CNS 08-34709, CNS 08-31064, CNS 09-04749, and CCF 09-05584, AFOSR

Grant FA8750-11-2-0084, and the “Programa de Apoyo a la Investigación y Desar-

rollo” (PAID-02-11) of the Universitat Politècnica de València.

References

[1] A. Aziz, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. It usually
works: The temporal logic of stochastic systems. In P. Wolper, editor, 7th
International Conference On Computer Aided Verification, volume 939, pages
155–165, Liege, Belgium, 1995. Springer Verlag.

94

[2] A. Abate, Y. Bai, N. Sznajder, C. L. Talcott, and A. Tiwari. Quantitative and
probabilistic modeling in pathway logic. In M. M. Zhu, Y. Zhang, H. R. Arabnia,
and Y. Deng, editors, Proceedings of the 7th IEEE International Conference
on Bioinformatics and Bioengineering, BIBE 2007, Harvard Medical School,
Boston, MA, USA, October 14-17, 2007, pages 922–929. IEEE, 2007.

[3] G. Agha. Actors. MIT Press, 1986.

[4] G. A. Agha, M. Greenwald, C. A. Gunter, S. Khanna, J. Meseguer, K. Sen,
and P. Thati. Formal modeling and analysis of DoS using probabilistic rewrite
theories. In A. Sabelfeld, editor, Proceedings of the Workshop on Foundations
of Computer Security, FCS’05, (Affiliated with LICS’05), Chicago, IL, June
30-July 1, 2005, pages 91–102, 2005.

[5] G. A. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification
language for probabilistic object systems. In A. Cerone and H. Wiklicky, ed-
itors, Proceedings of the Third Workshop on Quantitative Aspects of Program-
ming Languages, QAPL 2005, Edinburgh, UK, April 2-3, 2005, volume 153(2)
of Electronic Notes in Theoretical Computer Science, pages 213–239. Elsevier,
2006.

[6] O. Agrigoroaiei and G. Ciobanu. Rewriting logic specification of membrane
systems with promoters and inhibitors. In Roşu [403], pages 5–22.

[7] W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation
rules for Java verification against a rewriting semantics. In G. Sutcliffe and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer
Science, pages 412–426. Springer, 2005.

[8] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs. Inf.
Comput., 208(8):922–968, 2010.

[9] B. Alarcón, R. Gutiérrez, S. Lucas, and R. Navarro-Marset. Proving termination
properties with MU-TERM. In Johnson and Pavlovic [246], pages 201–208.

[10] B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework for A∨C-
termination. In Ölveczky [362], pages 35–51.

[11] M. Alba-Castro, M. Alpuente, and S. Escobar. Abstract certification of global
non-interference in rewriting logic. In M. Leuschel, S. Hallerstede, F. de Boer,
and M. Bonsangue, editors, Formal Methods for Components and Objects, 8th
International Symposium, FMCO 2009, Eindhoven, The Netherlands, November
4-6, 2009, Revised Selected Papers, volume 6286 of Lecture Notes in Computer
Science, pages 105–124. Springer, 2010.

[12] M. Alba-Castro, M. Alpuente, and S. Escobar. Approximating non-interference
and erasure in rewriting logic. In T. Ida, editor, Proceedings of the 12th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing, SYNASC 2010, Timisoara, Romania, September 23-26, 2010, pages 124–
132. IEEE Computer Society, 2010.

95

[13] A. Albarrán, F. Durán, and A. Vallecillo. From Maude specifications to SOAP
distributed implementations: A smooth transition. In O. Dı́az, A. Illarramendi,
and M. Piattini, editors, Actas de las VI Jornadas de Ingenieŕıa del Software
y Bases de Datos, JISBD 2001, Almagro (Ciudad Real), España, Noviembre
21-23, 2001, pages 419–434, 2001.

[14] A. Albarrán, F. Durán, and A. Vallecillo. Maude meets CORBA. In G. Fernan-
dez and C. Pons, editors, Proceedings of the Second Argentine Symposium on
Software Engineering, ASSE 2001, Buenos Aires, Argentina, September 10-11,
2001, 2001.

[15] M. Alpuente, D. Ballis, and D. Romero. Specification and verification of web
applications in rewriting logic. In A. Cavalcanti and D. Dams, editors, FM
2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands,
November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer
Science, pages 790–805. Springer, 2009.

[16] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. A modular equational
generalization algorithm. In M. Hanus, editor, Logic-Based Program Synthesis
and Transformation, 18th International Symposium, LOPSTR 2008, Valencia,
Spain, July 17-18, 2008, Revised Selected Papers, volume 5438 of Lecture Notes
in Computer Science, pages 24–39. Springer, 2009.

[17] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. Order-sorted generaliza-
tion. In M. Falaschi, editor, Proceedings of the 17th International Workshop
on Functional and (Constraint) Logic Programming, WFLP 2008, Siena, Italy,
July 3-4, 2008, volume 246 of Electronic Notes in Theoretical Computer Science,
pages 27–38. Elsevier, 2009.

[18] M. AlTurki. Rewriting-based formal modeling, analysis and implementation of
real-time distributed services. PhD thesis, University of Illinois at Urbana-
Champaign, 2011. http://hdl.handle.net/2142/26231.

[19] M. AlTurki, D. Dhurjati, D. Yu, A. Chander, and H. Inamura. Formal speci-
fication and analysis of timing properties in software systems. In Chechik and
Wirsing [90], pages 262–277.

[20] M. AlTurki and J. Meseguer. Real-time rewriting semantics of Orc. In Leuschel
and Podelski [284], pages 131–142.

[21] M. AlTurki and J. Meseguer. Reduction semantics and formal analysis of Orc
programs. In D. Ballis, S. Escobar, and M. Marchiori, editors, Proceedings of
the 3rd International Workshop on Automated Specification and Verification of
Web Systems, WWV 2007, Venice, Italy, December 14, 2007, volume 200(3) of
Electronic Notes in Theoretical Computer Science, pages 25–41. Elsevier, 2008.

[22] M. AlTurki and J. Meseguer. Dist-Orc: A rewriting-based distributed imple-
mentation of Orc with formal analysis. In Ölveczky [361], pages 26–45.

[23] M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and
quantitative analysis tool. In Corradini et al. [124], pages 386–392.

96

[24] M. AlTurki, J. Meseguer, and C. A. Gunter. Probabilistic modeling and analysis
of DoS protection for the ASV protocol. In Dougherty and Escobar [144], pages
3–18.

[25] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time systems.
In LICS’90, pages 414–425. IEEE, 1990.

[26] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[27] T. J. Anastasio. Data-driven modeling of Alzheimer disease pathogenesis. Jour-
nal of Theoretical Biology, 290:60–72, 2011.

[28] O. Andrei, G. Ciobanu, and D. Lucanu. A rewriting logic framework for
operational semantics of membrane systems. Theoretical Computer Science,
373(3):163–181, 2007.

[29] O. Andrei, L. Ibănescu, and H. Kirchner. Non-intrusive formal methods and
strategic rewriting for a chemical application. In K. Futatsugi, J.-P. Jouannaud,
and J. Meseguer, editors, Algebra, Meaning, and Computation, Essays Dedicated
to Joseph A. Goguen on the Occasion of His 65th Birthday, volume 4060 of
Lecture Notes in Computer Science, pages 194–215. Springer, 2006.

[30] O. Andrei and H. Kirchner. Graph rewriting and strategies for modeling bio-
chemical networks. In V. Negru, T. Jebelean, D. Petcu, and D. Zaharie, ed-
itors, Proceedings of the Ninth International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC 2007, Timisoara, Roma-
nia, September 26-29, 2007, pages 407–414. IEEE Computer Society, 2007.

[31] O. Andrei and H. Kirchner. A port graph calculus for autonomic computing and
invariant verification. Electr. Notes Theor. Comput. Sci., 253(4):17–38, 2009.

[32] O. Andrei and D. Lucanu. Strategy-based proof calculus for membrane systems.
In Roşu [403], pages 23–43.

[33] N. Aoumeur and G. Saake. Integrating and rapid-prototyping UML structural
and behavioural diagrams using rewriting logic. In A. B. Pidduck, J. Mylopoulos,
C. C. Woo, and M. T. Özsu, editors, Advanced Information Systems Engineer-
ing, 14th International Conference, CAiSE 2002, Toronto, Canada, May 27-31,
2002, Proceedings, volume 2348 of Lecture Notes in Computer Science, pages
296–310. Springer, 2002.

[34] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda calculus
to implement formal systems on a machine. Journal of Automated Reasoning,
9(3):309–354, December 1992.

[35] F. Baader, editor. Term Rewriting and Applications, 18th International Confer-
ence, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume 4533 of
Lecture Notes in Computer Science. Springer, 2007.

[36] M. Backes and P. Ning, editors. Computer Security - ESORICS 2009, 14th
European Symposium on Research in Computer Security, Saint-Malo, France,
September 21-23, 2009. Proceedings, volume 5789 of Lecture Notes in Computer
Science. Springer, 2009.

97

[37] K. Bae and J. Meseguer. A rewriting-based model checker for the temporal logic
of rewriting. In Kniesel and Pinto [270], pages 46–60.

[38] K. Bae and J. Meseguer. The linear temporal logic of rewriting Maude model
checker. In Ölveczky [362], pages 208–225.

[39] K. Bae and J. Meseguer. State/event-based LTL model checking under paramet-
ric generalized fairness. In G. Gopalakrishnan and S. Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 132–148. Springer, 2011.

[40] K. Bae and P. C. Ölveczky. Extending the Real-Time Maude semantics of
Ptolemy to hierarchical DE models. In Ölveczky [361], pages 46–66.

[41] K. Bae, P. C. Ölveczky, A. Al-Nayeem, and J. Meseguer. Synchronous AADL
and its formal analysis in Real-Time Maude. Technical report, Department of
Computer Science, University of Illinois at Urbana-Champaign, 2011.

[42] K. Bae, P. C. Ölveczky, T. H. Feng, and S. Tripakis. Verifying Ptolemy II
discrete-event models using Real-Time Maude. In K. Breitman and A. Caval-
canti, editors, Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings, volume 5885 of Lecture Notes in Com-
puter Science, pages 717–736. Springer, 2009.

[43] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time markov chains. In CONCUR’99, volume 1664 of LNCS, pages
146–161. Springer, 1999.

[44] H. Baker and C. Hewitt. Laws for communicating parallel processes. In Pro-
ceedings of the 1977 IFIP Congress, pages 987–992. IFIP Press, 1977.

[45] P. Baldan, C. Bertolissi, H. Cirstea, and C. Kirchner. A rewriting calculus for
cyclic higher-order term graphs. Mathematical Structures in Computer Science,
17(3):363–406, 2007.

[46] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom: Piggy-
backing rewriting on Java. In Baader [35], pages 36–47.

[47] J.-P. Banâtre and D. L. Mètayer. The Gamma model and its discipline of pro-
gramming. Science of Computer Programming, 15:55–77, 1990.

[48] S. Barker and M. Fernández. Term rewriting for access control. In E. Damiani
and P. Liu, editors, DBSec, volume 4127 of Lecture Notes in Computer Science,
pages 179–193. Springer, 2006.

[49] G. Barthe and F. S. de Boer, editors. Formal Methods for Open Object-Based
Distributed Systems, 10th IFIP WG 6.1 International Conference, FMOODS
2008, Oslo, Norway, June 4-6, 2008, Proceedings, volume 5051 of Lecture Notes
in Computer Science. Springer, 2008.

[50] D. Basin, M. Clavel, and J. Meseguer. Reflective metalogical frameworks. ACM
Transactions on Computational Logic, 5(3):528–576, 2004.

98

[51] D. A. Basin and R. L. Constable. Metalogical frameworks. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 1–29. Cambridge University
Press, 1993.

[52] E. Beffara, O. Bournez, H. Kacem, and C. Kirchner. Verification of timed au-
tomata using rewrite rules and strategies. In N. Dershowitz and A. Frank,
editors, Proceedings of the Seventh Biennial Bar-Ilan International Symposium
on the Foundations of Artificial Intelligence, BISFAI 2001, Ramat-Gan, Israel,
June 25-27, 2001. Computing Research Repository (CoRR), 2001.

[53] S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus
of constructions and other systems in Barendregt’s cube. Technical Report,
Carnegie-Mellon University and Università di Torino, 1988.

[54] J. Bergstra and J. Tucker. Characterization of computable data types by means
of a finite equational specification method. In J. W. de Bakker and J. van
Leeuwen, editors, Automata, Languages and Programming, Seventh Colloquium,
pages 76–90. Springer-Verlag, 1980. LNCS, Volume 81.

[55] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.

[56] C. Bertolissi, H. Cirstea, and C. Kirchner. Translating combinatory reduction
systems into the rewriting calculus. In J.-L. Giavitto and P.-E. Moreau, ed-
itors, Proceedings of the 4th International Workshop on Rule-Based Program-
ming, RULE 2003, Valencia, Spain, June 9, 2003, volume 86(2) of Electronic
Notes in Theoretical Computer Science, pages 28–44. Elsevier, 2003.

[57] E. Best and R. Devillers. Sequential and concurrent behavior in Petri net theory.
Theoretical Computer Science, 55:87–136, 1989.

[58] J. Bjørk, E. B. Johnsen, O. Owe, and R. Schlatte. Lightweight time modeling
in timed Creol. In Ölveczky [361], pages 67–81.

[59] M. M. Bonsangue and E. B. Johnsen, editors. Formal Methods for Open
Object-Based Distributed Systems, 9th IFIP WG 6.1 International Conference,
FMOODS 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings, volume 4468 of
Lecture Notes in Computer Science. Springer, 2007.

[60] A. Boronat. MOMENT: A Formal Framework for MOdel ManageMENT. PhD
thesis, Universitat Politècnica de València, Spain, 2007.

[61] A. Boronat, J. A. Carśı, and I. Ramos. Automatic reengineering in MDA using
rewriting logic as transformation engine. In N. Gold and T. Systä, editors, Pro-
ceedings of the 9th European Conference on Software Maintenance and Reengi-
neering, CSMR 2005, Manchester, UK, March 21-23, 2005, Proceedings, pages
228–231. IEEE Computer Society, 2005.

[62] A. Boronat, R. Heckel, and J. Meseguer. Rewriting logic semantics and verifi-
cation of model transformations. In Chechik and Wirsing [90], pages 18–33.

[63] A. Boronat, A. Knapp, J. Meseguer, and M. Wirsing. What is a multi-modeling
language? In Corradini and Montanari [125], pages 71–87.

99

[64] A. Boronat and J. Meseguer. Algebraic semantics of OCL-constrained meta-
model specifications. In M. Oriol and B. Meyer, editors, Objects, Components,
Models and Patterns, 47th International Conference, TOOLS EUROPE 2009,
Zurich, Switzerland, June 29-July 3, 2009. Proceedings, volume 33 of Lecture
Notes in Business Information Processing, pages 96–115. Springer, 2009.

[65] A. Boronat and J. Meseguer. MOMENT2: EMF model transformations in
Maude. In A. Vallecillo and G. Sagardui, editors, Actas de las XIV Jornadas de
Ingenieŕıa del Software y Bases de Datos, JISBD 2009, San Sebastián, España,
Septiembre 8-11, 2009, pages 178–179, 2009.

[66] A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal Aspects
of Computing, 22(3-4):269–296, 2010.

[67] A. Boronat and P. C. Ölveczky. Formal real-time model transformations in
MOMENT2. In D. S. Rosenblum and G. Taentzer, editors, Fundamental Ap-
proaches to Software Engineering, 13th International Conference, FASE 2010,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume
6013 of Lecture Notes in Computer Science, pages 29–43. Springer, 2010.

[68] P. Borovanský and C. Castro. Cooperation of constraint solvers: Using the new
process control facilities of ELAN. In Kirchner and Kirchner [262], pages 1–20.

[69] P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
Q.-H. Nguyen, C. Ringeissen, and M. Vittek. ELAN v 3.6 user manual. Technical
report, INRIA Lorraine & LORIA, Nancy, France, Feb. 2004.

[70] P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a
rewriting logic point of view. Theoretical Computer Science, 285(2):155–185,
2002.

[71] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with
strategies in ELAN: A functional semantics. International Journal of Founda-
tions of Computer Science, 12(1):69–95, 2001.

[72] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236(1-2):35–132,
2000.

[73] O. Bournez, G.-M. Côme, V. Conraud, H. Kirchner, and L. Ibănescu. A rule-
based approach for automated generation of kinetic chemical mechanisms. In
Nieuwenhuis [355], pages 30–45.

[74] O. Bournez and M. Hoyrup. Rewriting logic and probabilities. In Nieuwenhuis
[355], pages 61–75.

[75] O. Bournez, L. Ibănescu, and H. Kirchner. From chemical rules to term rewriting.
In H. Cirstea and N. Mart́ı-Oliet, editors, Proceedings of the 6th International
Workshop on Rule-Based Programming, RULE 2005, Nara, Japan, April 23,
2005, volume 147(1) of Electronic Notes in Theoretical Computer Science, pages
113–134. Elsevier, 2006.

100

[76] O. Bournez and C. Kirchner. Probabilistic rewrite strategies. Applications to
ELAN. In S. Tison, editor, Rewriting Techniques and Applications, 13th In-
ternational Conference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002,
Proceedings, volume 2378 of Lecture Notes in Computer Science, pages 252–266.
Springer, 2002.

[77] C. Braga and J. Meseguer. Modular rewriting semantics in practice. In Mart́ı-
Oliet [297], pages 393–416.

[78] R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD
thesis, Dipartimento di Informatica, Università di Pisa, 1999. Technical Report
TD-1/99.

[79] R. Bruni and J. Meseguer. Generalized rewrite theories. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Automata, Languages
and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The
Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes
in Computer Science, pages 252–266. Springer, 2003.

[80] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science, 360(1-3):386–414, 2006.

[81] R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic. Mathematical Structures
in Computer Science, 12(1):53–90, 2002.

[82] R. Bruni, J. Meseguer, and U. Montanari. Tiling transactions in rewriting logic.
In Gadducci and Montanari [205], pages 90–109.

[83] R. Bruni, U. Montanari, and J. Meseguer. Internal strategies in a rewriting
implementation of tile systems. In Kirchner and Kirchner [262], pages 263–284.

[84] G. Carabetta, P. Degano, and F. Gadducci. CCS semantics via proved transition
systems and rewriting logic. In Kirchner and Kirchner [262], pages 369–387.

[85] M. Casadei, L. Gardelli, and M. Viroli. Simulating emergent properties of coor-
dination in Maude: the collective sort case. In C. Canal and M. Viroli, editors,
Proceedings of the Fifth International Workshop on the Foundations of Coordina-
tion Languages and Software Architectures, FOCLASA 2006, Bonn, Germany,
August 31, 2006, volume 175(2) of Electronic Notes in Theoretical Computer
Science, pages 59–80. Elsevier, 2007.

[86] M. Casadei, A. Omicini, and M. Viroli. Prototyping A&A ReSpecT in Maude. In
C. Canal, P. Poizat, and M. Viroli, editors, Proceedings of the 6th International
Workshop on the Foundations of Coordination Languages and Software Archi-
tectures, FOCLASA 2007, Lisbon, Portugal, September 8, 2007, volume 194 of
Electronic Notes in Theoretical Computer Science, pages 93–109. Elsevier, 2008.

[87] I. Cervesato and M.-O. Stehr. Representing the MSR cryptoprotocol specifica-
tion language in an extension of rewriting logic with dependent types. Higher-
Order and Symbolic Computation, 20(1-2):3–35, 2007.

101

[88] R. Chadha, C. A. Gunter, J. Meseguer, R. Shankesi, and M. Viswanathan. Mod-
ular preservation of safety properties by cookie-based DoS-protection wrappers.
In Barthe and de Boer [49], pages 39–58.

[89] F. Chalub and C. Braga. Maude MSOS tool. In Denker and Talcott [139], pages
133–146.

[90] M. Chechik and M. Wirsing, editors. Fundamental Approaches to Software En-
gineering, 12th International Conference, FASE 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings, volume 5503 of Lecture Notes in Computer
Science. Springer, 2009.

[91] F. Chen, G. Roşu, and R. P. Venkatesan. Rule-based analysis of dimensional
safety. In Nieuwenhuis [355], pages 197–207.

[92] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang. A systematic ap-
proach to uncover security flaws in GUI logic. In B. Pfitzmann and P. McDaniel,
editors, Proceedings of the 2007 IEEE Symposium on Security and Privacy (S&P
2007), Oakland, California, USA, May 20-23, 2007, pages 71–85. IEEE Com-
puter Society, 2007.

[93] S. Chen, K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Formal reasoning of
various categories of widely exploited security vulnerabilities by pointer taint-
edness semantics. In Y. Deswarte, F. Cuppens, S. Jajodia, and L. Wang, edi-
tors, 19th International Information Security Conference, SEC 2004, Toulouse,
France, August 22-27, 2004, Proceedings, pages 83–100. Kluwer, 2004.

[94] H. Cirstea and C. Kirchner. Theorem proving using computational systems:
The case of the B predicate prover. Presented at CCL’97 Workshop, Schloss
Dagstuhl, Germany, Sept. 1997.

[95] H. Cirstea and C. Kirchner. Combining higher-order and first-order compu-
tations using ρ-calculus: Towards a semantics of ELAN. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems 2, Research Studies, pages
95–120. Wiley, 1999.

[96] H. Cirstea and C. Kirchner. The rewriting calculus – Part I. Logic Journal of
the IGPL, 9(3):363–399, 2001.

[97] H. Cirstea and C. Kirchner. The rewriting calculus – Part II. Logic Journal of
the IGPL, 9(3):401–434, 2001.

[98] H. Cirstea, C. Kirchner, and L. Liquori. The rho cube. In F. Honsell and M. Mic-
ulan, editors, Foundations of Software Science and Computation Structures, 4th
International Conference, FOSSACS 2001, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001, Genova, Italy,
April 2-6, 2001, Proceedings, volume 2030 of Lecture Notes in Computer Science,
pages 168–183. Springer, 2001.

[99] H. Cirstea, C. Kirchner, and L. Liquori. Rewriting calculus with(out) types. In
Gadducci and Montanari [205], pages 3–19.

102

[100] H. Cirstea, C. Kirchner, L. Liquori, and B. Wack. Rewrite strategies in the
rewriting calculus. In B. Gramlich and S. Lucas, editors, Proceedings of the 3rd
International Workshop on Reduction Strategies in Rewriting and Programming,
WRS 2003, Valencia, Spain, June 8, 2003, volume 86(4) of Electronic Notes in
Theoretical Computer Science, pages 593–624. Elsevier, 2003.

[101] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2001.

[102] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, 2000.

[103] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott. Unification and narrowing in Maude 2.4. In R. Treinen,
editor, Rewriting Techniques and Applications, 20th International Conference,
RTA 2009, Braśılia, Brazil, June 29-July 1, 2009, Proceedings, volume 5595 of
Lecture Notes in Computer Science, pages 380–390. Springer, 2009.

[104] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer.
Metalevel computation in Maude. In Kirchner and Kirchner [262], pages 331–
352.

[105] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

[106] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

[107] M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In Futatsugi et al. [203], pages 1–31.

[108] M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In Wing et al. [471], pages 1684–1703.

[109] M. Clavel, F. Durán, and N. Mart́ı-Oliet. Polytypic programming in Maude. In
Futatsugi [200], pages 339–360.

[110] M. Clavel and M. Egea. ITP/OCL: A rewriting-based validation tool for
UML+OCL static class diagrams. In Johnson and Vene [247], pages 368–373.

[111] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
Meseguer [317], pages 65–89.

[112] M. Clavel, N. Mart́ı-Oliet, and M. Palomino. Formalizing and proving semantic
relations between specifications by reflection. In Rattray et al. [389], pages 72–86.

[113] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
Meseguer [317], pages 126–148.

[114] M. Clavel and J. Meseguer. Internal strategies in a reflective logic. In B. Gramlich
and H. Kirchner, editors, Proceedings of the CADE-14 Workshop on Strategies
in Automated Deduction, pages 1–12, Townsville, Australia, 1997.

103

[115] M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285(2):245–288, 2002.

[116] M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, Horn logic with equality, and rewriting logic.
Theoretical Computer Science, 373(1-2):70–91, 2007.

[117] M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial.
Journal of Universal Computer Science, 12(11):1618–1650, 2006.

[118] M. Clavel and J. Santa-Cruz. ASIP + ITP: A verification tool based on alge-
braic semantics. In F. J. López-Fraguas, editor, Actas de las V Jornadas sobre
Programación y Lenguajes, PROLE 2005, Granada, España, Septiembre 14-16,
2005, pages 149–158. Thomson, 2005.

[119] W. Clinger. Foundations of actor semantics. Technical report AI-TR-633, Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory, 1981.

[120] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. Release October, 12th 2007.

[121] H. Comon-Lundth and S. Delaune. The finite variant property: how to get rid
of some algebraic properties. In Proc RTA’05, Springer LNCS 3467, 294–307,
2005.

[122] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95–120, 1988.

[123] A. Corradini, F. Gadducci, and U. Montanari. Relating two categorial models
of term rewriting. In Hsiang [243], pages 225–240.

[124] A. Corradini, B. Klin, and C. Ĉırstea, editors. Algebra and Coalgebra in Com-
puter Science - 4th International Conference, CALCO 2011, Winchester, UK,
August 30 - September 2, 2011. Proceedings, volume 6859 of Lecture Notes in
Computer Science. Springer, 2011.

[125] A. Corradini and U. Montanari, editors. Recent Trends in Algebraic Development
Techniques, 19th International Workshop, WADT 2008, Pisa, Italy, June 13-
16, 2008, Revised Selected Papers, volume 5486 of Lecture Notes in Computer
Science. Springer, 2009.

[126] A. S. de Oliveira. Rewriting-based access control policies. Electr. Notes Theor.
Comput. Sci., 171(4):59–72, 2007.

[127] A. S. de Oliveira, E. K. Wang, C. Kirchner, and H. Kirchner. Weaving rewrite-
based access control policies. In P. Ning, V. Atluri, V. D. Gligor, and H. Mantel,
editors, Proceedings of the 2007 ACM workshop on Formal methods in security
engineering, FMSE 2007, Fairfax, VA, USA, November 2, 2007, pages 71–80.
ACM, 2007.

[128] P. Degano, F. Gadducci, and C. Priami. A causal semantics for CCS via rewriting
logic. Theoretical Computer Science, 275(1-2):259–282, 2002.

104

[129] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net
computations and processes. Acta Informatica, 33:641–667, 1996.

[130] P. Degano and C. Priami. Proved trees. In Proc. ICALP’92, pages 629–640.
Springer LNCS 623, 1992.

[131] G. Denker, J. J. Garćıa-Luna-Aceves, J. Meseguer, P. C. Ölveczky, J. Raju,
B. Smith, and C. L. Talcott. Specification and analysis of a reliable broadcasting
protocol in Maude. In B. Hajek and R. S. Sreenivas, editors, Proceedings of the
37th Allerton Conference on Communication, Control and Computation, pages
738–747. University of Illinois, 1999.

[132] G. Denker, J. Meseguer, and C. L. Talcott. Protocol specification and analysis
in Maude. In N. Heintze and J. Wing, editors, Proceedings of the Workshop on
Formal Methods and Security Protocols, FMSP’98, Indianapolis, Indiana, June
25, 1998, 1998.

[133] G. Denker, J. Meseguer, and C. L. Talcott. Formal specification and analysis of
active networks and communication protocols: The Maude experience. In Koob
et al. [272], pages 251–265.

[134] G. Denker, J. Meseguer, and C. L. Talcott. Rewriting semantics of meta-objects
and composable distributed services. In Futatsugi [200], pages 405–425.

[135] G. Denker and J. Millen. CAPSL and CIL language design: A common authen-
tication protocol specification language and its intermediate language. Technical
Report SRI-CSL-99-02, Computer Science Laboratory, SRI International, 1999.

[136] G. Denker and J. Millen. CAPSL intermediate language. In N. Heintze and
E. Clarke, editors, Proceedings of the Workshop on Formal Methods and Security
Protocols, FMSP’99, Trento, Italy, July 5, 1999, 1999.

[137] G. Denker and J. Millen. CAPSL integrated protocol environment. In Koob
et al. [272], pages 207–222.

[138] G. Denker and J. Millen. The CAPSL integrated protocol environment. Techni-
cal Report SRI-CSL-2000-02, Computer Science Laboratory, SRI International,
2000.

[139] G. Denker and C. Talcott, editors. Proceedings of the Sixth International Work-
shop on Rewriting Logic and its Applications, WRLA 2006, Vienna, Austria,
April 1-2, 2006, volume 176(4) of Electronic Notes in Theoretical Computer
Science. Elsevier, 2007.

[140] E. Deplagne, C. Kirchner, H. Kirchner, and Q. H. Nguyen. Proof search and
proof check for equational and inductive theorems. In F. Baader, editor, Au-
tomated Deduction - CADE-19, 19th International Conference on Automated
Deduction Miami Beach, FL, USA, July 28-August 2, 2003, Proceedings, vol-
ume 2741 of Lecture Notes in Computer Science, pages 297–316. Springer, 2003.

[141] R. Diaconescu and K. Futatsugi. CafeOBJ Report. The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification, volume 6
of AMAST Series in Computing. World Scientific, 1998.

105

[142] H. Ding, C. Zheng, G. Agha, and L. Sha. Automated verification of the depend-
ability of object-oriented real-time systems. In Proceedings of the 9th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems (WORDS
2003 Fall), Anacapri (Capri Island), Italy, October 1–3, 2003, pages 171–178.
IEEE Computer Society, 2004.

[143] J. S. Dong and H. Zhu, editors. Formal Methods and Software Engineering -
12th International Conference on Formal Engineering Methods, ICFEM 2010,
Shanghai, China, November 17-19, 2010, Proceedings, volume 6447 of Lecture
Notes in Computer Science. Springer, 2010.

[144] D. J. Dougherty and S. Escobar, editors. Proceedings of the Third International
Workshop on Security and Rewriting Techniques, SecReT 2008, Pittsburgh, PA,
USA, June 22, 2008, volume 234 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2009.

[145] D. J. Dougherty, C. Kirchner, H. Kirchner, and A. S. de Oliveira. Modular access
control via strategic rewriting. In J. Biskup and J. Lopez, editors, Computer
Security - ESORICS 2007, 12th European Symposium On Research In Computer
Security, Dresden, Germany, September 24-26, 2007, Proceedings, volume 4734
of Lecture Notes in Computer Science, pages 578–593. Springer, 2007.

[146] G. Dowek, T. Hardin, and C. Kirchner. Higher order unification via explicit
substitutions. Information and Computation, 157(1-2):183–235, 2000.

[147] G. Dowek, T. Hardin, and C. Kirchner. HOL-λσ: An intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science,
11(1):21–45, 2001.

[148] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Journal of
Automated Reasoning, 31(1):33–72, 2003.

[149] G. Dowek, C. Muñoz, and C. Rocha. Rewriting logic semantics of a plan exe-
cution language. In B. Klin and P. Sobociński, editors, Proceedings of the Sixth
Workshop on Structural Operational Semantics, SOS 2009, Bologna, Italy, Au-
gust 31, 2009, volume 18 of Electronic Proceedings in Theoretical Computer
Science, pages 77–91, 2010.

[150] F. Durán. A Reflective Module Algebra with Applications to the Maude Language.
PhD thesis, Universidad de Málaga, Spain, June 1999.

[151] F. Durán. The extensibility of Maude’s module algebra. In T. Rus, editor,
Algebraic Methodology and Software Technology. 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, May 20-27, 2000, Proceedings, volume
1816 of Lecture Notes in Computer Science, pages 422–437. Springer, 2000.

[152] F. Durán, S. Eker, S. Escobar, J. Meseguer, and C. L. Talcott. Variants, uni-
fication, narrowing, and symbolic reachability in Maude 2.6. In M. Schmidt-
Schauß, editor, Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications, RTA 2011, Novi Sad, Serbia, May 30 - June 1,
2011, volume 10 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 31–40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

106

[153] F. Durán, F. Gutiérrez, P. López, and E. Pimentel. A formalization of the
SMEPP model in Maude. In V. Cahill, editor, Proceedings of the 5th Annual
International Conference on Mobile and Ubiquitous Systems: Computing, Net-
working, and Services, MobiQuitous 2008, July 21-25, 2008, Dublin, Ireland.
ACM, 2008.

[154] F. Durán, J. Herrador, and A. Vallecillo. Using UML and Maude for writing and
reasoning about ODP policies. In J. Moffett and F. Garcia, editors, Proceedings
of the 4th IEEE International Workshop on Policies for Distributed Systems and
Networks, POLICY 2003, Lake Como, Italy, June 4-6, 2003, pages 15–25. IEEE
Computer Society, 2003.

[155] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic
Computation, 21(1-2):59–88, 2008.

[156] F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude termination tool (sys-
tem description). In A. Armando, P. Baumgartner, and G. Dowek, editors,
Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Syd-
ney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science, pages 313–319. Springer, 2008.

[157] F. Durán, S. Lucas, and J. Meseguer. Methods for proving termination of
rewriting-based programming languages by transformation. In J. M. Almendros-
Jiménez, editor, Proceedings of the Eighth Spanish Conference on Programming
and Computer Languages, PROLE 2008, Gijón, Spain, October 8-10, 2008, vol-
ume 248 of Electronic Notes in Theoretical Computer Science, pages 93–113.
Elsevier, 2009.

[158] F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of equa-
tional theories. In S. Ghilardi and R. Sebastiani, editors, Frontiers of Combining
Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September
16-18, 2009. Proceedings, volume 5749 of Lecture Notes in Computer Science,
pages 246–262. Springer, 2009.

[159] F. Durán and J. Meseguer. An extensible module algebra for Maude. In Kirchner
and Kirchner [262], pages 174–195.

[160] F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer
Programming, 66(2):125–153, 2007.

[161] F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. Journal of Logic and Algebraic Pro-
gramming, 2011. This volume.

[162] F. Durán and P. C. Ölveczky. A guide to extending Full Maude illustrated with
the implementation of Real-Time Maude. In Roşu [403], pages 83–102.

[163] F. Durán, M. Ouederni, and G. Salaün. Checking protocol compatibility using
Maude. In G. Salaün and M. Sirjani, editors, Proceedings of the 8th Interna-
tional Workshop on the Foundations of Coordination Languages and Software
Architectures, FOCLASA 2009, Rhodes, Greece, July 11, 2009, volume 255 of
Electronic Notes in Theoretical Computer Science, pages 65–81. Elsevier, 2009.

107

[164] F. Durán, C. Rocha, and J. M. Álvarez. Tool interoperability in the Maude
formal environment. In Corradini et al. [124], pages 400–406.

[165] F. Durán, C. Rocha, and J. M. Álvarez. Towards a Maude formal environment.
In G. Agha, O. Danvy, and J. Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occa-
sion of Her 70th Birthday, volume 7000 of Lecture Notes in Computer Science,
pages 329–351. Springer, 2011.

[166] F. Durán, M. Roldán, and A. Vallecillo. Using Maude to write and execute
ODP information viewpoint specifications. Computer Standards & Interfaces,
27(6):597–620, 2005.

[167] F. Durán and A. Vallecillo. Specifying the ODP information viewpoint using
Maude. In H. Kilov and K. Baclawski, editors, Proceedings of the Tenth OOPSLA
Workshop on Behavioral Semantics, Tampa Bay, Florida, pages 44–57, Oct.
2001.

[168] F. Durán and A. Vallecillo. Formalizing ODP enterprise specifications in Maude.
Computer Standards & Interfaces, 25(2):83–102, 2003.

[169] M. Egea and V. Rusu. Formal executable semantics for conformance in the
MDE framework. Innovations in Systems and Software Engineering, 6(1-2):73–
81, 2009.

[170] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[171] S. Eker. Fast matching in combination of regular equational theories. In
Meseguer [317], pages 90–109.

[172] S. Eker. Associative-commutative rewriting on large terms. In Nieuwenhuis
[355], pages 14–29.

[173] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and M. K. Sönmez.
Pathway logic: Symbolic analysis of biological signaling. In R. B. Altman, A. K.
Dunker, L. Hunter, and T. E. Klein, editors, Proceedings of the 7th Pacific
Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, January 3-7,
2002, pages 400–412, January 2002.

[174] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, and C. Talcott. Pathway logic:
Executable models of biological networks. In Gadducci and Montanari [205],
pages 144–161.

[175] S. Eker, N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies,
and rewriting. In M. Archer, T. B. de la Tour, and C. Muñoz, editors, Proceed-
ings of the 6th International Workshop on Strategies in Automated Deduction,
STRATEGIES 2006, Seattle, WA, USA, August 16, 2006, volume 174(11) of
Electronic Notes in Theoretical Computer Science, pages 3–25. Elsevier, 2007.

[176] C. Ellison and G. Roşu. A formal semantics of C with applications. Techni-
cal report, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2010.

108

[177] C. Ellison, T. F. Şerbănuţă, and G. Roşu. A rewriting logic approach to type
inference. In Corradini and Montanari [125], pages 135–151.

[178] S. Escobar, J. Hendrix, C. Meadows, and J. Meseguer. Diffie-Hellman cryp-
tographic reasoning in the Maude-NRL Protocol Analyzer. In M. Nesi and
R. Treinen, editors, Proceedings of the Second International Workshop on Se-
curity and Rewriting Techniques, SecReT 2007, Paris, France, June 29, 2007,
2007.

[179] S. Escobar, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Narendran, and
R. Sasse. Protocol analysis in Maude-NPA using unification modulo homomor-
phic encryption. In Schneider-Kamp and Hanus [416], pages 65–76.

[180] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference sys-
tem for the NRL Protocol Analyzer and its meta-logical properties. Theoretical
Computer Science, 367(1-2):162–202, 2006.

[181] S. Escobar, C. Meadows, and J. Meseguer. Equational cryptographic reasoning
in the Maude-NRL Protocol Analyzer. In M. Fernández and C. Kirchner, edi-
tors, Proceedings of the First International Workshop on Security and Rewriting
Techniques, SecReT 2006, Venice, Italy, July 15, 2006, volume 171(4) of Elec-
tronic Notes in Theoretical Computer Science, pages 23–36. Elsevier, 2007.

[182] S. Escobar, C. Meadows, and J. Meseguer. State space reduction in the Maude-
NRL Protocol Analyzer. In S. Jajodia and J. López, editors, Computer Security
- ESORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in
Computer Science, pages 548–562. Springer, 2008.

[183] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic pro-
tocol analysis modulo equational properties. In A. Aldini, G. Barthe, and
R. Gorrieri, editors, Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer
Science, pages 1–50. Springer, 2009.

[184] S. Escobar, C. Meadows, and J. Meseguer. State space reduction in the Maude-
NRL protocol analyzer, May 2011. http://arxiv.org/abs/1105.5282.

[185] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. Sequential protocol
composition in Maude-NPA. In D. Gritzalis, B. Preneel, and M. Theohari-
dou, editors, Computer Security - ESORICS 2010, 15th European Symposium
on Research in Computer Security, Athens, Greece, September 20-22, 2010, Pro-
ceedings, volume 6345 of Lecture Notes in Computer Science, pages 303–318.
Springer, 2010.

[186] S. Escobar and J. Meseguer. Symbolic model checking of infinite-state systems
using narrowing. In Baader [35], pages 153–168.

[187] S. Escobar, J. Meseguer, and R. Sasse. Effectively checking the finite vari-
ant property. In A. Voronkov, editor, Rewriting Techniques and Applications,
19th International Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008,
Proceedings, volume 5117 of Lecture Notes in Computer Science, pages 79–93.
Springer, 2008.

109

[188] S. Escobar, J. Meseguer, and P. Thati. Narrowing and rewriting logic: from foun-
dations to applications. In F. J. López-Fraguas, editor, Proceedings of the 15th
Workshop on Functional and (Constraint) Logic Programming, WFLP 2006,
Madrid, Spain, November 16-17, 2006, volume 177 of Electronic Notes in Theo-
retical Computer Science, pages 5–33. Elsevier, 2007.

[189] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. In Ölveczky [362], pages 52–68.

[190] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. Journal of Logic and Algebraic Programming, 2011. This
volume.

[191] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java programs
in JavaFAN. In R. Alur and D. Peled, editors, Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004,
Proceedings, volume 3114 of Lecture Notes in Computer Science, pages 501–505.
Springer, 2004.

[192] A. Farzan and J. Meseguer. State space reduction of rewrite theories using
invisible transitions. In Johnson and Vene [247], pages 142–157.

[193] A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. In Denker and Talcott [139], pages 61–78.

[194] A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN.
In Rattray et al. [389], pages 132–147.

[195] S. Feferman. Finitary inductively presented logics. In R. Ferro et al., editors,
Logic Colloquium’88, pages 191–220. North-Holland, 1989.

[196] A. Felty and D. Miller. Encoding a dependent-type λ-calculus in a logic pro-
gramming language. In M. Stickel, editor, Proc. 10th. Int. Conf. on Automated
Deduction, Kaiserslautern, Germany, July 1990, volume 449 of LNCS, pages
221–235. Springer-Verlag, 1990.

[197] J. L. Fernández Alemán and J. A. Toval Álvarez. Can intuition become rigor-
ous? Foundations for UML model verification tools. In F. M. Titsworth, editor,
Proceedings of the 11th International Symposium on Software Reliability Engi-
neering, ISSRE 2000, San Jose, CA, USA, October 8-11, 2000, pages 344–355.
IEEE Computer Society, 2000.

[198] O. Fissore, I. Gnaedig, and H. Kirchner. System presentation – CARIBOO: An
induction based proof tool for termination with strategies. In C. Kirchner, editor,
Proceedings of the 4th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, PPDP 2002, Pittsburgh, PA, USA,
October 6-8, 2002 (Affiliated with PLI 2002), pages 62–73. ACM, 2002.

[199] O. Fissore, I. Gnaedig, and H. Kirchner. Simplification and termination of strate-
gies in rule-based languages. In D. Miller and K. Sagonas, editors, Proceedings of
the 5th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP 2003, Uppsala, Sweden, August 27-29, 2003,
pages 124–135. ACM, 2003.

110

[200] K. Futatsugi, editor. Proceedings of the Third International Workshop on Rewrit-
ing Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18-
20, 2000, volume 36 of Electronic Notes in Theoretical Computer Science. Else-
vier, 2000.

[201] K. Futatsugi. Verifying specifications with proof scores in CafeOBJ. In S. Uchi-
tel and S. Easterbrook, editors, Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2006, Tokyo,
Japan, September 18-22, 2006, pages 3–10. IEEE Computer Society, 2006.

[202] K. Futatsugi. Fostering proof scores in CafeOBJ. In Dong and Zhu [143], pages
1–20.

[203] K. Futatsugi, A. T. Nakagawa, and T. Tamai, editors. Cafe: An Industrial-
Strength Algebraic Formal Method. Elsevier, 2000.

[204] D. M. Gabbay and A. Pnueli. A sound and complete deductive system for CTL*
verification. Logic Journal of the IGPL, 16(6):499–536, 2008.

[205] F. Gadducci and U. Montanari, editors. Proceedings of the Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy,
September 19-21, 2002, volume 71 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2004.

[206] P. Gardner. Representing Logics in Type Theory. PhD thesis, Technical Report
CST-93-92, Department of Computer Science, University of Edinburgh, 1992.

[207] A. Garrido and J. Meseguer. Formal specification and verification of Java
refactorings. In Proceedings of the Sixth IEEE International Workshop on
Source Code Analysis and Manipulation, SCAM 2006, Philadelphia, Pennsyl-
vania, September 27-29, 2006, pages 165–174. IEEE, 2006.

[208] A. Garrido, J. Meseguer, and R. Johnson. Algebraic semantics of the C pre-
processor and correctness of its refactorings. Technical Report UIUCDCS-R-
2006-2688, Department of Computer Science, University of Illinois at Urbana-
Champaign, February 2006.

[209] J. Giesl, editor. Term Rewriting and Applications, 16th International Confer-
ence, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume 3467 of
Lecture Notes in Computer Science. Springer, 2005.

[210] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termina-
tion proofs with AProVE. In RTA 2004, volume 3091, pages 210–220. Springer
LNCS, 2004.

[211] P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

[212] I. Gnaedig. Induction for positive almost sure termination. In Leuschel and
Podelski [284], pages 167–178.

111

[213] I. Gnaedig and H. Kirchner. Computing constructor forms with non terminating
rewrite programs. In A. Bossi and M. J. Maher, editors, Proceedings of the 8th
International ACM SIGPLAN Conference on Principles and Practice of Declar-
ative Programming, PPDP 2006, Venice, Italy, July 10-12, 2006, pages 121–132.
ACM, 2006.

[214] I. Gnaedig and H. Kirchner. Termination of rewriting under strategies. ACM
Transactions on Computational Logic, 10(2), 2009.

[215] J. Goguen. OBJ as a theorem prover with application to hardware verification.
In P. Subramanyam and G. Birtwistle, editors, Current Trends in Hardware
Verification and Automated Theorem Proving, pages 218–267. Springer-Verlag,
1989.

[216] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39(1):95–146, 1992.

[217] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of the 1982 Symposium on Security and Privacy, pages 11–20. IEEE, 1982.

[218] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. In-
troducing OBJ. In Software Engineering with OBJ: Algebraic Specification in
Action, pages 3–167. Kluwer, 2000.

[219] J. A. Goguen, A. Stevens, K. Hobley, and H. Hilberdink. 2OBJ: A meta-logical
framework based on equational logic. Philosophical Transactions of the Royal
Society, Series A, 339:69–86, 1992.

[220] A. Goodloe. Private communication, May 25, 2011.

[221] A. Goodloe, C. A. Gunter, and M.-O. Stehr. Formal prototyping in early stages
of protocol design. In C. Meadows, editor, Proceedings of the POPL 2005 Work-
shop on Issues in the Theory of Security, WITS 2005, Long Beach, California,
USA, January 10-11, 2005, pages 67–80. ACM, 2005.

[222] A. Goodloe, M. Jacobs, G. Shah, and C. Gunter. L3A: A protocol for layer three
accounting. In Proceedings of the First Workshop on Secure Network Protocols,
NPSEC 2005, Boston, Massachusetts, November 6, 2005, pages 1–6. IEEE Com-
puter Society, 2005.

[223] A. Goodloe, M. McDougall, C. A. Gunter, and M.-O. Stehr. Design and analysis
of Sectrace: A protocol to set up security associations and policies in ipsec
networks. Technical report, CIS Department, University of Pennsylvania, 2004.
http://seclab.web.cs.illinois.edu/penn-security-lab.

[224] C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP web
browser. In 2008 IEEE Symposium on Security and Privacy (S&P 2008), Oak-
land, California, May 18-21, 2008, pages 402–416. IEEE Computer Society,
2008.

[225] R. Gutiérrez and S. Lucas. Proving termination in the context-sensitive depen-
dency pair framework. In Ölveczky [362], pages 18–34.

112

[226] S. Gutierrez-Nolasco, N. Venkatasubramanian, M.-O. Stehr, and C. L. Talcott.
Exploring adaptability of secure group communication using formal prototyping
techniques. In F. Kon, F. M. Costa, N. Wang, and R. Cerqueira, editors, Pro-
ceedings of the 3rd Workshop on Adaptive and Reflective Middleware, Toronto,
Ontario, Canada, October 19, 2004, pages 232–237. ACM, 2004.

[227] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Asp. Comput., 6(5):512–535, 1994.

[228] N. A. Harman. Correctness and verification of hardware systems using Maude.
Technical Report 3-2000, Department of Computer Science, University of Wales
Swansea, 2000.

[229] N. A. Harman. Verifying a simple pipelined microprocessor using Maude. In
M. Cerioli and G. Reggio, editors, Recent Trends in Algebraic Development Tech-
niques, 15th International Workshop, WADT 2001, Joint with the CoFI WG
Meeting, Genova, Italy, April 1-3, 2001, Selected Papers, volume 2267 of Lec-
ture Notes in Computer Science, pages 128–151. Springer, 2001.

[230] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association Computing Machinery, 40(1):143–184, 1993.

[231] J. Hendrix. Decision Procedures for Equationally Based Reasoning. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign,
2008. http://hdl.handle.net/2142/10967.

[232] J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reasoning tool
for partial specifications. In Giesl [209], pages 165–174.

[233] J. Hendrix, D. Kapur, and J. Meseguer. Coverset induction with partiality
and subsorts: A powerlist case study. In M. Kaufmann and L. C. Paulson,
editors, Interactive Theorem Proving, First International Conference, ITP 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture Notes in
Computer Science, pages 275–290. Springer, 2010.

[234] J. Hendrix and J. Meseguer. On the completeness of context-sensitive order-
sorted specifications. In Baader [35], pages 229–245.

[235] J. Hendrix and J. Meseguer. Order-sorted equational unification revisited. In
Kniesel and Pinto [270], pages 16–29.

[236] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for lin-
ear order-sorted specifications modulo axioms. In U. Furbach and N. Shankar,
editors, Automated Reasoning, Third International Joint Conference, IJCAR
2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lec-
ture Notes in Computer Science, pages 151–155. Springer, 2006.

[237] J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with
propositional tree automata. Technical Report UIUCDCS-R-2005-2635, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 2005.

[238] J. Hendrix, H. Ohsaki, and M. Viswanathan. Propositional tree automata. In
F. Pfenning, editor, Term Rewriting and Applications, 17th International Con-
ference, RTA 2006, Seattle, WA, USA, August 12-14, 2006, Proceedings, volume
4098 of Lecture Notes in Computer Science, pages 50–65. Springer, 2006.

113

[239] M. Hills, T. B. Aktemur, and G. Roşu. An executable semantic definition of the
Beta language using rewriting logic. Technical Report UIUCDCS-R-2005-2650,
Department of Computer Science, University of Illinois at Urbana-Champaign,
2005.

[240] M. Hills, F. Chen, and G. Roşu. A rewriting logic approach to static checking
of units of measurement in C. In Kniesel and Pinto [270], pages 76–91.

[241] M. Hills and G. Roşu. KOOL: An application of rewriting logic to language
prototyping and analysis. In Baader [35], pages 246–256.

[242] M. M. Hölzl, M. Meier, and M. Wirsing. Which soft constraints do you prefer?
In Roşu [403], pages 189–205.

[243] J. Hsiang, editor. Rewriting Techniques and Applications, 6th International
Conference, RTA-95, Kaiserslautern, Germany, April 5-7, 1995, Proceedings,
volume 914 of Lecture Notes in Computer Science. Springer, 1995.

[244] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the Association for Computing Machinery, 27:797–
821, 1980.

[245] E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time environment for con-
current objects with asynchronous method calls. In Mart́ı-Oliet [297], pages
375–392.

[246] M. Johnson and D. Pavlovic, editors. Algebraic Methodology and Software
Technology, 13th International Conference, AMAST 2010, Lac-Beauport, QC,
Canada, June 23-25, 2010, Revised Selected Papers, volume 6486 of Lecture
Notes in Computer Science. Springer, 2011.

[247] M. Johnson and V. Vene, editors. Algebraic Methodology and Software Technol-
ogy, 11th International Conference, AMAST 2006, Kuressaare, Estonia, July
5-8, 2006, Proceedings, volume 4019 of Lecture Notes in Computer Science.
Springer, 2006.

[248] J.-P. Jouannaud and HélèneKirchner. Completion of a set of rules modulo a set
of equations. SIAM Journal of Computing, 15:1155–1194, November 1986.

[249] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of
unification algorithms in equational theories. In Proc. ICALP’83, pages 361–
373. Springer LNCS 154, 1983.

[250] D. Kapur and M. Subramaniam. Mechanical verification of adder circuits using
rewrite rule laboratory. Formal Methods in System Design, 13(2):127–158, 1998.

[251] M. Katelman. A Meta-Language for Functional Verification. PhD thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 2011.
http://hdl.handle.net/2142/29614.

[252] M. Katelman, S. Keller, and J. Meseguer. Concurrent rewriting semantics and
analysis of asynchronous digital circuits. In Ölveczky [362], pages 140–156.

114

[253] M. Katelman, S. Keller, and J. Meseguer. Rewriting semantics of production
rule sets. Journal of Logic and Algebraic Programming, 2011. This volume.

[254] M. Katelman and J. Meseguer. A rewriting semantics for ABEL with applica-
tions to hardware/software co-design and analysis. In Denker and Talcott [139],
pages 47–60.

[255] M. Katelman and J. Meseguer. Using the PALS architecture to verify a dis-
tributed topology control protocol for wireless multi-hop networks in the pres-
ence of node failures. In Ölveczky [361], pages 101–116.

[256] M. Katelman and J. Meseguer. vlogsl: A strategy language for simulation-based
verification of hardware. In S. Barner, I. G. Harris, D. Kroening, and O. Raz,
editors, Hardware and Software: Verification and Testing - 6th International
Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4-7, 2010. Re-
vised Selected Papers, volume 6504 of Lecture Notes in Computer Science, pages
129–145. Springer, 2011.

[257] M. Katelman, J. Meseguer, and S. Escobar. Directed-logical testing for func-
tional verification of microprocessors. In S. A. Edwards and K. Schneider, edi-
tors, Proceedings of the 6th ACM & IEEE International Conference on Formal
Methods and Models for Co-Design, MEMOCODE 2008, Anaheim, CA, USA,
June 5-7, 2008, pages 89–100. IEEE Computer Society, 2008.

[258] M. Katelman, J. Meseguer, and J. C. Hou. Redesign of the LMST wireless sensor
protocol through formal modeling and statistical model checking. In Barthe and
de Boer [49], pages 150–169.

[259] M. Kim, M.-O. Stehr, C. L. Talcott, N. Dutt, and N. Venkatasubramanian.
Combining formal verification with observed system execution behavior to tune
system parameters. In J.-F. Raskin and P. S. Thiagarajan, editors, Formal Mod-
eling and Analysis of Timed Systems, 5th International Conference, FORMATS
2007, Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of Lecture
Notes in Computer Science, pages 257–273. Springer, 2007.

[260] M. Kim, M.-O. Stehr, C. L. Talcott, N. Dutt, and N. Venkatasubramanian.
Constraint refinement for online verifiable cross-layer system adaptation. In
Design, Automation and Test in Europe, DATE 2008, Munich, Germany, March
10-14, 2008, pages 646–651. IEEE, 2008.

[261] M. Kim, M.-O. Stehr, C. L. Talcott, N. D. Dutt, and N. Venkatasubramanian. A
probabilistic formal analysis approach to cross layer optimization in distributed
embedded systems. In Bonsangue and Johnsen [59], pages 285–300.

[262] C. Kirchner and H. Kirchner, editors. Proceedings of the Second International
Workshop on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson,
France, September 1-4, 1998, volume 15 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 1998.

[263] C. Kirchner, H. Kirchner, and A. S. de Oliveira. Analysis of rewrite-based access
control policies. In Dougherty and Escobar [144], pages 55–75.

[264] H. Kirchner and P.-E. Moreau. Prototyping completion with constraints using
computational systems. In Hsiang [243], pages 438–443.

115

[265] H. Kirchner and P.-E. Moreau. Promoting rewriting to a programming language:
a compiler for non-deterministic rewrite programs in associative-commutative
theories. Journal of Functional Programming, 11(2):207–251, 2001.

[266] H. Kirchner and C. Ringeissen. Combining symbolic constraint solvers on alge-
braic domains. Journal of Symbolic Computation, 18(2):113–155, 1994.

[267] H. Kirchner and C. Ringeissen. Constraint solving by narrowing in combined
algebraic domains. In Proceedings of the 11th International Conference on Logic
Programming, pages 617–631. The MIT Press, 1994.

[268] A. Knapp. Generating rewrite theories from UML collaborations. In Futatsugi
et al. [203], pages 97–120.

[269] A. Knapp. A Formal Approach to Object-Oriented Software Engineering. Shaker
Verlag, Aachen, Germany, 2001. PhD thesis, Institut für Informatik, Universität
München, 2000.

[270] G. Kniesel and J. S. Pinto, editors. Preliminary Proceedings of the Ninth Inter-
national Workshop on Rule-Based Programming, RULE 2008, Hagenberg Castle,
Austria, June 18, 2008, 2008. Technical Report IAI-TR-08-02, Institut für In-
formatik III, Rheinische Friedrich-Wilhelm-Universität Bonn.

[271] W. Kolch. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK
pathway by protein interactions. Biochem. J., 351:289–305, 2000.

[272] G. Koob, D. Maughan, and S. Saydjari, editors. Proceedings of the DARPA In-
formation Survivability Conference and Exposition, DISCEX 2000, Hilton Head
Island, South Carolina, January 25-27, 2000. IEEE Computer Society Press,
2000.

[273] P. Kosiuczenko and M. Wirsing. Timed rewriting logic for the specification of
time-sensitive systems. In H. Schwichtenberg, editor, Proceedings of the NATO
Advanced Study Institute on Logic of Computation, Held in Marktoberdorf, Ger-
many, July 25-August 6, 1997, volume 157 of NATO ASI Series F: Computer
and Systems Sciences, pages 229–264. Springer, 1997.

[274] P. Kosiuczenko and M. Wirsing. Timed rewriting logic with an application to
object-based specification. Science of Computer Programming, 28(2-3):225–246,
1997.

[275] R. Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[276] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories:
Unifying models, logics and tools. Technical Report UIUCDCS-R-2003-2347,
Department of Computer Science, University of Illinois at Urbana-Champaign,
May 2003.

[277] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model for
probabilistic distributed object systems. In Najm et al. [349], pages 32–46.

[278] C. Laneve and U. Montanari. Axiomatizing permutation equivalence. Mathe-
matical Structures in Computer Science, 6(3):219–249, 1996.

116

[279] F. W. Lawvere. Functorial semantics of algebraic theories. Proceedings, National
Academy of Sciences, 50:869–873, 1963. Summary of Ph.D. Thesis, Columbia
University.

[280] E. A. Lee. Modeling concurrent real-time processes using discrete events. Ann.
Software Eng., 7:25–45, 1999.

[281] M. LeMay and C. A. Gunter. Cumulative attestation kernels for embedded
systems. In Backes and Ning [36], pages 655–670.

[282] D. Lepri, P. Ölveczky, and E. Ábrahám. Timed CTL model checking in Real-
Time Maude. Submitted for publication, 2011.

[283] D. Lepri, P. C. Ölveczky, and E. Ábrahám. Model checking classes of metric
LTL properties of object-oriented Real-Time Maude specifications. In Ölveczky
[361], pages 117–136.

[284] M. Leuschel and A. Podelski, editors. Proceedings of the 9th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming,
PPDP 2007, Wroclaw, Poland, July 14-16, 2007. ACM, 2007.

[285] E. Lien. Formal modelling and analysis of the NORM multicast protocol using
Real-Time Maude. Master’s thesis, Department of Linguistics, University of
Oslo, April 2004.

[286] E. Lien and P. C. Ölveczky. Formal modeling and analysis of an IETF multicast
protocol. In D. V. Hung and P. Krishnan, editors, Proceedings of the Seventh
IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2009, Hanoi, Vietnam, November 23-27, 2009, pages 273–282. IEEE
Computer Society, 2009.

[287] L. Liquori and B. Wack. The polymorphic rewriting-calculus: [type checking vs.
type inference]. In Mart́ı-Oliet [297], pages 89–111.

[288] D. Lucanu. Strategy-based rewrite semantics for membrane systems preserves
maximal concurrency of evolution rule actions. In A. Middeldorp, editor, Pro-
ceedings of the Eighth International Workshop on Reduction Strategies in Rewrit-
ing and Programming, WRS 2008, Castle of Hagenberg, Austria, July 14, 2008,
volume 237 of Electronic Notes in Theoretical Computer Science, pages 107–125.
Elsevier, 2009.

[289] S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1), 1998.

[290] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

[291] S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95(4):446–453, 2005.

[292] S. Lucas and J. Meseguer. Order-sorted dependency pairs. In S. Antoy and
E. Albert, editors, Proceedings of the 10th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, PPDP 2008,
Valencia, Spain, July 15-17, 2008, pages 108–119. ACM, 2008.

117

[293] S. Lucas and J. Meseguer. Termination of just/fair computations in term rewrit-
ing. Information and Computation, 206(5):652–675, 2008.

[294] S. Lucas and J. Meseguer. Operational termination of membership equational
programs: the order-sorted way. In Roşu [403], pages 207–225.

[295] P. Manolios. A compositional theory of refinement for branching time. In
CHARME 2003, volume 2860 of Lecture Notes in Computer Science, pages 304–
318. Springer, 2003.

[296] C. Marché and X. Urbain. Modular and incremental proofs of AC-termination.
J. Symb. Comput., 38(1):873–897, 2004.

[297] N. Mart́ı-Oliet, editor. Proceedings of the Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March
27-April 4, 2004, volume 117 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2004.

[298] N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks. In
D. M. Gabbay, editor, What is a Logical System?, volume 4 of Studies in Logic
and Computation, pages 355–392. Oxford University Press, 1994.

[299] N. Mart́ı-Oliet and J. Meseguer. Action and change in rewriting logic. In
R. Pareschi and B. Fronhöfer, editors, Dynamic Worlds: From the Frame Prob-
lem to Knowledge Management, volume 12 of Applied Logic Series, pages 1–53.
Kluwer Academic Publishers, 1999.

[300] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Second Edition, Volume 9, pages 1–87. Kluwer Academic Publishers, 2002.

[301] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

[302] N. Mart́ı-Oliet, J. Meseguer, and M. Palomino. Theoroidal maps as algebraic
simulations. In J. L. Fiadeiro, P. D. Mosses, and F. Orejas, editors, Recent Trends
in Algebraic Development Techniques, 17th International Workshop, WADT
2004, Barcelona, Spain, March 27-29, 2004, Revised Selected Papers, volume
3423 of Lecture Notes in Computer Science, pages 126–143. Springer, 2004.

[303] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. A rewriting semantics for Maude
strategies. In Roşu [403], pages 227–247.

[304] I. A. Mason and C. L. Talcott. Simple network protocol simulation within
Maude. In Futatsugi [200], pages 274–291.

[305] S. Matthews, A. Smaill, and D. Basin. Experience with FS0 as a framework
theory. In G. Huet and G. Plotkin, editors, Logical Environments, pages 61–82.
Cambridge University Press, 1993.

[306] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

118

[307] P. Meredith, M. Hills, and G. Roşu. An executable rewriting logic semantics of
K-Scheme. In D. Dube, editor, Proceedings of the 2007 Workshop on Scheme
and Functional Programming, SCHEME 2007, Freiburg, Germany, September
30, 2007, pages 91–103. Laval University, 2007.

[308] P. Meredith, M. Hills, and G. Roşu. A K definition of Scheme. Technical Report
UIUCDCS-R-2007-2907, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2007.

[309] P. Meredith, M. Katelman, J. Meseguer, and G. Roşu. A formal executable
semantics of Verilog. In B. Jobstmann and L. Carloni, editors, Proceedings of
the Eighth ACM/IEEE International Conference on Formal Methods and Models
for Codesign, MEMOCODE 2010, Grenoble, France, July 26-28, 2010, pages
179–188. IEEE Computer Society, 2010.

[310] J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87,
pages 275–329. North-Holland, 1989.

[311] J. Meseguer. A logical theory of concurrent objects. In N. Meyrowitz, editor,
Proceedings of the ECOOP-OOPSLA’90 Conference on Object-Oriented Pro-
gramming, Ottawa, Canada, October 21-25, 1990, pages 101–115. ACM Press,
1990.

[312] J. Meseguer. Rewriting as a unified model of concurrency. In J. C. M. Baeten
and J. W. Klop, editors, CONCUR ’90, Theories of Concurrency: Unification
and Extension, Amsterdam, The Netherlands, August 27-30, 1990, Proceedings,
volume 458 of Lecture Notes in Computer Science, pages 384–400. Springer,
1990.

[313] J. Meseguer. Rewriting as a unified model of concurrency. Technical Report SRI-
CSL-90-02, SRI International, Computer Science Laboratory, February 1990.
Revised June 1990.

[314] J. Meseguer. Conditional rewriting logic: Deduction, models and concurrency. In
S. Kaplan and M. Okada, editors, Conditional and Typed Rewriting Systems, 2nd
International CTRS Workshop, Montreal, Canada, June 11-14, 1990, Proceed-
ings, volume 516 of Lecture Notes in Computer Science, pages 64–91. Springer,
1991.

[315] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[316] J. Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Di-
rections in Concurrent Object-Oriented Programming, pages 314–390. The MIT
Press, 1993.

[317] J. Meseguer, editor. Proceedings of the First International Workshop on Rewrit-
ing Logic and its Applications, WRLA’96, Asilomar, California, September 3-6,
1996, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

119

[318] J. Meseguer. Rewriting logic as a semantic framework for concurrency: a
progress report. In U. Montanari and V. Sassone, editors, CONCUR ’96, Con-
currency Theory, 7th International Conference, Pisa, Italy, August 26-29, 1996,
Proceedings, volume 1119 of Lecture Notes in Computer Science, pages 331–372.
Springer, 1996.

[319] J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In Parisi-Presicce [378], pages 18–61.

[320] J. Meseguer. Rewriting logic and Maude: a wide-spectrum semantic frame-
work for object-based distributed systems. In S. F. Smith and C. L. Tal-
cott, editors, Formal Methods for Open Object-Based Distributed Systems IV,
IFIP TC6/WG6.1 Fourth International Conference on Formal Methods for Open
Object-Based Distributed Systems, FMOODS 2000, Stanford, California, USA,
September 6-8, 2000, Proceedings, volume 177 of IFIP Conference Proceedings,
pages 89–117. Kluwer, 2000.

[321] J. Meseguer. Rewriting logic and Maude: Concepts and applications. In L. Bach-
mair, editor, Rewriting Techniques and Applications, 11th International Confer-
ence, RTA 2000, Norwich, UK, July 10-12, 2000, Proceedings, volume 1833 of
Lecture Notes in Computer Science, pages 1–26. Springer, 2000.

[322] J. Meseguer. Functorial semantics of rewrite theories. In H.-J. Kreowski, U. Mon-
tanari, F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal Methods in
Software and Systems Modeling, Essays Dedicated to Hartmut Ehrig on the Oc-
casion of His 60th Birthday, volume 3393 of Lecture Notes in Computer Science,
pages 220–235. Springer, 2005.

[323] J. Meseguer. Localized fairness: A rewriting semantics. In Giesl [209], pages
250–263.

[324] J. Meseguer. A rewriting logic sampler. In D. V. Hung and M. Wirsing, ed-
itors, Theoretical Aspects of Computing - ICTAC 2005, Second International
Colloquium, Hanoi, Vietnam, October 17-21, 2005, Proceedings, volume 3722 of
Lecture Notes in Computer Science, pages 1–28. Springer, 2005.

[325] J. Meseguer. The temporal logic of rewriting: A gentle introduction. In
P. Degano, R. D. Nicola, and J. Meseguer, editors, Concurrency, Graphs and
Models, Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birth-
day, volume 5065 of Lecture Notes in Computer Science, pages 354–382. Springer,
2008.

[326] J. Meseguer, K. Futatsugi, and T. Winkler. Using rewriting logic to specify,
program, integrate, and reuse open concurrent systems of cooperating agents.
In Proceedings of the 1992 International Symposium on New Models for Software
Architecture, Tokyo, Japan, November 1992, pages 61–106. Research Institute
of Software Engineering, 1992.

[327] J. Meseguer and N. Mart́ı-Oliet. From abstract data types to logical frameworks.
In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends in Data
Type Specification, 10th Workshop on Specification of Abstract Data Types Joint
with the 5th COMPASS Workshop, S. Margherita, Italy, May 30-June 3, 1994,

120

Selected Papers, volume 906 of Lecture Notes in Computer Science, pages 48–80.
Springer, 1995.

[328] J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic. In Parisi-
Presicce [378], pages 62–91.

[329] J. Meseguer and P. C. Ölveczky. Formalization and correctness of the PALS
architectural pattern for distributed real-time systems. In Dong and Zhu [143],
pages 303–320.

[330] J. Meseguer and P. C. Ölveczky. Formalization and correctness of the PALS ar-
chitectural pattern for distributed real-time systems. Technical report, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 2010.

[331] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. Theo-
retical Computer Science, 403(2-3):239–264, 2008.

[332] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Algebraic simulations. Journal
of Logic and Algebraic Programming, 79(2):103–143, 2010.

[333] J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifica-
tions to formal analysis tools. In D. Basin and M. Rusinowitch, editors, Auto-
mated Reasoning - Second International Joint Conference, IJCAR 2004, Cork,
Ireland, July 4-8, 2004, Proceedings, volume 3097 of Lecture Notes in Computer
Science, pages 1–44. Springer, 2004.

[334] J. Meseguer and G. Roşu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

[335] J. Meseguer and G. Roşu. The rewriting logic semantics project: A progress
report. In O. Owe, M. Steffen, and J. A. Telle, editors, Fundamentals of Compu-
tation Theory - 18th International Symposium, FCT 2011, Oslo, Norway, August
22-25, 2011. Proceedings, volume 6914 of Lecture Notes in Computer Science,
pages 1–37. Springer, 2011.

[336] J. Meseguer and R. Sharykin. Specification and analysis of distributed object-
based stochastic hybrid systems. In J. P. Hespanha and A. Tiwari, editors,
Hybrid Systems: Computation and Control, 9th International Workshop, HSCC
2006, Santa Barbara, CA, USA, March 29-31, 2006, Proceedings, volume 3927
of Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

[337] J. Meseguer and C. L. Talcott. A partial order event model for concurrent
objects. In J. C. M. Baeten and S. Mauw, editors, CONCUR’99: Concurrency
Theory, 10th International Conference, Eindhoven, The Netherlands, August 24-
27, 1999, Proceedings, volume 1664 of Lecture Notes in Computer Science, pages
415–430. Springer, 1999.

[338] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection.
In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th
European Conference, Malaga, Spain, June 10-14, 2002, Proceedings, volume
2374 of Lecture Notes in Computer Science, pages 1–36. Springer, 2002.

121

[339] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and
its application to verification of cryptographic protocols. In Mart́ı-Oliet [297],
pages 153–182.

[340] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and
its application to verification of cryptographic protocols. Higher-Order and Sym-
bolic Computation, 20(1-2):123–160, 2007.

[341] S. Miller, D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem. Implementing
logical synchrony in integrated modular avionics. In Proc. 28th Digital Avionics
Systems Conference. IEEE, 2009.

[342] J. Misra. Computation orchestration: A basis for wide-area computing. In
M. Broy, editor, Proc. of the NATO Advanced Study Institute, Engineering The-
ories of Software Intensive Systems Marktoberdorf, Germany, 2004. NATO ASI
Series, 2004.

[343] J. Misra and W. R. Cook. Computation orchestration. Software and System
Modeling, 6(1):83–110, 2007.

[344] H. Miyoshi. Modelling conditional rewriting logic in structured categories. In
Meseguer [317], pages 20–34.

[345] F. Mokhati and M. Badri. Generating Maude specifications from UML use case
diagrams. Journal of Object Technology, 8(2):319–136, 2009.

[346] F. Mokhati, P. Gagnon, and M. Badri. Verifying UML diagrams with model
checking: A rewriting logic based approach. In A. Mathur and W. E. Wong, ed-
itors, Proceedings of the Seventh International Conference on Quality Software,
QSIC 2007, Portland, Oregon, USA, October 11-12, 2007, pages 356–362. IEEE
Computer Society, 2007.

[347] F. Mokhati, B. Sahraoui, S. Bouzaher, and M. T. Kimour. A tool for specify-
ing and validating agents’ interaction protocols: From Agent UML to Maude.
Journal of Object Technology, 9(3):59–77, 2010.

[348] G. Nadathur and D. Miller. An overview of λProlog. In K. Bowen and R. Kowal-
ski, editors, Fifth Int. Joint Conf. and Symp. on Logic Programming, pages 810–
827. The MIT Press, 1988.

[349] E. Najm, U. Nestmann, and P. Stevens, editors. Formal Methods for Open
Object-Based Distributed Systems, 6th IFIP WG 6.1 International Conference,
FMOODS 2003, Paris, France, November 19-21, 2003, Proceedings, volume 2884
of Lecture Notes in Computer Science. Springer, 2003.

[350] E. Najm and J.-B. Stefani. A formal semantics for the ODP computational
model. Computer Networks and ISDN Systems, 27(8):1305–1329, 1995.

[351] S. Nakajima. Using algebraic specification techniques in development of object-
oriented frameworks. In Wing et al. [471], pages 1664–1683.

[352] S. Nakajima and K. Futatsugi. An object-oriented modeling method for algebraic
specifications in CafeOBJ. In Proceedings of the 19th International Conference
on Software Engineering, ICSE’97, Boston, Massachussets, May 17-23, 1997.
ACM Press, 1997.

122

[353] P. Naumov, M.-O. Stehr, and J. Meseguer. The HOL/NuPRL proof trans-
lator (a practical approach to formal interoperability). In R. J. Boulton and
P. B. Jackson, editors, Theorem Proving in Higher Order Logics, 14th Inter-
national Conference, TPHOLs 2001, Edinburgh, Scotland, UK, September 3-6,
2001, Proceedings, volume 2152 of Lecture Notes in Computer Science, pages
329–345. Springer, 2001.

[354] Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical
proof assistants. Journal of Automated Reasoning, 29(3-4):309–336, 2002.

[355] R. Nieuwenhuis, editor. Rewriting Techniques and Applications, 14th Interna-
tional Conference, RTA 2003, Valencia, Spain, June 9-11, 2003, Proceedings,
volume 2706 of Lecture Notes in Computer Science. Springer, 2003.

[356] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to
DPLL(T). Journal of the ACM, 53(6):937–977, Nov. 2006.

[357] K. Ogata and K. Futatsugi. Proof scores in the OTS/CafeOBJ method. In Najm
et al. [349], pages 170–184.

[358] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer Verlag, 2002.

[359] P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Systems in
Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.

[360] P. C. Ölveczky. Towards formal modeling and analysis of networks of embedded
medical devices in Real-Time Maude. In P. Muenchaisri, editor, Proceedings
of the Ninth ACIS International Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2008,
Phuket, Thailand, August 6-8, 2008, pages 241–248. IEEE Computer Society,
2008.

[361] P. C. Ölveczky, editor. Proceedings of the First International Workshop on
Rewriting Techniques for Real-Time Systems, RTRTS 2010, Longyearbyen,
Spitsbergen, Norway, April 6-9, 2010, volume 36 of Electronic Proceedings in
Theoretical Computer Science. Computing Research Repository (CoRR), 2010.

[362] P. C. Ölveczky, editor. Rewriting Logic and its Applications. 8th International
Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos,
Cyprus, March 20-21, 2010, Revised Selected Papers, volume 6381 of Lecture
Notes in Computer Science. Springer, 2010.

[363] P. C. Ölveczky, A. Boronat, and J. Meseguer. Formal semantics and analysis of
behavioral AADL models in Real-Time Maude. In J. Hatcliff and E. Zucca, edi-
tors, Formal Techniques for Distributed Systems, Joint 12th IFIP WG 6.1 Inter-
national Conference, FMOODS 2010 and 30th IFIP WG 6.1 International Con-
ference, FORTE 2010, Amsterdam, The Netherlands, June 7-9, 2010. Proceed-
ings, volume 6117 of Lecture Notes in Computer Science, pages 47–62. Springer,
2010.

123

[364] P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH
scheduling algorithm in Real-Time Maude. In L. Baresi and R. Heckel, edi-
tors, Fundamental Approaches to Software Engineering, 9th International Con-
ference, FASE 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006,
Proceedings, volume 3922 of Lecture Notes in Computer Science, pages 357–372.
Springer, 2006.

[365] P. C. Ölveczky, M. Keaton, J. Meseguer, C. L. Talcott, and S. Zabele. Specifica-
tion and analysis of the AER/NCA active network protocol suite in Real-Time
Maude. In H. Hußmann, editor, Fundamental Approaches to Software Engineer-
ing, 4th International Conference, FASE 2001, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2001, Genova,
Italy, April 2-6, 2001, Proceedings, volume 2029 of Lecture Notes in Computer
Science, pages 333–348. Springer, 2001.

[366] P. C. Ölveczky, P. Kosiuczenko, and M. Wirsing. An object-oriented algebraic
steam-boiler control specification. In J.-R. Abrial, E. Börger, and H. Lang-
maack, editors, Formal Methods for Industrial Applications, Specifying and Pro-
gramming the Steam Boiler Control, volume 1165 of Lecture Notes in Computer
Science, pages 379–402. Springer, 1996.

[367] P. C. Ölveczky and J. Meseguer. Specifying real-time systems in rewriting logic.
In Meseguer [317], pages 284–309.

[368] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems
in rewriting logic. Theoretical Computer Science, 285(2):359–405, 2002.

[369] P. C. Ölveczky and J. Meseguer. Real-Time Maude 2.1. In Mart́ı-Oliet [297],
pages 285–314.

[370] P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In Denker and Talcott [139], pages 5–27.

[371] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

[372] P. C. Ölveczky and J. Meseguer. Specification and verification of distributed
embedded systems: A traffic intersection product family. In Ölveczky [361],
pages 137–157.

[373] P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
in System Design, 29(3):253–293, 2006.

[374] P. C. Ölveczky, P. Prabhakar, and X. Liu. Formal modeling and analysis of real-
time resource-sharing protocols in Real-Time Maude. In Y. Robert, editor, 22nd
IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008, Miami, Florida USA, April 14-18, 2008, pages 1–8. IEEE, 2008.

[375] P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of the OGDC
wireless sensor network algorithm in Real-Time Maude. In Bonsangue and
Johnsen [59], pages 122–140.

124

[376] P. C. Ölveczky and S. Thorvaldsen. Formal modeling, performance estimation,
and model checking of wireless sensor network algorithms in Real-Time Maude.
Theor. Comput. Sci., 410(2-3):254–280, 2009.

[377] M. Palomino, J. Meseguer, and N. Mart́ı-Oliet. A categorical approach to simu-
lations. In J. L. Fiadeiro, N. Harman, M. Roggenbach, and J. J. M. M. Rutten,
editors, Algebra and Coalgebra in Computer Science: First International Con-
ference, CALCO 2005, Swansea, UK, September 3-6, 2005, Proceedings, volume
3629 of Lecture Notes in Computer Science, pages 313–330. Springer, 2005.

[378] F. Parisi-Presicce, editor. Recent Trends in Algebraic Development Techniques,
12th International Workshop, WADT’97, Tarquinia, Italy, June 3-7, 1997, Se-
lected Papers, volume 1376 of Lecture Notes in Computer Science. Springer,
1997.

[379] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. SymPLFIED:
Symbolic program-level fault injection and error detection framework. In Pro-
ceedings of the 38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2008, Anchorage, Alaska, USA, June 24-27, 2008,
pages 472–481. IEEE Computer Society, 2008.

[380] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Discovering
application-level insider attacks using symbolic execution. In D. Gritzalis and
J. Lopez, editors, Emerging Challenges for Security, Privacy and Trust, 24th
IFIP TC 11 International Information Security Conference, SEC 2009, Pafos,
Cyprus, May 18-20, 2009. Proceedings, volume 297 of IFIP Advances in Infor-
mation and Communication Technology, pages 63–75. Springer, 2009.

[381] L. C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer Science.
Springer Verlag, 1994.

[382] G. Paun, editor. Membrane Computing. An Introduction. Springer, 2002.

[383] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational
theories. Journal of the Association for Computing Machinery, 28(2):233–264,
1981.

[384] F. Pfenning. Elf: A language for logic definition and verified metaprogramming.
In Proc. Fourth Annual IEEE Symp. on Logic in Computer Science, pages 313–
322, Asilomar, California, June 1989.

[385] A. Pnueli. Deduction is forever. Invited talk at FM’99 avaliable online at
cs.nyu.edu/pnueli/fm99.ps, 1999.

[386] S. Porat and N. Francez. Fairness in term rewriting systems. In RTA’85, volume
202, pages 287–300. Springer LNCS, 1985.

[387] S. Porat and N. Francez. Full-commutation and fair-termination in equational
(and combined) term-rewriting systems. In CADE’86, volume 230, pages 21–41.
Springer LNCS, 1986.

[388] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, 1994.

125

[389] C. Rattray, S. Maharaj, and C. Shankland, editors. Algebraic Methodology
and Software Technology, 10th International Conference, AMAST 2004, Stir-
ling, Scotland, UK, July 12-16, 2004, Proceedings, volume 3116 of Lecture Notes
in Computer Science. Springer, 2004.

[390] S. Reich. Implementing and extending the MSR crypto-protocol specification
language. Master’s thesis, Fachbereich Informatik, Universität Hamburg, April
2006.

[391] A. Riesco and A. Verdejo. Implementing and analyzing in Maude the Enhanced
Interior Gateway Routing Protocol. In Roşu [403], pages 249–266.

[392] A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero. Declarative debugging
of rewriting logic specifications. Journal of Logic and Algebraic Programming,
2011. This volume.

[393] J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for model-
ing time-dependent behavior of DSLs. In R. DeLine and M. Minas, editors,
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2009, Corvallis, OR, USA, September 20-24, 2009, pages
51–55. IEEE, 2009.

[394] J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-
time domain specific visual languages. In Ölveczky [362], pages 174–190.

[395] C. Rocha and J. Meseguer. A rewriting decision procedure for Dijkstra-Scholten’s
syllogistic logic with complements. Revista Colombiana de Computación, 8(2),
Dec. 2007.

[396] C. Rocha and J. Meseguer. Theorem proving modulo based on Boolean equa-
tional procedures. In R. Berghammer, B. Möller, and G. Struth, editors, Rela-
tions and Kleene Algebra in Computer Science, 10th International Conference on
Relational Methods in Computer Science, and 5th International Conference on
Applications of Kleene Algebra, RelMiCS/AKA 2008, Frauenwörth, Germany,
April 7-11, 2008. Proceedings, volume 4988 of Lecture Notes in Computer Sci-
ence, pages 337–351. Springer, 2008.

[397] C. Rocha and J. Meseguer. Constructors, sufficient completeness and deadlock
freedom of rewrite theories. In C. G. Fermüller and A. Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, 17th International Con-
ference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010, Proceedings,
volume 6397 of Lecture Notes in Computer Science, pages 594–609. Springer,
2010.

[398] C. Rocha and J. Meseguer. Proving safety properties of rewrite theories. In
Corradini et al. [124], pages 314–328.

[399] C. Rocha, C. Muñoz, and H. Cadavid. A graphical environment for the semantic
validation of a plan execution language. In S. Grenander and L. Bergman, edi-
tors, Proceedings of the Third IEEE International Conference on Space Mission
Challenges for Information Technology, SMC-IT 2009, Pasadena, California,
USA, July 19-23, 2009, pages 201–207, Los Alamitos, CA, USA, 2009. IEEE
Computer Society.

126

[400] D. E. Rodŕıguez. Case studies in the specification and analysis of protocols in
Maude. In Futatsugi [200], pages 257–273.

[401] D. E. Rodŕıguez. A secret-sharing protocol modelled in Maude. In Gadducci
and Montanari [205], pages 223–239.

[402] J. R. Romero, A. Vallecillo, and F. Durán. Writing and executing ODP computa-
tional viewpoint specifications using Maude. Computer Standards & Interfaces,
29(4):481–498, 2007.

[403] G. Roşu, editor. Proceedings of the Seventh International Workshop on Rewriting
Logic and its Applications, WRLA 2008, Budapest, Hungary, March 29-30, 2008,
volume 238(3) of Electronic Notes in Theoretical Computer Science. Elsevier,
2009.

[404] G. Roşu and A. Ştefănescu. Matching logic: a new program verification approach
(new ideas and emerging results track). In R. N. Taylor, H. Gall, and N. Med-
vidovic, editors, Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages
868–871. ACM, 2011.

[405] G. Roşu, S. Eker, P. Lincoln, and J. Meseguer. Certifying and synthesizing
membership equational proofs. In K. Araki, S. Gnesi, and D. Mandrioli, edi-
tors, FME 2003: Formal Methods, International Symposium of Formal Methods
Europe, Pisa, Italy, September 8-14, 2003, Proceedings, volume 2805 of Lecture
Notes in Computer Science, pages 359–380. Springer, 2003.

[406] G. Roşu, C. Ellison, and W. Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In Johnson and Pavlovic [246], pages 142–162.

[407] G. Roşu, W. Schulte, and T. F. Şerbănuţă. Runtime verification of C memory
safety. In S. Bensalem and D. Peled, editors, Runtime Verification, 9th Interna-
tional Workshop, RV 2009, Grenoble, France, June 26-28, 2009. Selected Papers,
volume 5779 of Lecture Notes in Computer Science, pages 132–151. Springer,
2009.

[408] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

[409] V. Rusu. Combining theorem proving and narrowing for rewriting-logic spec-
ifications. In G. Fraser and A. Gargantini, editors, Tests and Proofs, 4th In-
ternational Conference, TAP 2010, Málaga, Spain, July 1-2, 2010. Proceedings,
volume 6143 of Lecture Notes in Computer Science, pages 135–150. Springer,
2010.

[410] V. Rusu and M. Clavel. Vérification d’invariants pour des systèmes spécifiés en
logique de réécriture. In A. Schmitt, editor, JFLA 2009, Vingtièmes Journées
Francophones des Langages Applicatifs, Saint Quentin sur Isère, France, Jan-
uary 31-February 3, 2009, Proceedings, volume 7.2 of Studia Informatica Uni-
versalis, pages 317–350, 2009.

127

[411] G. Santos-Garćıa, M. Palomino, and A. Verdejo. Rewriting logic using strate-
gies for neural networks: An implementation in Maude. In J. M. Corchado,
S. Rodŕıguez, J. Llinas, and J. M. Molina, editors, Proceedings of the Interna-
tional Symposium on Distributed Computing and Artificial Intelligence, DCAI
2008, University of Salamanca, Spain, October 22-24, 2008, volume 50 of Ad-
vances in Soft Computing, pages 424–433. Springer, 2009.

[412] R. Sasse, S. Escobar, C. Meadows, and J. Meseguer. Protocol analysis modulo
combination of theories: A case study in Maude-NPA. In J. Cuéllar, J. Lopez,
G. Barthe, and A. Pretschner, editors, Security and Trust Management - 6th
International Workshop, STM 2010, Athens, Greece, September 23-24, 2010,
Revised Selected Papers, volume 6710 of Lecture Notes in Computer Science,
pages 163–178. Springer, 2011.

[413] R. Sasse and J. Meseguer. Java+ITP: A verification tool based on Hoare logic
and algebraic semantics. In Denker and Talcott [139], pages 29–46.

[414] F. Schernhammer and B. Gramlich. Characterizing and proving operational
termination of deterministic conditional term rewriting systems. Journal of Logic
and Algebraic Programming, 79(7):659–688, 2010.

[415] F. Schernhammer and J. Meseguer. Incremental checking of well-founded recur-
sive specifications modulo axioms. In Schneider-Kamp and Hanus [416], pages
5–16.

[416] P. Schneider-Kamp and M. Hanus, editors. Proceedings of the 13th Interna-
tional ACM SIGPLAN Symposium on Principles and Practices of Declarative
Programming, PPDP 2011, Odense, Denmark, July 20-22, 2011. ACM, 2011.

[417] C. Schürmann and M.-O. Stehr. An executable formalization of the HOL/Nuprl
connection in the metalogical framework Twelf. In M. Hermann and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning, 13th International Conference, LPAR 2006, Phnom Penh, Cambodia,
November 13-17, 2006, Proceedings, volume 4246 of Lecture Notes in Computer
Science, pages 150–166. Springer, 2006.

[418] R. Segala. Modelling and Verification of Randomized Distributed Real Time
Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

[419] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochas-
tic systems. In 17th conference on Computer Aided Verification (CAV’05), vol-
ume 3576 of LNCS, pages 266–280, Edinburgh, Scotland, 2005. Springer.

[420] K. Sen, M. Viswanathan, and G. A. Agha. VESTA: A statistical model-checker
and analyzer for probabilistic systems. In QEST 2005, pages 251–252, 2005.

[421] T. F. Şerbănuţă. A Rewriting Approach to Concurrent Programming Language
Design and Semantics. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, 2010. http://hdl.handle.net/2142/18252.

[422] T. F. Şerbănuţă and G. Roşu. K-Maude: A rewriting based tool for semantics
of programming languages. In Ölveczky [362], pages 104–122.

128

[423] T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic approach to
operational semantics. Information and Computation, 207(2):305–340, 2009.

[424] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, and J. Meseguer. Model-
checking DoS amplification for VoIP session initiation. In Backes and Ning [36],
pages 390–405.

[425] R. M. Smullyan. Theory of Formal Systems, volume 47 of Annals of Mathematics
Studies. Princeton University Press, 1961.

[426] M. G. Sriram. Modelling protein functional domains in signal transduction using
Maude. Briefings in Bioinformatics, 4(3):236–245, 2003.

[427] J. R. Stanton, Y. Amir, D. Hasse, G. Ateniese, Y. Kim, C. Nita-Rotaru,
T. Schlossnagle, J. L. Schultz, and G. Tsudik. Secure group communication in
asynchronous networks with failures: Integration and experiments. In ICDCS,
pages 330–343, 2000.

[428] V. Stavridou, J. A. Goguen, A. Stevens, S. M. Eker, S. N. Aloneftis, and
K. M. Hobley. Funnel and 2obj: Towards an integrated hardware design en-
vironment. In Theorem Provers in Circuit Design (TPDC), Proceedings of the
IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit
Design: Theory, Practice and Experience, volume A-10 of IFIP Transactions,
pages 197–223. North-Holland, 1992.

[429] L. J. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for SDL:
A case study of the alternating bit protocol. In Kirchner and Kirchner [262],
pages 83–104.

[430] M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its ap-
plication to λ-, ς- and π-calculi. In Futatsugi [200], pages 70–92.

[431] M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and
Type Theory. PhD thesis, Fachbereich Informatik, Universität Hamburg, 2002.

[432] M.-O. Stehr. The open calculus of constructions (part I): An equational type
theory with dependent types for programming, specification, and interactive
theorem proving. Fundamenta Informaticae, 68(1-2):131–174, 2005.

[433] M.-O. Stehr. The open calculus of constructions (part II): An equational type
theory with dependent types for programming, specification, and interactive
theorem proving. Fundamenta Informaticae, 68(3):249–288, 2005.

[434] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying
typed higher-order languages in a first-order logical framework. In O. Owe,
S. Krogdahl, and T. Lyche, editors, From Object-Orientation to Formal Methods,
Essays in Memory of Ole-Johan Dahl, volume 2635 of Lecture Notes in Computer
Science, pages 334–375. Springer, 2004.

[435] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. Rewriting logic as a unifying
framework for Petri nets. In H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg,
editors, Unifying Petri Nets, Advances in Petri Nets, volume 2128 of Lecture
Notes in Computer Science, pages 250–303. Springer, 2001.

129

[436] J. G. Stell. Modelling term rewriting systems by sesqui-categories. Technical
Report TR94-02, Keele University, 1994.

[437] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

[438] M. Sun and J. Meseguer. Distributed real-time emulation of formally-defined
patterns for safe medical device control. In Ölveczky [361], pages 158–177.

[439] M. Sun, J. Meseguer, and L. Sha. A formal pattern architecture for safe medical
systems. In Ölveczky [362], pages 157–173.

[440] C. L. Talcott. Actor theories in rewriting logic. Theoretical Computer Science,
285(2):441–485, 2002.

[441] C. L. Talcott. Coordination models based on a formal model of distributed object
reflection. In L. Brim and I. Linden, editors, Proceedings of the First Interna-
tional Workshop on Methods and Tools for Coordinating Concurrent, Distributed
and Mobile Systems, MTCoord 2005, Namur, Belgium, April 23, 2005, volume
150(1) of Electronic Notes in Theoretical Computer Science, pages 143–157. El-
sevier, 2006.

[442] C. L. Talcott. Formal executable models of cell signaling primitives. In T. Mar-
garia and B. Steffen, editors, Proceedings of the Leveraging Applications of For-
mal Methods Second International Symposium, ISoLA 2006, Paphos, Cyprus,
November 15-19, 2006, pages 298–302. IEEE, 2006.

[443] C. L. Talcott. Symbolic modeling of signal transduction in Pathway Logic.
In L. F. Perrone, B. Lawson, J. Liu, and F. P. Wieland, editors, Proceedings
of the Winter Simulation Conference, WSC 2006, Monterey, California, USA,
December 3-6, 2006, pages 1656–1665. WSC, 2006.

[444] C. L. Talcott. Policy-based coordination in PAGODA: A case study. In G. Boella,
M. Dastani, A. Omicini, L. van der Torre, I. Cerna, and I. Linden, editors, Com-
bined Proceedings of the Second International Workshop on Coordination and
Organization, CoOrg 2006, and the Second International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems, MT-
Coord 2006, Bologna, Italy, June 13, 2006, volume 181 of Electronic Notes in
Theoretical Computer Science, pages 97–112. Elsevier, 2007.

[445] C. L. Talcott. Pathway logic. In M. Bernardo, P. Degano, and G. Zavattaro,
editors, Formal Methods for Computational Systems Biology, 8th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2008, Bertinoro, Italy, June 2-7, 2008, Advanced Lec-
tures, volume 5016 of Lecture Notes in Computer Science, pages 21–53. Springer,
2008.

[446] C. L. Talcott and D. L. Dill. The pathway logic assistant. In G. Plotkin, editor,
Proceedings of the Third International Workshop on Computational Methods in
Systems Biology, pages 228–239, 2005.

130

[447] C. L. Talcott and D. L. Dill. Multiple representations of biological processes. In
C. Priami and G. D. Plotkin, editors, Transactions on Computational Systems
Biology VI, volume 4220 of Lecture Notes in Computer Science, pages 221–245.
Springer, 2006.

[448] C. L. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway logic
modeling of protein functional domains in signal transduction. In R. B. Altman,
A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors, Proceedings of the
9th Pacific Symposium on Biocomputing, PSB 2004, Fairmont Orchid, Hawaii,
USA, January 6-10, 2004, pages 568–580. World Scientific, January 2004.

[449] S. Tang. Towards Secure Web Browsing. PhD thesis, University of Illinois at
Urbana-Champaign, 2011. 2011-05-25, http://hdl.handle.net/2142/24307.

[450] P. Thati and J. Meseguer. Complete symbolic reachability analysis using back-
and-forth narrowing. Theoretical Computer Science, 366(1-2):163–179, 2006.

[451] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asyn-
chronous pi-calculus semantics and may testing in Maude 2.0. In Gadducci and
Montanari [205], pages 261–281.

[452] S. Thorvaldsen. Modeling and analysis of the OGDC wireless sensor network
algorithm in Real-Time Maude. Master’s thesis, Department of Informatics,
University of Oslo, June 2005.

[453] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
G. Ianni and S. Flesca, editors, Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture Notes
in Artificial Intelligence, pages 308–319. Springer, 2002.

[454] A. Tiwari and C. L. Talcott. Analyzing a discrete model of aplysia central pat-
tern generator. In M. Heiner and A. M. Uhrmacher, editors, Computational
Methods in Systems Biology, 6th International Conference, CMSB 2008, Ros-
tock, Germany, October 12-15, 2008. Proceedings, volume 5307 of Lecture Notes
in Computer Science, pages 347–366. Springer, 2008.

[455] A. Tiwari, C. L. Talcott, M. Knapp, P. Lincoln, and K. Laderoute. Analyzing
pathways using SAT-based approaches. In H. Anai, K. Horimoto, and T. Kutsia,
editors, Algebraic Biology, Second International Conference, AB 2007, Castle of
Hagenberg, Austria, July 2-4, 2007, Proceedings, volume 4545 of Lecture Notes
in Computer Science, pages 155–169. Springer, 2007.

[456] X. Urbain. Modular & incremental automated termination proofs. J. Autom.
Reasoning, 32(4):315–355, 2004.

[457] A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic
Specification Approach. World Scientific, 1996.

[458] A. Verdejo. Building tools for LOTOS symbolic semantics in Maude. In D. Peled
and M. Y. Vardi, editors, Formal Techniques for Networked and Distributed
Systems - FORTE 2002, 22nd IFIP WG 6.1 International Conference Houston,
Texas, USA, November 11-14, 2002, Proceedings, volume 2529 of Lecture Notes
in Computer Science, pages 292–307. Springer, 2002.

131

[459] A. Verdejo. Maude como Marco Semántico Ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense de Madrid, Spain, Mar. 2003.

[460] A. Verdejo and N. Mart́ı-Oliet. Two case studies of semantics execution in
Maude: CCS and LOTOS. Formal Methods in System Design, 27(1-2):113–172,
2005.

[461] A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67(1-2):226–293, 2006.

[462] A. Verdejo, I. Pita, and N. Mart́ı-Oliet. Specification and verification of the tree
identify protocol of IEEE 1394 in rewriting logic. Formal Aspects of Computing,
14(3):228–246, 2003.

[463] P. Viry. La Réécriture Concurrente. PhD thesis, Université de Nancy I, 1992.

[464] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis, D. G. Mar-
itsas, G. Philokyprou, and S. Theodoridis, editors, PARLE’94: Parallel Archi-
tectures and Languages Europe, 6th International PARLE Conference, Athens,
Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes in Computer
Science, pages 648–660. Springer, 1994.

[465] P. Viry. Input/output for ELAN. In Meseguer [317], pages 51–64.

[466] P. Viry. Adventures in sequent calculus modulo equations. In Kirchner and
Kirchner [262], pages 21–32.

[467] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002.

[468] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in Stratego/XT 0.9. In C. Lengauer, D. S. Batory, C. Consel, and
M. Odersky, editors, Domain-Specific Program Generation, International Sem-
inar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers, volume
3016 of Lecture Notes in Computer Science, pages 216–238. Springer, 2004.

[469] L. Wang, Z. Kalbarczyk, and R. K. Iyer. Formalizing system behavior for eval-
uating a system hang detector. In Proceedings of the 27th IEEE Symposium
on Reliable Distributed Systems, SRDS 2008, Napoli, Italy, October 6-8, 2008,
pages 269–278. IEEE, 2008.

[470] I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timed semantics of Orc.
Theor. Comput. Sci., 402(2-3):234–248, 2008.

[471] J. M. Wing, J. Woodcock, and J. Davies, editors. FM’99 - Formal Methods,
World Congress on Formal Methods in the Development of Computing Systems,
Toulouse, France, September 20-24, 1999, Proceedings, Volume II, volume 1709
of Lecture Notes in Computer Science. Springer, 1999.

[472] M. Wirsing, G. Denker, C. L. Talcott, A. Poggio, and L. Briesemeister. A
rewriting logic framework for soft constraints. In Denker and Talcott [139],
pages 181–197.

132

[473] M. Wirsing and A. Knapp. A formal approach to object-oriented software engi-
neering. In Meseguer [317], pages 322–360.

[474] M. Wirsing and A. Knapp. A formal approach to object-oriented software engi-
neering. Theoretical Computer Science, 285(2):519–560, 2002.

[475] H. L. S. Younes and R. G. Simmons. Statistical probabilistic model checking
with a focus on time-bounded properties. Inf. Comput., 204(9):1368–1409, 2006.

[476] M. Zhang, K. Ogata, and M. Nakamura. Specification translation of state ma-
chines from equational theories into rewrite theories. In Dong and Zhu [143],
pages 678–693.

133

