
On the Church-Rosser and Coherence Properties of
Conditional Order-Sorted Rewrite Theories1

Francisco Durán

Universidad de Málaga, Spain

José Meseguer

University of Illinois at Urbana-Champaign, IL, USA

Abstract

In the effort to bring rewriting-based methods into contact with practical appli-
cations both in programing and in formal verification, there is a tension between:
(i) expressiveness and generality—so that a wide range of applications can be
expressed easily and naturally—, and (ii) support for formal verification, which
is harder to get for general and expressive specifications. This paper answers the
challenge of successfully negotiating the tension between goals (i) and (ii) for a
wide class of Maude specifications, namely: (a) equational order-sorted condi-
tional specifications (Σ, E ∪ A), corresponding to functional programs modulo
axioms such as associativity and/or commutativity and/or identity axioms; and
(b) order-sorted conditional rewrite theories R = (Σ, E ∪ A,R, φ), correspond-
ing to concurrent programs modulo axioms A. For Maude functional programs
the key formal property checked is the Church-Rosser property. For concur-
rent declarative programs in rewriting logic, the key property checked is the
coherence between rules and equations modulo the axioms A. Such properties
are essential, both for executability purposes and as a basis for verifying many
other properties, such as, for example, proving inductive theorems of a functional
program, or correct model checking of temporal logic properties for a concur-
rent program. This paper develops the mathematical foundations on which the
checking of these properties (or ground versions of them) is based, presents two
tools, the Church-Rosser Checker (CRC) and the Coherence Checker (ChC)
supporting the verification of these properties, and illustrates with examples a
methodology to establish such properties using the proof obligations returned
by the tools.

Key words: Maude, order-sorted conditional specifications, rewriting modulo,
formal verification, Church-Rosser property, coherence

1This paper is an improved and substantially extended version of [27] and [26].

Preprint submitted to The Journal of Logic and Algebraic Programming June 29, 2012

1. Introduction

In the effort to bring rewriting-based methods into contact with practical
applications both in programing and in formal verification, there is a tension be-
tween: (i) expressiveness and generality—so that a wide range of applications
can be expressed easily and naturally—, and (ii) support for formal verifica-
tion, which is harder to get for general and expressive specifications. This pa-
per answers the challenge of successfully negotiating the tension between goals
(i) and (ii) for a wide class of Maude specifications, namely, either: (a) condi-
tional order-sorted equational theories (Maude functional modules) of the form
(Σ, E ∪ A) specifying functional programs modulo axioms A such as associa-
tivity and/or commutativity and/or identity of some of the function symbols
in the signature Σ, or (b) conditional rewrite theories (Maude system modules)
R = (Σ, E ∪ A,R, φ) specifying concurrent programs modulo axioms A as be-
fore, whose states are elements of the initial algebra TΣ/E∪A associated to the
underlying order-sorted equational theory (Σ, E ∪ A), and whose concurrent
transitions are specified by the rules R, which are applied with some frozen-
ness restrictions φ which, as explained in [9], may forbid rewriting under some
argument positions of a function symbol.

Of course, different kinds of formal verification may be performed for an
equational theory (Σ, E ∪ A) or a rewrite theory R = (Σ, E ∪ A,R, φ). For ex-
ample, we may want to prove inductive theorems about a functional program, or
to model check temporal logic properties for a concurrent declarative program.
However, many verification methods, including the ones just mentioned, rely on
two basic properties, namely, that the equational theory (Σ, E ∪ A) is Church-
Rosser (or at least ground Church-Rosser) modulo the axioms A; and that the
rules R in the rewrite theory R = (Σ, E ∪ A,R, φ) are coherent (or at least
ground coherent) with the equations E modulo the axioms A. Furthermore,
even before any formal verification is attempted, the (ground) Church-Rosser
property of (Σ, E∪A) and the (ground) coherence of R = (Σ, E∪A,R, φ) are es-
sential executability requirements, without which the execution of (Σ, E∪A) as a
functional program (resp., ofR = (Σ, E∪A,R, φ) as a concurrent program) may
yield unpredictable results. Indeed, the (ground) Church-Rosser property of a
functional program (Σ, E ∪ A) ensures its determinism, so that the final result
of evaluating an input expression is unique if it exists. Likewise, the (ground)
coherence of a concurrent program R = (Σ, E∪A,R, φ) (which assumes that its
functional fragment (Σ, E ∪ A) is ground Church-Rosser) ensures that we can
always achieve the effect of rewriting with R modulo E ∪ A by intermingling
rewriting with both E and R modulo A.

We believe that the generality and expressiveness of specifications with a
rich order-sorted type structure, with conditional equations and rules, and with
structural axioms such as associativity and/or commutativity and/or identity is
enormously useful in practical applications (see, e.g., [10] for many examples).
Therefore, we have no doubt that having methods and tools to prove such
specifications Church-Rosser (resp., coherent) will be very useful. Furthermore,
the more general some methods and tools are, the more widely applicable they

2

become: if a specification happens to be many-sorted or even just unsorted, since
these are both special cases of the order-sorted framework, it can a fortiori be
handled by the methods and tools that we present.

One important design decision has been not to support either equational
completion of an equational theory (Σ, E ∪ A), or coherence completion of a
rewrite theory R = (Σ, E ∪ A,R, φ). The reason for this decision is that the
specifications (Σ, E ∪ A) (resp., R = (Σ, E ∪ A,R, φ)) are not arbitrary ones,
such as, e.g., an arbitrary collection of equations presenting, say, the theory of
groups which one wants to complete into an equivalent confluent and terminat-
ing presentation. Instead, such Maude specifications are programs, which the
user has presumably tested and expects they have the required (ground) Church-
Rosser (resp., (ground) coherence) properties. Therefore, the tools we present,
namely the Maude Church-Rosser Checker (CRC) tool, and the Maude Coher-
ence Checker (ChC) tool, attempt to check such properties without performing
any completion on the given specifications. Indeed, attempting completion pro-
cesses under such circumstances seems ill advised for several reasons. Consider,
for example, the case of an equational functional program (Σ, E ∪ A) that a
user has written and tested and now submits to the CRC tool to check that it
is Church-Rosser. If the CRC returns with success all is well. But even if the
CRC returns with some unresolved proof obligations such as conditional critical
pairs that it could not join, or term memberships it could not establish, all may
still be well, except that some more formal reasoning is required. Of course,
some genuine problem, such as a failure of confluence, may be uncovered by the
returned proof obligations. But this will not be the most common case, and
is not an issue that can be automatically settled: judicious user intervention
is needed to decide whether either: (i) the specification is faulty and should
be corrected, or (ii) the specification is correct, but more formal reasoning is
needed.

The reasons why, very often, all may be well even though the CRC or ChC
tools return unresolved proof obligations are twofold. First, since the specifi-
cations are conditional, the CRC tool may not be able to automatically check
the Church-Rosser property (resp., the ChC tool may not be able to check the
coherence property) of the given specification even though the property holds.
For example, the CRC tool may return a conditional critical pair C ⇒ s = t
that could not join, but in fact, by further reasoning we may be able to show
that for all substitutions θ such that the condition Cθ holds, the terms sθ and tθ
are joinable, which is all that is needed. A second set of reasons why all may be
well even though the tools return unresolved proof obligations is that, since the
specifications are programs operating on concrete data, namely, ground terms,
all that is needed of a functional program (Σ, E∪A) is that it is ground Church-
Rosser, and all that is needed of a concurrent program R = (Σ, E ∪ A,R, φ) is
that (besides its functional fragment (Σ, E∪A) being ground Church-Rosser), it
is ground coherent. That is, the proof obligations returned by the tools may hold
for the ground case, but their proof may require additional inductive reasoning.

This paper has several closely-related goals:

3

(1) To present the foundations of the CRC tool. This is achieved by presenting
a detailed discussion of confluence and descent for order-sorted conditional
specifications modulo axioms, and proving a general theorem reducing their
confluence (resp., ground confluence) to the joinability of suitable condi-
tional critical pairs under the assumption that such specifications (which
may have extra variables in their conditions and righthand sides) are opera-
tionally terminating in the sense of [18], that is, terminating in the intuitive
sense that an interpreter executing them will terminate for all inputs.

(2) To present likewise the foundations of the ChC tool. This is achieved by
defining in detail the notions of coherence and ground coherence for con-
ditional specifications, and proving how checking these properties can be
reduced to checking appropriate conditional critical pairs between condi-
tions and rules (plus additional conditions required in non-overlap cases).
In the ground coherence case, we show how certain purely equational, in-
ductive proof obligations are sufficient to ensure the property.

(3) To illustrate with examples a methodology that a user can follow in dealing
with unresolved proof obligations returned by the CRC and ChC tools,
since, as mentioned above, both the conditional nature of the specifications
and the fact that often only the ground versions of the properties are really
needed imply that subsequent user intervention performing further formal
reasoning may sometimes be needed.

(4) To present the CRC and ChC tools and explain their use, so that a reader
of this paper gains both the necessary theoretical understanding and all the
practical knowledge needed to use the tools.

(5) To place the present work in the context of related work, both on confluence
and equational completion methods, including the ground case; and of other
work on coherence checking and completion methods.

In addressing points (3) and (4), and also in explaining the foundations men-
tioned in (1) and (2) above, one more aspect of the CRC and ChC tools becomes
clear, namely, their practical effectiveness in dealing with complex specifications.
These tools would be ineffective in practice if they were to return a large num-
ber of unresolved proof obligations. Due to the conditional nature of the input
specifications, and the presence of axioms like associativity-commutativity for
which a unification problem may have a large number of solutions, this is a real
possibility: many conditional critical pairs C ⇒ s = t, such that we cannot
automatically prove s↓ t, are often generated. The effectiveness of the CRC
and ChC tools resides in the reasoning methods employed by the tools to dis-
charge many of these unresolved critical pairs, so that in the end a relatively
small number of proof obligations is returned to the user. For example, in the
hereditary finite sets specification presented in Section 5.1, the CRC generates
1027 critical pairs, from which it can trivially discharge by reduction 1001 crit-
ical pairs, leaving 26 left. But further automated reasoning allows the CRC to
discharge 20 of these, returning only 6 unresolved proof obligations to the user.

4

Yet another important feature of the CRC and ChC tools, which we illus-
trate with examples, such as the lists and sets example in Section 5.2, is their
capacity to deal with any combination of associativity and/or commutativity
and/or identity axioms, even though Maude’s built-in order-sorted unification
algorithm does not handle associative but not commutative symbols. For combi-
nations where any associative symbol is also commutative, the tool’s treatment
is fully general. For cases where some symbol is associative but not commuta-
tive, it is well known that associative unification is not finitary. Yet, the CRC
and ChC tools can handle many specifications with associative and not commu-
tative symbols by a simple check which, if successful, allows us to replace an as-
sociativity axiom for a symbol f by either the oriented equation f(f(x, y), z)→
f(x, f(y, z)), or the oriented equation f(x, f(y, z)) → f(f(x, y), z) for analy-
sis purposes. The general idea, also applied to identity axioms and borrowed
from [21], is to replace a specification R = (Σ, A∪B,R) where A∪B is a set of
equational axioms by a semantically equivalent specification R = (Σ, B, ~A∪ R̂),
where the axioms A have been oriented as rules, and the rules R̂ are the ~A,B-
variants of the original rules R.2

The CRC and ChC tools, together with their documentation, are publicly
available at http://maude.lcc.uma.es/CRChC.

The rest of the paper is structured as follows. Section 2 introduces the
notion of conditional order-sorted rewriting modulo a set of linear and regular
axioms. Section 3 presents the notion of Church-Rosser conditional order-sorted
specification modulo axioms, introduces key concepts such as those of strongly
deterministic order-sorted equational specification, conditional critical pair, and
context-joinable and unfeasible conditional critical pair, and discusses the prop-
erties of confluence and descent handled by the CRC tool. Section 4 introduces
the notion of coherence of conditional rewrite theories and discusses the theoret-
ical basis of the ChC tool, including the use of the notions of context-joinability
and unfeasibility of conditional critical pairs in such a tool, and the very impor-
tant case of ground coherence. Section 5 presents some guidelines on how to use
the tools and illustrates their use with some examples. To wrap up, Section 6
discusses related work, presents some conclusions, and outlines some directions
of future work.

2. Conditional order-sorted rewriting modulo axioms

Throughout this paper, we rely on standard terminology and theorems from
the field of term rewriting (see, e.g., [51, 3, 15, 57, 14]) and order-sorted alge-
bras [34, 56, 48]. We however introduce in this section some standard notation
on conditional order-sorted rewriting modulo axioms.

We assume specifications of the form R = (Σ, A,R) where A is a collection
of unconditional equational axioms that are linear and regular, and R is an A-

2See [21] for a definition of the ~A, B-variants of a rule.

5

coherent set of (possibly conditional) rewrite rules (see below for further details
on these notions).

Let us start by recalling the notions of order-sorted signature, terms, regular
and linear equational axioms, and sort-decreasing and sort-preserving equations.

An order-sorted signature (Σ, S,≤) consists of a poset of sorts (S,≤) and
an S∗ × S-indexed family of sets Σ = {Σs1...sn,s}(s1...sn,s)∈S∗×S of function
symbols. Throughout this paper we further assume that Σ is preregular, so
that each term t has a least sort, denoted ls(t) (see [34]), and that Σ is kind-
complete, that is, for each sort s ∈ S its connected component in the poset
(S,≤) has a top sort, denoted [s], and for each f ∈ Σs1...sn,s there is also an
f ∈ Σ[s1]...[sn],[s]. An order-sorted signature can always be extended to a kind-
complete one. Maude automatically checks preregularity and adds a new “kind”
sort [s] at the top of the connected component of each sort s ∈ S specified by
the user, and automatically lifts each operator to the kind level.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables,
the set TΣ(X)s denotes the set of Σ-terms of sort s with variables in X . We
denote by P(t) the set of positions of a Σ-term t, and by t|p the subterm of t at
position p (with p ∈ P(t)). A term t with its subterm t|p replaced by the term
t′ is denoted by t[t′]p.

For an equation u = v to be well-formed, the sorts of u and v should be in
the same connected component of (S,≤). For E a set equations, [t]E denotes
the equivalence class of t modulo provable E-equality [34]. An equation u = v is
called regular if Var(u) = Var(v), and linear if there are no repeated variables in
either u or v. An equation u = v is called sort-decreasing iff for each well-sorted
substitution θ we have ls(uθ) ≥ ls(vθ), and is called sort-preserving if both u = v
and v = u are sort-decreasing. Using substitutions that specialize variables to
smaller sorts (see Section 3.2), sort-decreasingness of an equation can be easily
checked. We assume throughout the paper that the equational axioms A in
the specification R = (Σ, A,R) are regular, linear, and sort-preserving.3 Sort-
preservingness of A is extremely useful for performing order-sorted rewriting
modulo A: when A-matching a subterm t|p against a rule’s lefthand side to
obtain a matching substitution σ, we need to check that σ is well-sorted, that
is, that if a variable x has sort s, then some element in the A-equivalence class
[xσ]A has also sort s. But by sort-preservingness of A this is equivalent to
checking ls(xσ) ≤ s.

Given a set of equational axioms A, a substitution σ is an A-unifier of t

3When A is any combination of associativity and/or commutativity axioms, sort-
preservingness is equivalent to the A-preregularity condition automatically checked by Maude
(see [10, Section 22.2.5]). When A is any combination of associativity and/or commutativ-
ity and/or identity axioms, the A-preregularity condition checked by Maude is equivalent
to the associativity and commutativity axioms being sort-preserving and the identity axioms
f(x, 1) = x and f(1, x) = x being sort-decreasing. However, the case of an A-preregular Maude
specification R = (Σ, A, R) can be reduced to that of a semantically equivalent specification
whose axioms are sort-preserving by either: (i) the signature completion method presented
in [36]; or (ii) turning the identity axioms into rules and performing the variant-based theory
completion process described in [21].

6

and t′ if tσ =A t′σ, and it is an A-match from t to t′ if t′ =A tσ. UnifA(t, t′)
denotes a complete set of A-unifiers of t and t′; that is, UnifA(t, t′) is a set of
A-unifiers of t and t′ such that for any other A-unifier θ of t and t′ there is a
τ ∈ UnifA(t, t′) and a substitution ρ such that for each x ∈ Var(t) ∪ Var(t′),
θ(x) =A ρ(τ(x)).

Given a rewrite theory R as above, we define the relation →R/A, either by
the inference system of rewriting logic (see [9]), or by the usual inductive de-
scription: →R/A =

⋃
n →R/A,n, where→R/A,0 = ∅, and for each n ∈ N, we have

→R/A,n+1 =→R/A,n ∪ {(u, v) | u =A lσ → rσ =A v∧ l→ r if
∧
i ui → vi ∈ R∧

∀i, uiσ →∗R/A,n viσ}. In general, of course, given terms t and t′ with sorts in
the same connected component, the problem of whether t →R/A t′ holds is
undecidable.

Even if there is an effective A-matching algorithm, the relation u →R/A v
still remains undecidable in general, since to see if u→R/A v involves searching
through the possibly infinite equivalence class [u]A to see whether an A-match
is found for a subterm of some u′ ∈ [u]A and the result of rewriting u′ belongs
to the equivalence class [v]A. For this reason, a much simpler relation →R,A

is defined, which becomes decidable if an A-matching algorithm exists. We
define (see [52]) →R,A =

⋃
n→R,A,n where →R,A,0 = ∅, and for each n ∈ N

and any terms u, v with sorts in the same connected component the relation
u →R,A,n+1 v holds if either u →R,A,n v, or there is a position p in u, a rule
l→ r if

∧
i ui → vi in R, and a substitution σ such that u|p =A lσ, v = u[rσ]p,

and ∀i, uiσ →∗R,A,n wi with wi =A viσ.
Of course, →R,A ⊆ →R/A. But the question is whether any →R/A-step can

be (bi)simulated by a →R,A-step. We say that R satisfies this A-completeness
property if for any u, v with sorts in the same connected component we have:

u
R/A

//

R,A
&&

v

A

v′

where here and in what follows dotted lines indicate existential quantification.
It is easy to check that A-completeness is equivalent to the following (strong)

A-coherence property (which is really a bisimulation property):

u
R/A

//

A

v

A

u′
R,A

// v′

Lemma 1. For R a set of A-coherent rules, if t→R,A t
′, then

t
R,A

//

A

t′

A

u
R,A

// u′

7

Proof. Since t →R,A t′ implies t →R/A t′, and u =A t and t →R/A t′ imply
u→R/A t

′, we have

t
R,A//

A coher.

t′

A

u

R/A

66llllllllllllllllll
R,A

// u′

as desired. 2

If a theory R is not coherent, we can try to make it so by completing the
set of rules R to a set of rules R̃ by a Knuth-Bendix-like completion procedure
(see, e.g., [37, 59] for the strong coherence completion that we use here, and [31]
for the equivalent notion of extension completion). For theories A that are
combinations of associativity and/or commutativity and/or identity axioms, we
can make any specification A-coherent by using a completion procedure which
always terminates and has a very simple description (see [52], and [10, Section
4.8] for a more informal explanation).

We say thatR = (Σ, A,R) is A-confluent, resp. A-terminating, if the relation
→R/A is confluent, resp. terminating. If R is A-coherent, then A-confluence is
equivalent to asserting that, for any t→∗R,A u, t→∗R,A v, we have:

t

R,A

∗
zzuuuuuuuuuu

∗
R,A $$IIIIIIIIII

u

∗
R,A $$

v

∗
R,Azz

w =A w
′

and A-termination is equivalent to the termination of the →R,A relation. We
use the notation t →!

R/A t′ (resp., t →!
R,A t′) for a terminating rewrite, that

is, a rewrite t →∗R/A t′ (resp., t →∗R,A t′) such that t′ is R/A-irreducible (resp.,
R,A-irreducible), i.e., @t′′ such that t′ →R/A t

′′ (resp., t′ →R,A t
′′). We extend

this notation to substitutions to write, e.g., τ →!
R,A τ ′ for rewriting the terms

in the assignments of a substitution τ to their normal forms using →R,A, that
is, τ →!

R,A τ
′ means that τ and τ ′ have the same domain, and for each variable

x in that domain, τ(x)→!
R,A τ

′(x).
We say that R = (Σ, A,R) is weakly terminating modulo A iff for each t

there is a t′ such that t →!
R/A t′. If R is A-coherent, this is equivalent to the

weak termination of →R,A.

3. Church-Rosser (Conditional) Order-Sorted Specifications Modulo
Axioms

For order-sorted specifications, being Church-Rosser means not only con-
fluence, but also a descent property (see Section 3.2), which ensures that for

8

each term t we have ls(t) ≥ ls(t↓R), where t↓R denotes a term such that
t→!

R,A t↓R, which by confluence is unique up to A-equivalence. In this section
we introduce the notion of Church-Rosser order-sorted specification [34], and
its generalization to the conditional and modulo case.

3.1. Strongly Deterministic Order-Sorted Equational Specifications
The (oriented and conditional) order-sorted equational specifications modulo

axioms A that we consider in this paper are equational theories (Σ, R∪A) that
are oriented as rewrite theories of the form R = (Σ, A,R), with A a set of
regular, linear, and sort-preserving axioms. The conditional equations R in
(Σ, R ∪ A) are oriented as rewrite rules of the form l → r if

∧
i=1..n ui → vi,

and are assumed to be A-coherent. Furthermore, we assume that R is strongly
deterministic in the following sense.

Definition 1. Let R = (Σ, A,R) satisfy the above assumptions. A rule l →
r if

∧
i=1..n ui → vi in R is said to be deterministic iff (i) ∀j ∈ [1..n],Var(uj) ⊆

Var(l) ∪
⋃
k<j Var(vk), and (ii) Var(r) ⊆ Var(l) ∪

⋃
j≤n Var(vj). R is deter-

ministic iff all its rules are so. A term t is called strongly irreducible with
respect to R modulo A (or strongly R,A-irreducible) iff tσ is an R,A-normal
form for every normalized substitution σ. A deterministic rewrite theory R is
called strongly deterministic iff for every rule l→ r if

∧
i=1..n ui → vi in R each

vi is strongly R,A-irreducible.

Note that the above notion of strongly deterministic equational specification
essentially corresponds to the notion of an admissible Maude functional module
in the sense of [10, Section 4.6]. That is, an admissible conditional order-sorted
Maude functional specification can be transformed into an equivalent strongly
deterministic rewrite theory by a very simple procedure, in which equations
are oriented as rewrite rules and equational conditions (ordinary ones and so
called matching equations) are transformed into rewrite conditions (see [25] for
a detailed algorithm).

The same way that for unconditional specifications, confluence of a set of
rewrite rules can be reduced to local confluence under the termination assump-
tion, to reduce the confluence of strongly deterministic rewrite theories to their
local confluence we similarly need a suitable conditional termination assump-
tion.

Definition 2. A strongly deterministic rewrite theory R = (Σ, A,R) is quasi-
decreasing iff there is a well-founded partial order � on TΣ(X) such that:

(i) it is A-compatible, i.e., if v =A u � u′ =A v
′ then v � v′ for all terms u,

u′, v, and v′ in TΣ(X),

(ii) →R,A ⊆ � and � ⊆ � (where � is the strict subterm relation), and

(iii) for each l→ r if
∧
i=1..n ui → vi in R, substitution σ, and each 0 ≤ i < n,

if ujσ →∗R,A wj and wj =A vjσ, for 1 ≤ j ≤ i, then lσ � uj+1σ.

9

Note that, as shown in detail in [44] for the case of R = (Σ, ∅, R) unsorted
(but the argument easily extends to the order-sorted and modulo cases), quasi-
decreasingness is equivalent to operational termination, which is the property
checked by Maude’s MTT tool [19] to prove the termination of an order-sorted
conditional rewrite theory R = (Σ, A,R).

3.2. The Descent Property and Church-Rosser Specifications
For an order-sorted specification R = (Σ, A,R) it is not enough to be con-

fluent: if the canonical form t↓R of a term t exists, then it should provide
the most complete information possible about the sort of the equivalence class
[t]R∪A. These intuitions are captured by the notions of descent and of Church-
Rosser specification.

Definition 3. Let R = (Σ, A,R) be strongly deterministic and weakly terminat-
ing modulo A. We say that R has the descent property (resp., ground descent
property) iff for each term (resp., ground term) t there exists a term t′ such that
t→!

R,A t
′ and ls(t) ≥ ls(t′).

Definition 4. Let R = (Σ, A,R) be strongly deterministic and either: (i) is
sort-decreasing, or (ii) has the descent property. If, in addition, R is confluent
modulo A (resp., ground confluent modulo A), then we call R Church-Rosser
(resp., ground Church-Rosser) modulo A.

Note that in a Church-Rosser specification R, for each term t, if there is a
term t↓R such that t →!

R,A t↓R, then such a t↓R is unique up to A-equality
and ls(t)A ≥ ls(t↓R). Note also that the Church-Rosser notion as defined
above is more general and flexible than the requirement of confluence and sort-
decreasingness [40, 32]. The issue is how to find simple sufficient conditions for
descent (under some termination assumption modulo A) that, in addition to
the computation of critical pairs, will ensure the Church-Rosser property. This
leads us into the topic of specializations.

Given an order-sorted signature (Σ, S,≤), a sorted set of variables X can
be viewed as a pair (X̂, µ) where X̂ is a set of variable names and µ is a sort
assignment µ : X̂ → S. Thus, a sort assignment µ for X is a function mapping
the names of the variables in X̂ to their sorts. The ordering ≤ on S is extended
to sort assignments by

µ ≤ µ′ ⇔ ∀x ∈ X̂, µ(x) ≤ µ′(x).

We then say that such a µ is a specialization of µ′, via the substitution

ρ : (x : µ(x))← (x : µ′(x))

called a specialization of X = (X̂, µ′) into ρ(X) = (X̂, µ). Note that if the set
of sorts is finite, or if each sort has only a finite number of subsorts below it,
then a finite sorted set of variables has a finite number of specializations.

The notion of specialization can be extended to axioms and rewrite rules.
A specialization of an equation (∀X, l = r if C) (resp., a rule (∀X, l→ r if C))

10

is another equation (∀ρ(X), lρ = rρ if Cρ) (resp., another rule (∀ρ(X), lρ →
rρ if Cρ)) where ρ is a specialization of X. It is easy to check that an equation
(∀X, l = r if C) (resp., a rule (∀X, l → r if C)) is sort-decreasing in the sense
explained in Section 2 iff ls(lρ) ≥ ls(rρ) for each specialization ρ. Obviously, if
in a weakly terminating R = (Σ, A,R) all rules in R are sort-decreasing when
viewed as unconditional rules, then R has the descent property. But we are
not requiring sort decreasingness: we seek some sufficient conditions to ensure
descent under the quasi-decreasingness assumption. Such conditions are called
membership assertions. We let R ` t→R,A u and R ` t→∗R,A u respectively
denote a one-step rewrite proof and an arbitrary length (but finite) rewrite proof
in R from t to u, using the deduction rules in [9].

Definition 5. Let R = (Σ, A,R) be a quasi-decreasing order-sorted specifica-
tion satisfying the assumptions in Section 3.1. Then, the set of (conditional)
membership assertions for a conditional rule t→ t′ if C is defined as

{ t′θ : ls(tθ) if C θ | θ is a specialization of Var(t)
and @u s.t. t′θ →!

R,A u ∧ ls(u) ≤ ls(tθ) }

By definition, we say that R satisfies (resp., inductively satisfies) a conditional
membership assertion of the form w : s if D iff for each solution τ of D (resp.,
each ground solution τ of D) there is a term q such that wτ →∗R,A q and ls(q) ≤
s, where if D =

∧
j uj → vj, then a substitution (resp., ground substitution) τ

is a solution (resp., ground solution) of D iff R `
∧
j ujτ →∗R,A vjτ .

A membership assertion t : s if C is more general than another membership
assertion t′ : s if C ′ if there exists a substitution σ such that tσ =A t′, and
C σ =A C

′. We denote MMA(R) the set of most general membership assertions
of all of the equations in the specificationR. It is easy to show thatR satisfies all
its membership assertions iff it satisfies MMA(R). The importance of MMA(R)
as a set of sufficient conditions whose satisfaction ensures the descent property
is explained by the following theorem.

Theorem 1. Let R = (Σ, A,R) be as in Definition 5. Then R has the descent
(resp., ground descent) property if it satisfies (resp., inductively satisfies) all the
conditional membership assertions in MMA(R).

Proof. We prove the non-ground case; the proof of the ground case is
similar. For simplicity we work with the set of all membership assertions of
R rather than with the semantically equivalent set MMA(R). By the quasi-
decreasingness assumption, the relation →+

R,A is a well founded (strict) order.
The proof is by well-founded induction on →+

R,A. If t is R,A-irreducible the
result is obvious. Suppose instead that we have a term v such that t →R,A v.
This means that there is a rule l→ r if C in R, a position p, and a substitution
σ that solves C, such that t|p =A lσ, and v = t[rσ]p. Let ρ be the specialization
of Var(l) such that for each x ∈ Var(l) the sort of x is now ls(xσ). Then
s = ls(lρ) = ls(lσ), and we have a substitution τ with domain ρ(Var(l)) such

11

that τ = σρ. Suppose that the rule l → r if C had generated the membership
assertion rρ : s if Cρ. Since R satisfies all its membership assertions and τ
solves Cρ, we have a term w such that rρτ = rσ →∗R,A w and s ≥ ls(w). But
then, t[rσ]p →∗R,A t[w]p, and, by A sort-preserving, ls(t) = ls(t[lσ]p) ≥ ls(t[w]p).
But since t →+

R,A t[w]p, applying the induction hypothesis to t[w]p we get a t′

with t→!
R,A t

′ and ls(t) ≥ ls(t[w]p) ≥ ls(t′), as desired. 2

Example 1. Given a specification of natural numbers and integers with the
usual operations and including a square operation defined by:

op square : Int -> Nat .

eq square(I:Int) = I:Int * I:Int .

this equation gives rise to a membership assertion, because the least sort of the
term square(I:Int) is Nat, but it is Int for the term in the righthand side.
The proof obligation generated by the CRC tool is

mb I:Int * I:Int : Nat .

This membership assertion must be proven inductively. That is, we have to treat
it as the proof obligation that has to be satisfied in order to be able to assert that
the specification satisfies the ground descent property. In this case, we have to
prove that we have INT `ind (∀I)(∃J) I * I →∗ J, for I and J variables of
sorts Int and Nat, respectively, and where INT here denotes the rewrite theory
obtained from the original equational theory by turning each equation into a
rewrite rule. This can be done using the constructor-based methods for proofs
of ground reachability described in [55, 54].

3.3. Conditional Critical Pairs and Confluence
We say that a term t A-overlaps another term t′ with distinct variables if

there is a nonvariable subterm t′|p of t′ for some position p ∈ P(t′) such that
the terms t and t′|p can be A-unified.

Definition 6. Given an order-sorted equational specification R = (Σ, A,R) sat-
isfying the assumptions in Section 3.1, and given (possibly renamed) condi-
tional rewrite rules l → r if C and l′ → r′ if C ′ in R such that Var(l →
r if C) ∩ Var(l′ → r′ if C ′) = ∅ and l|pσ =A l′σ, for some nonvariable po-
sition p ∈ P(l) and A-unifier σ ∈ UnifA(lp, l′), then the triple

C σ ∧ C ′σ ⇒ (l[r′]p)σ = rσ

is called a (conditional) critical pair.

Note that the critical pairs accumulate the substitution instances of the
conditions in the two rules, as in [8]. Given a rewrite theory R = (Σ, A,R), a
critical pair C ⇒ u = v is more general than another critical pair C ′ ⇒ u′ = v′

if there exists a substitution σ such that uσ =A u′, vσ =A v′, and C σ =A C ′,

12

where C σ =A C ′, with C =
∧
i=1..n ui → vi and C ′ =

∧
i=1..m u

′
i → v′i, iff

n = m and uiσ =A u
′
i and viσ =A v

′
i for each i ∈ [1..n].

Given a specification R, let MCP(R) denote the set of most general critical
pairs between rules in R, and let MCP(R)↓ denote the set of critical pairs
obtained after simplifying both sides of each critical pair using the equational
rules in R, and discarding trivially joinable critical pairs modulo A of the form
C ⇒ t = t. As we explain in Corollary 1 below, if R is quasi-decreasing, satisfies
the descent property, and MCP(R)↓ = ∅, R is confluent modulo its axioms A.
However, even if R is confluent, MCP(R)↓ may be nonempty. The reason for
this is that what a conditional critical pair C ⇒ s = t requires to be shown,
is not the trivial joinability s↓R,A t, that is, the existence of terms w =A w′

such that R ` s→∗R,A w ∧ t→∗R,A w′, but only the joinability sτ ↓R,A tτ for
each solution τ of C. That is, all critical pairs C ⇒ s = t in MCP(R) may be
joinable in the sense below, but this may not be settled just by checking s↓R,A t.

Definition 7. We say that a conditional critical pair C ⇒ s = t is trivially
joinable iff s↓R,A t, and that it is joinable (resp., ground joinable) iff for each
solution (resp., ground solution) τ of its condition C, we have sτ ↓R,A tτ .

The theorem below reduces confluence to local confluence of conditional
critical pairs. It generalizes to the order-sorted, modulo, and ground cases,
and to the weaker termination condition of quasi-decreasingness (instead of the
stronger quasi-reductiveness condition in [2]) a similar theorem by Avenhaus
and Loŕıa-Sáenz [2].

Theorem 2. Let R = (Σ, A,R) satisfy the assumptions in Section 3.1, be
quasi-decreasing with respect to an A-compatible well-founded order �, and sat-
isfy (resp., inductively satisfy) MMA(R). R is confluent (resp., ground conflu-
ent) iff all critical pairs in MCP(R) are joinable (resp., ground joinable).

Proof. The (⇒) implication is trivial, so we focus on proving the (⇐)
implication. We prove (⇐) in the general case by well-founded induction on
�. We then explain how the proof can be specialized for the ground confluence
case. Without loss of generality we may prove the results for terms t, t′, and t′′

such that there exist t1 and t2 with

t′ t1
∗
R,A
oo t

R,A
oo

R,A
// t2

∗
R,A

// t′′

Since by quasi-decreasingness u →R,A v implies u � v, by the usual well-
founded induction argument, it is enough to prove that t1 ↓R,A t2. We reason by
cases depending on the positions p, q at which the one-step rewrites t

p→R,A t1,
t

q→R,A t2 take place. The case when p and q are disjoint positions, that is,
p 6≤ q and q 6≤ p, is easy, as shown in Figure 1.

Let us now suppose the case p ≤ q (the case q ≤ p is completely symmetric).
Since w � w′ implies w � w′, by well-founded induction we may reduce to the
case where p = Λ (top position). Therefore, we have rules l → r if

∧
i ui → vi

and l′ → r′ if
∧
j u
′
j → v′j in R such that

13

p q

l
θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

R
p ��

t
p q

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
A

p

A

q p q

l′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

R
q ��

p q

r

t1

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

A
q

p q

r′

t2

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

A
q

q p

r

θ
l′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

R

p

��;;;;

q p

l
θ

r′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

R

q

������

q p

r

θ
r′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

Figure 1: p and q disjoint positions case in Proof of Theorem 2.

14

t
A

R,A

q

��

Lemma 1

l

θ

��������������� ,,,,,,,,,,,,,,,

R,A q′��

R
//

r

θ

t1

��������������� ,,,,,,,,,,,,,,,

R,A ∗��

t2
A

R,A
∗

��

Lemma 1

l
x x x... ...

q′

r′

θ′

��������������� ,,,,,,,,,,,,,,,

��������

�������� ''''''''

����� '''''

,,,,,,,,

R,A ∗��

l
x x x... ...

r′

θ′
r′

θ′
r′

θ′

τ

��������������� ,,,,,,,,,,,,,,,

��������

����� ��
��
�

�������� ''''''''

����� ''''' ,,,,,

,,,,,,,,

R,A ∗��

l

τ ′

��������������� ,,,,,,,,,,,,,,,

R
//

r

τ ′

��������������� ,,,,,,,,,,,,,,,

A

t3

A

{{{{{{{

{{{{{{{

R,A
//

Lemma 1

t4

Figure 2: p ≤ q, non-overlap case in Proof of Theorem 2.

15

t
A

Λ

q

R,A ��

Lemma 1

l

θ

������������� ,,,,,,,,,,,,,

R

Λ //

q′ R,A��

r

θ

t1
������������� ,,,,,,,,,,,,,

t2
A

Λ
q′

r′

θ′

t′2
������������� ,,,,,,,,,,,,,

�������� ********

And we can consider two cases:

(a) (non-overlap case) q′ is not a non-variable position of l, and

(b) (overlap case) q′ is a non-variable position of l.

Let us first show the non-overlap case (a), summarized in Figure 2, where q′

occurs at the position of a variable x of l, or below such a position. Let q′′ ≤ q′
be the position of the occurrence of x below which q is located. Then, the
rewrite l′θ′ →R,A r′θ′ induces also a rewrite xθ →R,A v so that t′2 = t′[v]q′′ .
Let τ be the substitution such that xτ = v, and yτ = yθ otherwise. Since we
do not assume sort-decreasingness, if x originally had sort s, it may be the case
that ls(v) 6≤ s. But we can always re-type x with, say, the top sort [s] to get
a well-typed τ . We then have t′2 →∗R,A lτ . But since R satisfies MMA(R),
reasoning exactly as in the proof of Theorem 1 we obtain an R,A-normalized
substitution τ ′ such that τ →!

R,A τ
′ with ls(yθ) ≥ ls(yτ ′) for each y ∈ dom(θ).

So we can re-assign the original sort s to the variable x, so that τ ′ has the same
domain as θ. Therefore, since θ →!

R,A τ ′, we have t1 = rθ →∗R,A rτ ′; and we
also have t′2 →∗R,A lτ →!

R,A lτ ′. Therefore, we will be done if we show that∧
i∈[1...n] uiτ

′ →∗R,A w′i, with w′i =A viτ
′. But by quasi-decreasingness we have

lθ � uiθ, 1 ≤ i ≤ n, and therefore t =A lθ � uiθ, 1 ≤ i ≤ n. Therefore, since
by � A-compatible we have t � uiθ, i ≤ i ≤ n, we can apply the confluence
induction hypothesis to the uiθ, 1 ≤ i ≤ n. But this means that, since by
lθ →R,A rθ thanks to

∧
i∈[1...n] uiθ →∗R,A wi with wi =A viθ, and since vi is

strongly irreducible and τ ′ is a normalized substitution we have

uiθ
R,A

∗xxrrrrrr

R,A

∗
%%KKKKKK

uiτ

R,A ∗��

wi

R,A !��

A

Lemma 1

viθ

R,A !��

uiτ
′

R,A
%%
w′′i A

w′i A
viτ
′

16

t
A

R,A ��

Lemma 1

l
q′

��������������� ,,,,,,,,,,,,,,,

���������� **********

R
//

A

r

θ

t1

��������������� ,,,,,,,,,,,,,,,

A

R,A��

l
q′

l′

θ′

��������������� ,,,,,,,,,,,,,,,

���������� **********

R,A��

rαβ

R,A��

Lemma 1

l
q′

r′

θ′

��������������� ,,,,,,,,,,,,,,,

���������� **********

A
(l[r′]q′)θ ∪ θ′

A
(l[r′]q′)αβ

R,A
//

Lemma 1

v′′
A
v′

A
v

A

t2

A

R,A
// v′′′

Figure 3: p ≤ q, overlap case in Proof of Theorem 2.

And therefore t1 ↓R,A t2, as desired.
Let us prove case (b). We have t′2 = (l[r′]q′)(θ ∪ θ′) and t1 = rθ = r(θ ∪ θ′),

and there is a conditional critical pair C ⇒ (l[r′]q′)α = rα and a substitution
β such that θ ∪ θ′ =A αβ, and furthermore, θ ∪ θ′ is a solution of C. Therefore,
by Lemma 1, αβ is also a solution of C and we have (l[r′]q)αβ ↓R,A rαβ. This
then gives us t1 ↓R,A t2, as shown in the diagram in Figure 3.

Let us finally see how the above proof specializes to a proof of ground con-
fluence when t, t1, and t2 are ground terms, and all critical pairs are ground
joinable. Because of the assumption that R = (Σ, A,R) is deterministic and
the axioms A are regular and linear (so that t =A t

′ implies Var(t) = Var(t′)),
the substitutions θ and θ′ allowing the rewrites t →R,A t1 and t →R,A t2 are
ground substitutions. We again reason by cases. The case of disjoint positions
is again unproblematic. For case (a), we reason exactly as before to obtain an
R,A-irreducible ground substitution τ ′ such that θ →!

R,A τ ′. Then the ground
confluence induction hypothesis allows us to show that

∧
i∈[1...n] uiτ

′ → w′i, with
w′i =A viτ

′, which then gives us t1 ↓R,A t2, as desired. In case (b), since both
θ and θ′ are ground, and θ ∪ θ′ =A αβ, αβ is also ground, and we can use the

17

ground confluence assumption to get again t1 ↓R,A t2, as desired. 2

Corollary 1. Let R = (Σ, A,R) be as in Theorem 2, and suppose that all
critical pairs C ⇒ s = t in MCP(R) are trivially joinable. Then R is confluent.

Proof. This follows from the fact that the rewriting relation →R,A is closed
under substitution, i.e., if t→R,A t

′, and σ is a substitution, then tσ →R,A t
′σ.

Therefore, if s ↓R,A t, then, a fortiori, sσ ↓R,A tσ for any solution σ of the critical
pair’s condition C. 2

Obviously, Corollary 1 guarantees that MCP(R)↓ = ∅ is a sufficient condi-
tion for R’s confluence. But we may have MCP(R)↓ 6= ∅ and yet all its critical
pairs may be joinable, or at least ground joinable. Therefore, in the conditional
case it becomes very important to use methods that can prove joinability (resp.,
ground joinability) of conditional critical pairs.

3.4. Context-Joinable and Unfeasible Conditional Critical Pairs
We extend to the order-sorted and modulo cases two very useful methods

of proving that a conditional critical pair C ⇒ s = t is joinable studied by
Avenhaus and Loŕıa-Sáenz in [2]. The first method consists of identifying critical
pairs C ⇒ s = t that are context joinable, that is, joinable if we assume the
condition C as a set of additional (ground) rewrite rules to join s and t. In
the second method, a conditional critical pair C ⇒ s = t is shown joinable by
showing that its condition C has no solutions whatsoever, and then C ⇒ s = t
is called unfeasible. The CRC tool examines all the critical pairs in MCP(R)↓
trying to prove each of them either context-joinable or unfeasible. In this way,
many conditional critical pairs can be discarded in practice, and in some cases
no critical pairs remain.

Let a context C = {u1 → v1, . . . , un → vn} be a set of oriented equations.
We denote by C the result of replacing each variable x in C by a new constant
x. And given a term t, let the term t be the term obtained by replacing each
variable x ∈ Var(C) by the new constant x.

Definition 8. Let R = (Σ, A,R) be as in Theorem 2, and let C ⇒ s = t be
a critical pair resulting from li → ri if Ci for i = 1, 2, and σ ∈ UnifA(l1|p, l2).
We call the condition C of a critical pair C ⇒ s = t unfeasible if there is
some u → v in C such that u →∗

R∪C,A w1, u →∗
R∪C,A w2, UnifA(w1, w2) = ∅,

and w1 and w2 are strongly irreducible with R modulo A; likewise, a critical
pair C ⇒ s = t is called unfeasible iff C is unfeasible. We call C ⇒ s = t
context-joinable if s↓R∪C t.

Theorem 3. Let R = (Σ, A,R) be as in Theorem 2. If every critical pair
C ⇒ s = t of R is either unfeasible or context-joinable, then R is confluent.

Proof. We prove the result by well-founded induction on �. Suppose that we
have the critical peak u ∗← t

∗→ v. All nontrivial cases to consider are of the form

18

u
∗← u0 ← t→ v0

∗→ v and such that the redexes for u0 and v0 overlap. If they
do not overlap at the top of t for one of them, then the induction hypothesis can
be applied, since there will be a smaller subterm for which we have the result.

Also, since t � u0 and t � v0, the confluence for u, v will follow from that
for u0, v0:

t

yytttttt

$$JJJJJJ

u0

∗
yyrrrrrr

ind. hyp. ∗ %%

v0

∗
%%KKKKKK

ind. hyp.∗yyu

∗ '' ∗xx ind. hyp. ∗ &&

v

∗xx

∗ '' ∗ww

Therefore, we may reduce to an instance of a critical pair C ⇒ s = t by a
substitution α such that αC holds. Now, if C ⇒ s = t is context-joinable, the
result follows (with minor adaptations) from [2, Lemma 4.2].

So we have only left the case when C ⇒ s = t is unfeasible and αC holds.
This means that ασC1 and ασC2 hold for the conditions of the rules l1 →
r1 if C1 and l2 → r2 if C2 which, with unifier σ, gave as the critical pair C ⇒
s = t with condition C = σC1 ∧ σC2. Therefore, since →R,A ⊆ �, and for each
ui → vi in C1, u′j → v′j in C2 we have ασui →∗R,A ασvi and ασu′j →∗R,A ασv′j ,
we have that for each u → v in C we have αu →∗R,A αv, and therefore, by
quasi-decreasingness of R, we have ασui≺ ασl1 � ασl2 � ασu′j .

Since C ⇒ s = t is unfeasible, there is a condition u → v in C such that
u →∗

R∪C,A w1 and u →∗
R∪C,A w2 with UnifA(w1, w2) = ∅ and w1 and w2

strongly irreducible. Note that, u→ v is either: (i) a condition σui → σvi with
ui → vi in C1; or (ii) a condition σu′j → σv′j with u′j → v′j in C2. Let us con-
sider case (i). By [2, Lemma 4.2], we then have ασui →∗R,A αw1 →∗R,A α↓(w1)
and ασui →∗R,A αw2 →∗R,A α↓ (w2), where α↓ is just some canonical form of
the substitution α, which exists by the termination assumption regardless of
whether R is confluent modulo A or not. But since w1, w2 are strongly irre-
ducible, α↓ (w1) and α↓ (w2) are in canonical form (modulo A) and are different
(by UnifA(w1, w2) = ∅). But since ασl1 � ασui, the confluence induction hy-
pothesis applies to ασui, and therefore it is confluent, which is in contradiction
with α↓(w1) 6=A α↓(w2).

Case (ii), where the unfeasibility problem arises in ασu′j is entirely similar,
since ασl1 � ασl2 � ασu′j . 2

Once all critical pairs in MCP(R)↓ are computed, based on this result, the
CRC tool proceeds as follows. It first checks whether each conditional critical
pair C ⇒ s = t is context joinable:

(i) Variables in C ⇒ s = t are added as new constants X.

(ii) New ground rewrite rules C plus an equality operator eq with rules eq(x, x)→
tt are added to the rules R. Call this theory R̂C .

19

(iii) In R̂C , we search eq(s, t) →+ tt up to some predetermined depth (using
Maude’s search command).

If the search is successful, then the conditional critical pair is context joinable.
Otherwise, we then check whether C ⇒ s = t is unfeasible as follows: For each
condition ui → vi, we perform in R̂C the search ui →! x : [s], where [s] is a
top sort added to the connected component of the sort s of ui. Let w1 . . . wm
be the terms thus obtained. If m = 1, then we can discard this term ui and
look for the next condition ui+1 → vi+1. Otherwise, we try to find two different
terms wj , wk such that (a) UnifA(wj , wk) = ∅, and (b) wj and wk are strongly
irreducible with R modulo A. If we succeed in finding a condition ui → vi for
which associated wj , wk satisfy (a) and (b), then the conditional critical pair
C ⇒ s = t is unfeasible.

This procedure can be improved as follows:

(A) Before doing this, we can first try to find two conditions ui → vi, uj → vj
in C such that ui =A uj , and then try to get all the canonical forms of
ui using R̂C as before. This will make the process faster in some cases,
since one focuses on likely candidates first.

(B) Suppose we have found canonical forms wi, wj for u associated to a condi-
tion u→ v such that wi and wj have no A-unifiers, but either wi or wj fail
to be strongly R-irreducible. Let p1 . . . pn (resp., q1 . . . qm) be the highest
nonvariable positions in wi (resp., wj) such that there is an overlap with
a rule in R (and none of the pl, qr are root positions). Then abstract wi
and wj to w̃i = wi[x1]p1 . . . [xn]pn (with xl a fresh new variable of the sort
of wi|pl) and w̃j = wj [y1]q1 . . . [ym]qm (with yr a fresh new variable of the
sort of wj |qr), respectively. Note that w̃i and w̃j are strongly R-irreducible
by construction. Then if Unif(w̃1, w̃2) = ∅, we can still conclude that the
critical pair is unfeasible.

Proof. (of (B)) Let σ be a substitution satisfying the condition C of
the critical pair, and let X be the set of variables in C. Then we have

σ(u)

∗
xxqqqqqqqqqqq

∗
&&MMMMMMMMMMM

σ(wi) = τ(w̃i)

∗ ��

σ(wj) = τ(w̃j)

∗��
τ ↓(w̃i) τ ↓(w̃j)

where τ ↓ is the normalized substitution for the substitution τ defined
below. Therefore, τ ↓(w̃i) and τ ↓(w̃j) are in canonical form, and since w̃i
and w̃j have no A-unifiers we have τ ↓(w̃i) 6=A τ ↓(w̃j).

20

In more detail, the substitution τ is defined as follows:

τ : X ∪ {x1, . . . , xn, y1, . . . , ym} −→ TΣ(X)

with x1, . . . , xn, y1, . . . , ym fresh new variables, and where

(a) ∀x ∈ X, τ(x) = σ(x),

(b) τ(xl) = σ(wi)pl , and

(c) τ(yr) = σ(wj)qr .

2

These two optimizations are not currently available in the CRC tool.

3.5. The Proof Obligations Returned by the Church-Rosser Check
Given an order-sorted equational specificationR, the CRC tool returns a pair

〈 MCP(R)•, MMA(R) 〉, were MCP(R)• denotes the subset of critical pairs in
MCP(R)↓ that could not be proved either context-joinable or unfeasible. As
discussed above, a fundamental result underlying our tool is that the absence
of critical pairs and of membership assertions in such an output is a sufficient
condition for a quasi-decreasing specificationR to be Church-Rosser. In fact, for
terminating unconditional specifications this check is a necessary and sufficient
condition; however, for conditional specifications, the check is only a sufficient
condition, because if the specification has conditional equations we can still have
unsatisfiable conditions in the critical pairs or in the membership assertions; that
is, we can have 〈 MCP(R)•, MMA(R) 〉 6= 〈 ∅, ∅ 〉 with R still Church-Rosser.
Furthermore, even if we assume that the specification is unconditional, since for
specifications with an initial algebra semantics we only need to check that R is
ground-Church-Rosser, we may sometimes have specifications that satisfy this
property, but for which the tool returns a nonempty set of critical pairs or of
membership assertions as proof obligations.

Of course, in other cases it may in fact be a matter of some error in the
user’s specification that the tool uncovers. In any case, the user has complete
control on how to modify his/her specification, using the proof obligations in
the output of the CRC tool as a guide. In fact, as we explain in Section 5,
several possibilities exist.

4. Coherence of Conditional Rewrite Theories

We assume an order-sorted rewrite theory of the form R = (Σ, E ∪A,R, φ),
where:

(1) φ is a frozenness map (see [9]) of the form φ : Σ −→ P(N), which assigns
to each operator f : k1 . . . kn → k in Σ the subset φ(f) ⊆ {1, . . . , n} of its
frozen arguments, that is, those argument positions under which rewriting
with R is forbidden in the rewrite theory R = (Σ, E ∪A,R, φ).

21

(2) (Σ, E ∪ A) is an order-sorted conditional equational theory, which can be
converted into a strongly deterministic rewrite theory (Σ, A,E) which is
Church-Rosser (resp., ground Church-Rosser). Furthermore, the regular,
linear, and sort-preserving axioms A are unconditional equations at the
kind level, i.e., each connected component in the poset (S,≤) of sorts has a
top sort, and the variables in the axioms A all have such top sorts.

(3) R is a collection of A-coherent rewrite rules l → r if C, where C is an
equational condition, which again can be turned into a deterministic rewrite
rule of the form4 l → r if u1 →E v1 ∧ . . . ∧ un →E vn with the v1, . . . , vn
strongly E,A-irreducible.

The following definition of coherence, due to Viry [59], intuitively states
that a rewrite step with R can always be postponed until after performing more
equational reduction with E, without compromising E ∪ A-equality of states.
Note that the condition is stronger than the so-called weak coherence property
[59, 47], where after reduction with E we would perform u′ →∗R,A u′′. Weak
coherence is less satisfactory in some respects. For example, we could not rely
anymore on representing states of R as E,A-canonical forms to model check an
LTL formula ©ϕ using such states.

Definition 9. A rewrite theory R = (Σ, E ∪ A,R, φ) satisfying (1)–(3) above
is called coherent (resp., ground coherent) iff for each Σ-term t (resp., ground
Σ-term t) such that t→E,A u and t→R,A v we have

t
R,A

//
E,A ��

v

∗
E,A

&&
u

∗E,A ��

w
A

w′

u′
R,A

// u′′

∗

E,A

99
(C)

R = (Σ, E∪A,R, φ) satisfying (1)–(3) above and with (Σ, A,E) quasi-decreasing
is called locally coherent (resp., locally ground coherent) iff for each Σ-term t
(resp., ground Σ-term t) such that t→E,A u, and t→R,A v we have

4Note that this rule involves two different rewrite relations: R defines a relation →R,A,
and E defines a relation →E,A. But in rewriting logic (see [9, 20]), the definition of →R,A

uses the auxiliary relation →E,A to evaluate conditions of rules in R (see [20]). To mark this
difference, the rewrites in the equational condition of a rule in R are denoted ui →E vi.

22

t
R,A

//
E,A ��

v

∗
E,A

&&
u

!E,A ��

w
A

w′

u′
R,A

// u′′

∗

E,A

99
(LC)

where s→!
E,A t iff s→∗E,A t and t is E,A-irreducible.

Theorem 4. Let R = (Σ, E ∪ A,R, φ) satisfy (1)–(3), with (Σ, A,E) quasi-
decreasing. Then, R is coherent (resp., ground coherent) iff R is locally coherent
(resp., locally ground coherent).

Proof. Obviously (LC) ⇒ (C). Let us prove that (C) ⇒ (LC) by well-
founded induction on the terminating relation →E,A.

Let t be any term. If t = t↓E,A or t = t↓R,A both (C) and (LC) hold
trivially. Therefore, we may assume that t→E,A u and t→R,A v. By coherence
we then have:

t
R,A

//

E,A ��

v

∗
E,A

&&
u

∗ E,A��

w1

A

w′1

t1
R,A

// v1

∗

E,A

::

If t1 = t1 ↓E,A we are done, so we may assume that we have t1 →E,A u1 →∗E,A
u′1 ↓E,A. By noetherian induction on →E,A, t1 is (LC) and therefore we have:

23

t
R,A

//

E,A ��

v

∗ E,A
))

u

∗ E,A��

w1

A

E,A

! // w

A

w′1 E,A

! //
Lemma 1

w′

At1
R,A

//

E,A ��

v1

∗

E,A

66

∗
E,A

((

confluence of →E,A

u1

! E,A��

w2

A

E,A

! //

Lemma 1

w′′

A

w′2 E,A

! // w′′′

u′
R,A

// u′′

∗

E,A

66

2

Since for R = (Σ, E ∪ A,R, φ) satisfying (1)–(3), with (Σ, A,E) quasi-
decreasing, for all terms t, t is coherent iff t is locally coherent, we can approach
the verification of coherence for such a theory R as follows: We can reason by

cases on the situations
t

E,A ����
R,A��==

u v
depending on whether they are or not

overlap situations. For this we need the notion of a conditional critical pair,
and the notion of conditional critical pair joinability.

Definition 10. Given conditional rewrite rules with disjoint variables l→ r if C
in R and l′ → r′ if C ′ in E, their set of conditional critical pairs modulo
A is defined as usual: either we find a non-variable position p in l such that
α ∈ UnifA(l|p, l′) and then we form the conditional critical pair

α(C) ∧ α(C ′) ⇒ α(l[l′]p)

E ��

A
α(l)

R
// α(r)

α(l[r′]p)

(I)

or we have a non-variable and non-frozen position p′ in l′ such that α ∈
UnifA(l′|p′ , l) and we form the conditional critical pair:

α(C) ∧ α(C ′) ⇒ α(l′)

E ��

A
α(l′[l]p′)

R
// α(l′[r]p′)

α(r′)

(II)

24

We typically write these critical pairs as α(C) ∧ α(C ′) ⇒ α(l[r′]p) → α(r) and
α(C) ∧ α(C ′)⇒ α(r′)→ α(l′[r]p′).

Note the use of → instead of = to distinguish these critical pairs from those
introduced in Section 3, were only one rewrite relation was used.

We say that a critical pair of type (I) is joinable iff for any substitution τ
such that E ∪A ` τα(C) ∧ τα(C ′) we then have5

τ(α(l))
R,A

//

E,A ��

A
SSSSSSS

SSSSSSS
τ(α(r))

∗
E,A

''
τ(α(l[l′]p))
E,A ��

w

A

u
A

∗E,A ��

τ(α(l[r′]p))
∗E,A ��

w′

A

u′′′
R,A

// uiv

A

∗
E,A 77

w′′

u′
A

jjjjjjjjjjjj

jjjjjjjjjjjj
R,A

// u′′

∗

E,A

66

Of course, by (C)⇔ (LC) it is enough to make this check with u′′′ = u′′′ ↓E,A.
Similarly, we say that a critical pair of type (II) is joinable iff for any

substitution τ such that E ∪A ` τα(C) ∧ τα(C ′) we then have

τ(α(l′))
R,A

//

E,A ��

A
SSSSSSS

SSSSSSS
v

A ∗
E,A

((
τ(α(l′[l]p))

R,A
// τ(α(l′[r]p))

∗
E,A

((

w

A

τ(α(r′))

∗E,A ��

w′

A

w′′

u′
R,A

// u′′

∗

E,A

55

where, again, by (C) ⇔ (LC) it is enough to perform the check with u′ =
u′ ↓E,A.

Of course, joinability of all conditional critical pairs of R and E is a necessary
condition for coherence. The challenge now is to find a set of sufficient conditions
for coherence that includes the joinability of conditional critical pairs.

Specifically, non-overlapping situations between equations and rules require
additional conditions. In the case of coherence checking, we need to worry, not

5Note that this diagram, and others to come, would be much simplified using the rela-
tions →E/A and →R/A. However, actual computation uses the relations →E,A and →R,A;
but thanks to the A-coherence of E and R we can use Lemma 1 to fill in the appropriate
quadrilaterals.

25

only about overlapping situations as for the case of confluence, but also about
non-overlapping of R under E, that is, for l′ →E r′ if C ′ in E and l →R r if C
in R we need to worry about non-overlap situations of the form:

l′
x

l

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
E

//

R ��

r′
��������������� ,,,,,,,,,,,,,,,

This situation can be problematic in two related ways: (1) when l′ →E r′

is unconditional but not linear, or (2) when l′ →E r′ if C ′ is conditional. The
problem with case (1) is well-understood since [59]. The problem with case
(2) was also mentioned by Viry in [59]; it has to do with the fact that the
satisfiability of the condition C ′ in an equation l′ →E r′ if C ′ depends on the
substitution θ (it may hold or not depending on the given θ). But since R
rewrites the substitution θ, we do not know if C ′ will hold anymore after a
one-step rewrite with the rule l →R r if C. Note that we can view cases of
unconditional l → r with l non-linear as special cases of (2), since we can
linearize l, and give an explicit equality condition instead. E.g., x + x = x
becomes x + y = x if x = y.

Theorem 5. Let R = (Σ, E ∪ A,R, φ) satisfy (1)–(3), with (Σ, A,E) quasi-
decreasing. Then if:

(i) all conditional critical pairs are joinable and

(ii) for any equation l′ → r′ if C ′ in E, for each x ∈ Var(l′) such that x is
non-frozen in l′, then either

(a) x is such that x 6∈ Var(C ′), x is also non-frozen in r′, and x is linear
in both l′ and r′, or

(b) the sort s of x is such that no rewriting with →R,A is possible for
terms of such sort s,

then R is coherent.

26

Proof. Consider
t

q

E,A ������ p

R,A��>>>>

u v
. Then if neither p ≤ q, nor q ≤ p

(disjoint positions) the coherence property holds for t, since we have:

t
q p

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
A

p

A
q

GF ED
p R,A

��

GF

@A

q

E,A

//

q p

l
θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
R

p // q p

r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

A
q

ED

BC

q

E,A

oo

q p

l′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

E
q��

q p

l′

θ′
r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

E
q��

q p

r′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
A

p

@A BC
p R,A

OO

q p

r′

θ′
l
θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,
R

p // q p

r′

θ′
r

θ

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$ ������� ,,,,,,,,

Therefore, the heart of the matter lies in the cases p ≤ q and q ≤ p. Let us first
consider the case p ≤ q. Without loss of generality we may assume p = Λ (top
position). Therefore, for l→R r if C and l′ →E r′ if C ′ we have:

t
q

l′

θ′

��������������� ,,,,,,,,,,,,,,,

�������� $$$$$$$
A

Λ

q

E,A ��

l

θ

��������������� ,,,,,,,,,,,,,,,

R

Λ //

q′

E,A��

r

θ

��������������� ,,,,,,,,,,,,,,,

u
A

Lemma 1

u′

with E ∪A ` θ(C) and E ∪A ` θ′(C ′).
There are now two possibilities:

27

t

��������������� ,,,,,,,,,,,,,,,

A

E,A ��

Lemma 1

θ

l
x x x

... ...
q′

��������������� ,,,,,,,,,,,,,,,

�������� ������� �������� ********

����� (((((

""""""" ,,,,,,,,
E∪A`θ(C)

R,A
//

A q′

r

x ... x

...

��������������� ,,,,,,,,,,,,,,,

�������� ������� """"""" ,,,,,,,,

E,A ∗��

θ′′

l
x x x

... ...
q′

l′

θ′
l′

θ′
l′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++

E,A E∪A`θ′(C′)��
u

∗ ��

A
u′

E,A∗ ��

θ′′′

l
x x x

... ...
r′

θ′
r′

θ′
r′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++ R,A

‡ //

r

x x x

... ...
r′

θ′
r′

θ′
r′

θ′

��������������� ,,,,,,,,,,,,,,,

���
����� !!!!! ����� ''''' ����� -----

+++

A

u′′

A

//

Lemma 1

Lemma 1

w

Figure 4: Non-overlap case in Proof of Theorem 5.

(a) (overlap case) q′ is a non-variable position of l.

(b) (non-overlap case) q′ is not a non-variable position of l.

Let us first show in Figure 4 that the non-overlap case is unproblematic. The
rule application ‡ is possible because, by the assumption of E being confluent
modulo A, and C being equational, since θ =A θ′′ so θ↓E,A =A θ′′ ↓E,A, and
therefore, since θ′′ =E∪A θ

′′′, E ∪A ` θ(C) implies E ∪A ` θ′′′(C).
Therefore, we are only left with the overlap case, in which q is a non-variable

position in l. Therefore, we have the situation in Figure 5.
Let us now look more carefully at θ and θ′. Let X = Var(l →R r if C),

X ′ = Var(l′ →E r′ if C ′), X0 = Var(l|p) ⊆ X, and X ′0 = Var(l′) ⊆ X ′; and let
θ0 = θ|X0 and θ′0 = θ′|X′0 . We therefore have a unifier θ0] θ′0 (by X and X ′

disjoint) such that
(θ0] θ′0)(l|p) =A (θ0] θ′0)(l′),

and therefore we have α ∈ UnifA(l|p, l′) and τ0 such that τ0 ◦ α =A θ0] θ′0.

28

t

��������������� ,,,,,,,,,,,,,,,

A

E,A ��

θ

l q

��������������� ,,,,,,,,,,,,,,,

����������)))))))))) E∪A`θ(C)

R
//

A

θ

r

��������������� ,,,,,,,,,,,,,,,

θ

l

θ′

l′

q

��������������� ,,,,,,,,,,,,,,,

����������))))))))))

E E∪A`θ′(C′)��

= θ]θ′(l[l′]q)

u
A

θ′

r′

q

��������������� ,,,,,,,,,,,,,,,

����������))))))))))

= θ]θ′(l[r′]q)

Figure 5: Overlap case, with q a non-variable position in l, in Proof of Theorem 5.

Let us define τ̂ : (X ∪X ′)− (X0 ∪X ′0) → TΣ(X) (with X an infinite set of
variables) by

τ̂(x) =

{
θ(x) if x ∈ X −X0

θ′(x) if x ∈ X ′ −X ′0
Then, since α = α|X0∪X′0 , we obviously have that for τ = τ0] τ̂ the equality

τ ◦ α =A θ] θ′

holds. Furthermore, since E∪A ` θ(C)∧θ′(C ′) and therefore E∪A ` θ]θ′(C)∧
θ] θ′(C ′), we also have E ∪ A ` τ(α(C)) ∧ τ(α(C ′)). And by the joinability
assumption we then have the diagram in Figure 6 as desired.

Therefore, the only remaining case is that of p ≤ q. Again, we can consider
two subcases, an overlap subcase, and a non-overlap subcase. The proof of the
overlap subcase is given by the diagram of Figure 7.

The only case left is the non-overlap case with p ≤ q, where we have the
situation depicted in the diagram of Figure 8.

Note that for this to happen, x must be a non-frozen variable in l′. If x
disappears from r′, or appears more than once in r′, the situation is hopeless
(no single rewrite with R possible). Similarly, if x appears more than once in l′,
the situation is likewise hopeless, since the patterns l′ will not match the term
θ′(l′)[θ(r)]p (the other subterms under x will be different!).

29

t
A

E,A ��

Lemma 1

θ] θ′(l)
R

//

A

A
TTTTTTTTT

TTTTTTTTT
θ] θ′(r) = v

Lemma 1

A
E,A

**τ(α(l))

joinability

R,A
//

A

τ(α(r))

∗
E,A

**

w

A

θ] θ′(l[l′]q)
E,A��

A
τ(α(l[l′]q))

E,A��

w′

A

u
A

E,A ∗��

θ] θ′(l[r′]q)
A
τ(α(l[r′]q))
E,A ∗��

w′′

A

u′′
R,A

// uiv

A

∗
E,A

44

w′′′

u′

A

eeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeee
E,A

// u′′
Lemma 1

∗
E,A

33Lemma 1

Figure 6: Overlap case, with q a non-variable position in l, in Proof of Theorem 5.

Let us prove that condition (ii) is enough. Case (ii).(b) makes the very
possibility of a non-overlap case with R below E impossible, and the diagram in
Figure 9 proves case (ii).(a). Notice that E ∪A ` θ(C ′) implies E ∪A ` θ′′(C ′)
because θ =A θ

′ and θ′′(C ′) = θ′(C ′) since x 6∈ Var(C ′).
2

Condition (ii).(b) of Theorem 5 requires a fixpoint calculation. An algorithm
that checks that situations where a non-frozen variable x in a lefthand side of
an equation fails to satisfy (ii).(a) or (ii).(b) is provided in [24].

4.1. Context-Joinability and Unfeasibility of Conditional Critical Pairs
As for the conditional critical pairs of the confluence check (see Section 3.4),

from those conditional critical pairs for E and R which cannot be trivially
joined, the ChC tool can currently automatically discard those that are either
context-joinable or unfeasible.

Definition 11. Let R = (Σ, E ∪ A,R) be an order-sorted conditional rewrite
theory satisfying conditions (1)–(3), with E quasi-decreasing modulo A w.r.t. an
A-compatible order �. We call a conditional critical pair C ⇒ s→ t unfeasible
iff its condition is unfeasible with respect to (Σ, A,E) in the sense of Definition 8.

As pointed out in Section 3.4, a Maude order-sorted conditional specification
can be converted into an order-sorted deterministic rewrite theory with a simple
procedure (see, e.g., [24]). Maude checks that the conditional equational spec-
ifications entered are deterministic (cf. [10]), and we assume it is operationally
terminating, and therefore there exists a well-founded A-compatible order �
such that we can use (a simple adaptation of) the results in [2] and their exten-
sion to the Maude case [26], to discard those conditional critical pairs generated
that are unfeasible.

30

t

��������������� ,,,,,,,,,,,,,,,

A

R,A
//

Lemma 1

v

A

E,A

∗ // w0

θ]θ′(l′)

θ′

l′ p

��������������� ,,,,,,,,,,,,,,,

����������))))))))))

E

E∪A`θ′(C′)

��

A

p

A8888888

8888888

θ′

l′

θ

l

p

��������������� ,,,,,,,,,,,,,,,

����������)))))))))) E∪A`θ(C)

R
//

||
θ∪θ′(l′[l]p)

A

θ′

l′

θ

r

p

��������������� ,,,,,,,,,,,,,,,

����������))))))))))

A

θ]θ′(l′[r]p)

//

Lemma 1

τ(α(l′))

E ��

A
τ(α(l′[l]p))

R
// τ(α(l′[r]p))

E,A

∗ // w

A

A

u = θ]θ′(r′)

θ′

r′

��������������� ,,,,,,,,,,,,,,,

A

E,A ∗��

τ(α(r′))

E,A ∗��
u′

R,A
//

Lemma 1

Lemma 1

joinability

v′′

A

E,A

∗
//

Lemma 1

w′

u′′

A

uuuuuuuuuu

uuuuuuuuuu
R,A

// u′′′
E,A

∗ // w′′

A

Figure 7: p ≤ q, overlap case, in Proof of Theorem 5.

31

t

��������������� ,,,,,,,,,,,,,,,

R,A
//

A

v

A

l′

θ′

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

E ��

l′
x

p

l
θ

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

E∪A`θ(C)

R
//

l′
x

p

r

θ

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

u
A

r′

θ′

��������������� ,,,,,,,,,,,,,,,

Figure 8: p ≤ q, non-overlap case, in Proof of Theorem 5.

Definition 12. Given a rewrite theory R = (Σ, E ∪A,R) satisfying conditions
(1)–(3) above, a non-joinable conditional critical pair C ⇒ u→ v (coming from

a conditional critical pair C ⇒
t

E,A ����
R,A��==

u v
) is called context-joinable if

and only if in the extended rewrite theory RC = (Σ∪X,E ∪C ∪A,R) we have:

u

!E∪C,A ��

v

∗
E∪C,A

''
w
A

w′

u′ R,A
// u′′

∗

E∪C,A

99

Lemma 2. If the conditional critical pair C ⇒ u→ v is context joinable, then

32

t

��������������� ,,,,,,,,,,,,,,,

R,A
//

A

v

A

l′

θ

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

E
E∪A`θ(C′)

��

l′
x

p

l
θ′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
R

p //

E ��

l′
x

p

rθ′′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

E
E∪A`θ′′(C′)

��

r′

θ

x

p

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
A

p

@A
p R,A

//

r′
x

p

l
θ′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,
R

p //

r′
x

p

rθ′′

��������������� ,,,,,,,,,,,,,,,

��������� ---------

����

���� ,,,,

,,,,

A

u

Figure 9: Case (ii).(a) in the Proof of Theorem 5.

33

for all substitutions σ such that σC holds we have

σu

∗E,A ��

σv

∗
E,A

((
σw
A

σw′

σu′
R,A

// σu′′

∗

E,A

77

and therefore, the coherence property holds for the conditional critical pair C ⇒
t

E,A ����
R,A��==

u v
.

Proof. By a simple adaptation of [2, Lemma 4.2], since σC holds, we have
σu→∗E,A σu′, σv →∗E,A σw, and σu′′ →∗E,A σw. But we also have u′ →1

R,A u
′′,

where u′ is in E ∪ C-canonical form. This means that if we applied l → r if D
in R to u′ with substitution α and D = u1 →E v1 ∧ . . . ∧ un →E vn then
αu1 →∗E∪C,A αv1 ∧ . . . ∧ αun →∗E∪C,A αvn holds, which means that (by [2,
Lemma 4.2]), since σC holds we have σαu1 →∗E,A σαv1∧. . .∧σαun →∗E,A σαvn.
Therefore, we have

σu

∗E,A ��

σv

∗
E,A

''
σw
A

σw′

σu′
R,A

// σu′′

∗

E,A

88

as desired. 2

In the implementation of the ChC tool, the lefthand sides of the rules in C
are simplified to their normal forms before turning their variables into constants.

4.2. The Ground Coherence Case
Assume that Σ has a sub-signature of constructors Ω that has been verified

to be sufficiently complete with respect to the equations E modulo A, that is,
that for each ground Σ-term t there is a ground Ω-term t′ such that t→∗E,A t′.
Then, we can view each f ∈ Σ with a different syntactic form from Ω as a
frozen operator, since any ground term in E,A-canonical form will not contain
the symbol f . This automatically excludes all problematic non-overlaps with R
below E except for:

(a) constructor equations, and

34

(b) equations f(t1, . . . , tn) → r if C in E with f ∈ Σ − Ω, and (for axioms
A which are combinations of associativity and/or commutativity and/or
identity axioms) with f having the identity, left identity, or right identity
attributes, and such that the lefthand side of the equation resulting from the
variant-based transformation to remove the identity attributes has a non-
frozen variable (see [21] for details on the variant-based transformation).

Therefore, assuming again that A is a combination of associativity and/or
commutativity and/or identity, for ground coherence under the assumption of
frozenness of defined symbols, we only have to check condition (ii) in Theorem 5
on equations of types (a) and (b) above.

Furthermore, for those conditional critical pairs C ⇒ u → v for which
we have not been able to check unfeasibility nor context joinability, we can
guarantee their inductive ground joinability if for w = u↓E,A and for the rewrite
theory

R̃C,Y = (Σ ∪X ∪
⋃
λ

Yλ, E ∪ C ∪A, {λ′ : l→ rYλ | λ : l→ r if D ∈ R})

where X = Var(C ⇒ u→ v), Yλ = Var(r)− Var(l) for a rule λ : l → r if D in
R, and rYλ denotes the term r with all variables in Yλ made constants, we can
prove w →1

R,A vi for some substitution θi for the variables of l → r for some
such rule. Then inductive ground joinability amounts to proving the inductive
theorem:

E ∪A `ind C ⇒ (θ1D1 ∧ v1 = v) ∨ . . . ∨ (θnDn ∧ vn = v)

where θi and Di are the matching substitution and the condition of the rule
used to reach each vi from w.

The intuition behind this procedure is as follows. When we have a critical
pair C ⇒ u → v that we cannot automatically join, in some cases it is just
because the conditions of the appropriate rules cannot be satisfied, or because
the term resulting from the application of the rule or the term v we want to
reach cannot be further simplified. In some other cases it is just because of the
way in which the equations were written, because they are too general or simply
because they cannot be applied to terms with variables as such (more on this in
Section 5). However, in the ground case, we can reduce the ground joinability
problem to an inductive equational proof based on the application of the rules
whose lefthand sides match the lefthand side of a particular conditional critical
pair. For a critical pair C ⇒ u→ v to be rewritten we just need to find a match
θ of w = u↓E,A with the lefthand side of a rule λ′ : l → rYλ (coming from
λ : l→ r if D) such that its condition is satisfied (Dθ) and the term reached is
provably equal to v (i.e., v must be proved equal to u[rYλθ]p for some position p
after restoring the variables in Yλ). Notice that since there might be more than
one match with each equation, the conjuncts in the proof obligation above are
indexed by 1..n rather than by the labels of the rules.

35

5. How to Use the Tools

This section discusses and illustrates with examples the use of the Church-
Rosser and coherence checker tools, and suggests some methods that—using
the feedback provided by the tools—can help the user establish that his/her
specification is ground Church-Rosser and coherent.

We assume a context of use in which the user has already developed an
executable specification of his/her intended system, and that this specification
has already been tested with examples, so that the user is in fact reasonably
confident that the specification is, respectively, ground Church-Rosser or ground
coherent, and wants only to check the corresponding property with the tools.
In the case of the CRC it is assumed that the specification has previously
been checked to be operationally terminating, and in the case of the ChC that
its equational sub-specification is Church-Rosser (or at least ground Church-
Rosser) and operationally terminating.

The tools can only guarantee success automatically when the user’s spec-
ification is unconditional, has sort-decreasing equations, and is confluent or
coherent and, furthermore, any associativity axiom in A for an operator has a
corresponding commutativity axiom. In all other cases, the fact that the tools
do not generate any proof obligations is only a sufficient condition, so that even
when they return a collection of proof obligations, the specification may still be
ground Church-Rosser (resp., ground coherent), or for a conditional specification
it may even be Church-Rosser (resp., coherent).

An important methodological question is what to do, or not do, with these
proof obligations. What should not be done is to let an automatic completion
process add new rules to the user’s specification in a mindless way. In many
cases it will certainly lead to a nonterminating process. For the CRC in some
cases this is even impossible in the standard sense, because some critical pair
cannot be oriented. In any case, it will modify the user’s specification in ways
that can make it difficult for the user to recognize the final result, if any, as
intuitively equivalent to the original specification.

The feedback of the tools should instead be used as a guide for careful anal-
ysis of one’s specification. As many of the examples we have studied indicate,
by analyzing the critical pairs returned, the user can often understand why they
could not be joined. It may be a mistake that must be corrected. More often,
however, it is not a matter of a mistake, but of a rule that is either too general—
so that its very generality makes joining an associated critical pair impossible,
because no more equations can apply to it—or amenable to an equivalent for-
mulation that is unproblematic—for example, by reordering the parentheses for
an operator that is ground-associative—or both. In any case, it is the user
himself/herself who must study where the problem comes from, and how to fix
it by correcting or modifying the specification. Interaction with the tool then
provides a way of modifying the original specification and ascertaining whether
the new version passes the test or is a good step towards that goal.

If the user’s attempts to correct or modify the specification do not yet achieve
a complete success, so that some proof obligations are left, inductive methods to

36

discharge the remaining proof obligations may be used. In the case of the ChC,
since the user’s specification has an initial model semantics, and the equational
sub-specification is assumed to be ground Church-Rosser and operationally ter-
minating, the proof of the inductive rewritability of the critical pairs can be
attempted, and conditional critical pairs can be discharged if their conditions
are proven unsatisfiable.

In the case of the Church-Rosser checker, since the user’s specification typi-
cally has an initial algebra semantics and the most common property of interest
is checking that it is ground Church-Rosser, the proof obligations returned by
the tool are inductive proof obligations. There are essentially two basic lines of
approach, which may even be combined:

• The user may conjecture that adding a new equation t = t′ (or set of
equations) to its specification T will make it Church-Rosser. If he/she can
prove operational termination with the added equation(s) and the CRC
does not generate any proof obligations for the extended specification, all
is well. The only remaining issue is whether the new equation(s) have
changed the module’s initial algebra semantics. This can be checked by
using a tool such as the Maude ITP (which does not require an equational
specification to be Church-Rosser in order to perform sound inductive
proofs) to verify that T `ind t = t′. A variant of this method when
t = t′ is an associativity, or commutativity, or identity axiom, is to add
it to T not as a simplification rule, but as an axiom. Of course, if the
new equations added are those returned by the CRC as proof obligations,
the initial algebra semantics is automatically preserved and does not need
to be checked, since the added equations are by construction theorems
derivable from the original equations E ∪A.

• The other alternative is to reason inductively about the ground joinabil-
ity of the critical pairs, and also about the inductive satisfaction of the
membership assertions, returned by the tool. The key point in both cases
is that we should reason inductively not with the equational theory T (a
critical pair is by construction an equational theorem in T), but with the
rewrite theory

−→
T obtained by orienting the equations of T as rewrite rules.

An approach to inductive proofs for membership assertions with
−→
T has

already been sketched in Section 3.2. For proving ground joinability, sev-
eral proof methods, e.g., [53, 5, 39, 46, 6, 1, 7], can be used. In particular,
for order-sorted specifications, constructor-based methods such as those
described in [55, 54] can be used.

An unresolved methodological issue in the case of the CRC is what to do
with conditional critical pairs, or conditional membership assertions, whose con-
ditions are unsatisfiable. As we explain in Section 3.4, we currently discard
critical pairs which the tool can show are unfeasible or context-joinable, but all
remaining not trivially joinable critical pairs are returned to the user. Since
we do not know whether the specification is Church-Rosser, we cannot use any
methods that rely in the Church-Rosser assumption to discard them. Perhaps a

37

modular/hierarchical approach could be used, in conjunction with the inductive
proof methods described above, to establish the unsatisfiability of such condi-
tions to discard the corresponding proof obligations.

The CRC and ChC tools are both implemented in Maude using reflection
as extensions of the Full Maude language [23, 17]. They accept as inputs any
Maude (or Full Maude) conditional order-sorted equational theories (resp., con-
ditional order-sorted rewrite theories) satisfying the requirements already men-
tioned in Sections 3–4. However, no use of built-in operators that rely on the
underlaying C++ implementation of Maude is allowed: such operators should
be fully specified by equations. Also, the owise feature6 is not allowed (see [10,
Section 4.5.4]).

We give in the following sections examples illustrating the use of the tools.
The examples have been chosen trying to highlight those features not simultane-
ously supported by other tools, namely, order-sortedness, conditional equations
and rules, and rewriting modulo axioms. All the examples and details of their
verification can be found at http://maude.lcc.uma.es/CRChC.

5.1. Hereditarily Finite Sets
The following functional module HF-SETS specifies hereditarily finite sets,

that is, sets that are finite and, furthermore, their elements, the elements of
those elements, and so on recursively, are all finite sets. It was developed by
R. Sasse and J. Meseguer and is inspired by the generalized sets module in
Maude’s prelude [10, Section 9.12.5]. It declares sorts Set and Magma, with Set
a subsort of Magma. Terms of sort Set are generated by constructors {}, the
empty set, and {_}, which makes a set out of a term of sort Magma. Magmas
have an associative-commutative operator _,_. The commutative operator _~_
is the set equality predicate. The membership relation holding between two sets
is here generalized by a predicate _in_ holding between two magmas, and the
containment relation ⊆ is here modeled by a predicate _<=_ holding between
two sets.

(fmod HF−SETS i s
protecting BOOL−OPS .
sorts Magma Set .
subsort Set < Magma .
op _ ‘ , _ : Magma Magma −> Magma [ctor assoc comm] .
op ‘{ _ ‘} : Magma −> Set [ctor] .
op ‘{ ‘} : −> Set [ctor] .

vars M M ’ N : Magma . vars S S ’ : Set .

eq [0 1] : M , M , M ’ = M , M ’ . eq [0 2] : M , M = M .

op _in_ : Magma Magma −> Bool .
eq [0 3] : M in {} = false .
eq [0 4] : {} in {{M}} = false .
eq [0 5] : {} in {{}} = true .
eq [0 6] : {} in {{} , M} = true .

6In Maude, the owise attribute can be used to specify otherwise equations, i.e., equations
that will be applied only if no other equation for that symbol can be applied.

38

eq [0 7] : {} in {{M } , N} = {} in {N} .
eq [0 8] : S in {S ’} = S ˜ S ’ .

ceq [0 9] : S in {S ’ , M} = true i f S ˜ S ’ = true .
ceq [1 0] : S in {S ’ , M} = S in {M} i f S ˜ S ’ = false .
ceq [1 1] : S in S ’ , N = true i f S in S ’ = true .
ceq [1 2] : S in S ’ , N = S in N i f S in S ’ = false .
ceq [1 3] : S , M in M ’ = M in M ’ i f S in M ’ = true .
ceq [1 4] : S , M in M ’ = false i f S in M ’ = false .

op _<=_ : Set Set −> Bool .
eq [1 5] : {} <= S = true .
eq [1 6] : {M} <= S = M in S .

op _˜_ : Set Set −> Bool .
eq [1 7] : S ˜ S ’ = (S <= S ’) and (S ’ <= S) .

endfm)

Notice the labeling of the equations. The critical pairs returned by the tool
will use the labels to provide information about the equations they come from.
Notice also the importation of the predefined module BOOL-OPS, where the sort
Bool is defined with constants true and false, and Boolean operations _and_,
or, _xor_, not_, and _implies_. The operators _and_, _or_, and _xor_ are
declared associative and commutative.

The Church-Rosser check gives the following result:
Maude> (check Church−Rosser HF−SETS .)
Church−Rosser checking of HF−SETS
Checking solution :
The following critical pairs cannot be joined :

ccp for 07 and 09
S ’ : Set <= {} = true if {} ˜ S ’ : Set = true .

ccp for 07 and 10
S ’ : Set <= {} = false if {} ˜ S ’ : Set = false .

ccp for 02 and 09
S : Set <= S ’ : Set and S ’ : Set <= S : Set = true
if S : Set ˜ S ’ : Set = true .

ccp for 09 and 10
true = S : Set <= #2: Set and #2: Set <= S : Set
if S : Set ˜ S ’ : Set = false /\ S : Set ˜ #2: Set = true .

ccp for 10 and 09
S : Set <= S ’ : Set and S ’ : Set <= S : Set = true
if S : Set ˜ S ’ : Set = true /\ S : Set ˜ #2: Set = false .

ccp for 10 and 10
S : Set <= S ’ : Set and S ’ : Set <= S : Set
= S : Set <= #2: Set and #2: Set <= S : Set
if S : Set ˜ S ’ : Set = false /\ S : Set ˜ #2: Set = false .

The specification is sort−decreasing .

The tool generates 1027 critical pairs. Most of them are trivially joinable,
and therefore discarded. From the remaining 26 critical pairs, all of which are
conditional, 20 are discarded because they can be proven to be either context-
joinable or unfeasible. Let us take a look at some of these.

Let us consider the following context-joinable critical pair:
ccp for 16 and 11

S : Set in (S ’ : Set , N : Magma) = true
if S : Set in S ’ : Set = true .

If we extend the module with the condition of this critical pair as an equation
with its variables S and S’ turned into constants, of sort Set, #S and #S’, then,
the terms #S in (#S’, #N) and true, with #N a new constant of sort Magma,
can be joined in the extended module.

39

The following critical pair is discarded because it is unfeasible.
ccp for 11 and 12

true = S : Set in N : Magma
if S : Set in S ’ : Set = false /\ S : Set in S ’ : Set = true .

To prove unfeasibility we focus on the conditions. With the rules
#S in #S ’ = false
#S in #S ’ = true

the term #S in #S’ can be rewritten both to false and true. Since they
do not unify and are strongly irreducible, we conclude that the critical pair is
unfeasible.

Most other critical pairs are discarded for similar reasons. The only ones left
are those finally returned by the tool. These critical pairs are neither context-
joinable nor unfeasible. However, we can introduce new equations, that should
be inductively deducible from the specification, or replace the ones we have by
alternative equations, in order to eliminate such critical pairs.

Let us start with the first critical pair in the CRC output. We may argue
that if the set S’ is such that the condition is satisfied, then the term S’ <= {}
should be reducible to true, and try to add equations to allow this rewrite. But,
more easily, we may observe that the critical pair comes from equations 07 and
09 at the top, because 09 is more general than necessary. Since a set is either
of the form {} or {M}, and the {} case is covered by equations 06 and 07, we
can eliminate this critical pair by replacing equation 09 with

ceq [0 9 ’] : {M} in {S , M ’} = true i f {M} ˜ S = true .

A new execution of the check shows that the critical pair for equations 07 and
09 is no longer given. The critical pair for equations 07 and 10 suggests a similar
change for equation 10:

ceq [1 0 ’] : {M} in {S , M ’} = {M} in {M ’} i f {M} ˜ S = false .

This is not enough, however. With these new two equations, the tool gives us
now four conditional critical pairs.

Maude> (check Church−Rosser HF−SETS−2 .)
Church−Rosser checking of HF−SETS−2
Checking solution :
The following critical pairs cannot be joined :

ccp for 09 ’ and 10 ’
true = #2: Set <= {M : Magma} and M : Magma in #2: Set
if {M : Magma} ˜ S : Set = false /\ {M : Magma} ˜ #2: Set = true .

ccp for 02 and 09 ’
S : Set <= {M : Magma} and M : Magma in S : Set = true
if {M : Magma} ˜ S : Set = true .

ccp for 10 ’ and 09 ’
S : Set <= {M : Magma} and M : Magma in S : Set = true
if {M : Magma} ˜ S : Set = true /\ {M : Magma} ˜ #2: Set = false .

ccp for 10 ’ and 10 ’
S : Set <= {M : Magma} and M : Magma in S : Set
= #2: Set <= {M : Magma} and M : Magma in #2: Set
if {M : Magma} ˜ S : Set = false /\{M : Magma }˜ #2: Set = false .

The specification is sort−decreasing .

Given these critical pairs, we realize that equations 09’ and 10’ are still
problematic. The simplest change is to replace these two equations by one
unconditional equation covering the two cases:

40

eq [09−10] : {M} in {S , M ’} = {M} ˜ S or {M} in {M ’} .

Replacing 09’ and 10’ by 09-10 the check now succeeds:
Maude> (check Church−Rosser HF−SETS−3 .)
Church−Rosser checking of HF−SETS−3
Checking solution :
All critical pairs have been joined .
The specification is locally−confluent .
The specification is sort−decreasing .

Therefore, once proven operationally terminating,7 module HF-SETS-3 is
confluent.

5.2. Lists and Sets
Let us consider now the following specification of lists and sets.

(fmod LIST&SET i s
sorts MBool Nat List Set .
subsorts Nat < List Set .
ops true false : −> MBool .
ops _and_ _or_ : MBool MBool −> MBool [assoc comm] .
op 0 : −> Nat .
op s_ : Nat −> Nat .
op _ ; _ : List List −> List [assoc] .
op null : −> Set .
op __ : Set Set −> Set [assoc comm id : null] .
op _in_ : Nat Set −> MBool .
op _==_ : List List −> MBool [comm] .
op list2set : List −> Set .

var B : MBool . vars N M : Nat .
vars L L ’ : List . var S : Set .

eq [0 1] : N N = N .
eq [0 2] : true and B = B .
eq [0 3] : false and B = false .
eq [0 4] : true or B = true .
eq [0 5] : false or B = B .
eq [0 6] : 0 == s N = false .
eq [0 7] : s N == s M = N == M .
eq [0 8] : N ; L == M = false .
eq [0 9] : N ; L == M ; L ’ = (N == M) and L == L ’ .
eq [1 0] : L == L = true .
eq [1 1] : list2set (N) = N .
eq [1 2] : list2set (N ; L) = N list2set (L) .
eq [1 3] : N in null = false .
eq [1 4] : N in M S = (N == M) or N in S .

endfm)

It has four sorts: MBool, Nat, List, and Set, with Nat included in both List
and Set as a subsort. The terms of each sort are, respectively, Booleans, natural
numbers (in Peano notation), lists of natural numbers, and finite sets of natural
numbers. The rewrite rules in this module then define various functions such as
and and _or_, a function list2set associating to each list its corresponding
set, the set membership predicate _in_, and an equality predicate _==_ on lists.

7The termination of the HF-SETS-i modules, as the rest of the termination proofs in this
article, has been carried out using the MTT tool (see [19, 22, 18, 21] for details on the MTT
tool and on the different techniques and transformations available for checking the termination
of membership equational logic and rewriting logic specifications).

41

Furthermore, the idempotency of set union is specified by the first equation. The
operators _and_ and _or_ have been declared associative and commutative, the
list concatenation operator _;_ has been declared associative, the set union
operator __ has been declared associative, commutative and with null as its
identity, and the _==_ equality predicate has been declared commutative using
the comm keyword. This module therefore illustrates how the CRC can deal
in principle with arbitrary combinations of associativity and/or commutativity
and/or identity axioms, even though it may not succeed in some cases when
some operators are associative but not commutative.

The tool gives us the following result.
Maude> (check Church−Rosser .)
Church−Rosser checking of LIST&SET
Checking solution :
The following critical pairs cannot be joined :

cp for 01 and 14
N : Nat == M : Nat = (N : Nat == M : Nat) or N : Nat == M : Nat .

cp for 01 and 14
(N : Nat == M : Nat) or N : Nat in #5: Set
= (N : Nat == M : Nat) or (N : Nat == M : Nat) or N : Nat in #5: Set .

The specification is sort−decreasing .

These critical pairs are completely harmless. They can in fact be removed
by introducing an idempotency equation for the _or_ operator.

(fmod LIST&SET−2 i s pr LIST&SET .
var B : MBool .
eq [1 5] : B or B = B .

endfm)

The tool now tells us that the specification is locally confluent and sort-
decreasing, and since it is terminating (see [21]), we can conclude that it is
Church-Rosser.

As explained in Section 1, to handle this specification, the CRC applies
several semantics-preserving transformations on the original module to remove
identity attributes and associativity attributes that do not come with commu-
tativity ones and turning them into explicit equations. We refer the interested
reader to [25] for details on the use of this transformation in the CRC, and
to [21] for a detailed description of the variant transformation used.

5.3. The Bakery Protocol
The bakery protocol is a classical solution by Lamport [42] to the problem

of achieving mutual exclusion between processes, as originally stated by Dijk-
stra [16], and then extended by Knuth in [41]. The algorithm is based on the
procedure commonly used in bakeries and deli shops, in which every customer
gets a number when entering the store. Each client takes as its number the
successor of the maximum of the numbers of the clients in the store. The next
client to be served is the one with the smallest number.

In our specification, processes are represented as terms of sort BProcess.
The elements of sort BProcess are constructed by an operator <_,_,_>, which
takes the identifier of the process (a natural number of sort MNat), the mode it
is currently in (a constant of sort Mode), and the number it has been assigned

42

(of sort MNat). The state of the bakery is represented as a term of sort GBState,
constructed by an operator [[_]] whose argument is a term of sort BState,
which represents a multiset of processes.

A process can be in modes sleep, wait or crit. The rules describe how
each process goes from being sleeping to waiting, from waiting to its critical
section, and then back to sleeping. When a process is in the sleep mode it
has a 0 number; a process in wait or crit mode has a number greater than
zero. Auxiliary functions maxNumber and minNzNumber return, respectively,
the maximum and minimum, without considering zeros, of the numbers of the
processes in a BState. If the set of processes passed to the minNzNumber function
is either empty or all of them have zero as their number, i.e., are in the sleep
mode, then minNzNumber returns 0.

The following MNAT module defines the sort MNat with constructors 0 and s_,
a less than predicate _<_, and associative and commutative operators min and
max that return, respectively, the smallest and the greatest of two natural num-
bers. Constants representing numbers 1 . . . 5 are also defined. The predefined
module TRUTH-VALUE defines a Bool sort with constants true and false.

(fmod MNAT i s
protecting TRUTH−VALUE .
sort MNat .
op 0 : −> MNat [ctor] .
op s_ : MNat −> MNat [ctor] .
op _<_ : MNat MNat −> Bool .
ops min max : MNat MNat −> MNat [assoc comm] .
ops 1 2 3 4 5 : −> MNat .
vars N N ’ : MNat .
eq 1 = s 0 . eq 2 = s 1 . eq 3 = s 2 . eq 4 = s 3 . eq 5 = s 4 .
eq [MNat −1] : N < 0 = false .
eq [MNat −2] : 0 < s N = true .
eq [MNat −3] : s N < s N ’ = N < N ’ .
eq [MNat −4] : min (0 , N) = 0 .
eq [MNat −5] : min (s N , s N ’) = s min (N , N ’) .
eq [MNat −6] : max (0 , N) = N .
eq [MNat −7] : max (s N , s N ’) = s max (N , N ’) .

endfm)

Given the MNAT module, the following BAKERY module specifies the bakery
protocol as explained above.

(mod BAKERY i s
protecting MNAT .
sorts Id Mode BProcess BState GBState .
ops sleep wait crit : −> Mode [ctor] .
op <_ ‘ , _ ‘ , _> : MNat Mode MNat −> BProcess [ctor] .
subsort BProcess < BState .
op __ : BState BState −> BState [ctor assoc comm id : none] .
op none : −> BState [ctor] .
op ‘ [‘ [_ ‘] ‘] : BState −> GBState [ctor] .
var P : Mode . vars I N M : MNat . var BSt : BState .

--- - initial state
op initial : MNat −> BState .
eq initial (s N) = < s N , sleep , 0 > initial (N) .
eq initial (0) = none .

--- - max of the numbers assigned to processes (0 if none)
op maxNumber : BState −> MNat .
op maxNumber : BState MNat −> MNat .
eq [max−1] : maxNumber (< I , P , N > BSt)

43

= max (N , maxNumber (BSt)) .
eq [max−2] : maxNumber (none) = 0 .

--- - min . of the nonzero numbers assigned to processes (0 if none)
op minNzNumber : BState −> MNat .
op minNzNumber : BState MNat −> MNat .
eq [min−1] : minNzNumber (< I , P , 0 > BSt) = minNzNumber (BSt) .
eq [min−2] : minNzNumber (< I , P , s N > BSt)

= minNzNumber (BSt , s N) .
eq [min−3] : minNzNumber (none) = 0 .
eq [min−4] : minNzNumber (< I , P , 0 > BSt , M) = minNzNumber (BSt , M) .
eq [min−5] : minNzNumber (< I , P , s N > BSt , M)

= minNzNumber (BSt , min (M , s N)) .
eq [min−6] : minNzNumber (none , M) = M .

r l [sleep2wait] : [[< I , sleep , 0 > BSt]]
=> [[< I , wait , s maxNumber (BSt) > BSt]] .

cr l [wait2crit] : [[< I , wait , N > BSt]]
=> [[< I , crit , N > BSt]]
i f N < minNzNumber (BSt) .

r l [crit2sleep] : [[< I , crit , N > BSt]]
=> [[< I , sleep , 0 > BSt]] .

endm)

This specification makes use of some of the advanced features supported by
the CRC and ChC tools: it is an order-sorted specification, with a conditional
rule, two associative-commutative operators (min and max), and an associative-
commutative operator with identity (__).

Before reducing or rewriting any term, we should make sure that it satisfies
the expected executability requirements: the equational part must be checked
terminating and Church-Rosser, and the rules must be coherent with the equa-
tions.

The termination of the equational part can be checked using the MTT
tool [19].

The CRC gives the following result:
Maude> (check Church−Rosser BAKERY .)
Church−Rosser checking of BAKERY
Checking solution :
All critical pairs have been joined .
The specification is locally−confluent .
The specification is sort−decreasing .

Since the equational part of the specification is terminating, and the CRC tool
certifies that it is locally confluent and sort decreasing, we can conclude that it
is Church-Rosser.

The BAKERY module is also ground coherent, as shown by the result returned
by the ChC tool:

Maude> (check ground coherence BAKERY .)
Coherence checking of BAKERY
Coherence checking solution :
All critical pairs have been rewritten and all equations are non−

↪→constructor .
The specification is ground coherent .

Let us now verify some properties about this protocol. For instance, let us try
to verify mutual exclusion, that is, that two processes are never simultaneously
in their critical sections, and liveness, that is, that whenever a process enters

44

the waiting mode, it will eventually enter its critical section. To do that we
could use the Maude LTL model checker.

However, notice that the range of numbers that can be assigned to customers
is unbounded, which creates an infinite number of reachable states from an initial
configuration of processes generated by the initial operator for any value of
its argument greater than 1. Therefore, we should model check these properties
using an abstraction. We can for instance define an equational abstraction [49]
by adding to the BAKERY module equations defining a quotient of the set of
states.

To define an abstraction we can take into account the fact that the process
with the smallest number is the one getting into the critical section, and that
we should not change the order in which the assigned numbers are given. We
can therefore safely decrease the numbers of all processes if the smallest of the
numbers given is greater than 1. We can do so in the following module extending
the BAKERY module by adding a few equations and leaving the rules unchanged:

(mod ABSTRACT−BAKERY i s
including BAKERY .
var P : Mode .
var BSt : BState .
vars I N : MNat .

ceq [AB] :
[[BSt]]

= [[dec (BSt)]]
i f 1 < minNzNumber (BSt) .

op dec : BState −> BState .
op dec : MNat −> MNat .
eq dec(< I , P , N > BSt) = < I , P , dec (N) > dec (BSt) .
eq dec (none) = none .
eq dec (0) = 0 .
eq dec (s N) = N .

endm)

The intuition behind this abstraction is basically that, if there is no cus-
tomer with number 1 and some of them have numbers different from 0, then
all the numbers of non-sleeping customers, i.e., with a nonzero number, can be
decreased by 1. The auxiliary dec function decreases (by 1) the number of each
of the non-sleeping processes in a given BState. This abstraction makes the
set of reachable states finite, since the numbers assigned to N processes will
never grow beyond N + 1. As soon as the customer with the smallest number
is served, the numbers of all customers are decreased.

We can check the satisfaction of the Church-Rosser property of the equa-
tional part of the specification using the CRC tool. The result given by the tool
is the following:

Maude> (check Church−Rosser ABSTRACT−BAKERY .)
Church−Rosser checking of ABSTRACT−BAKERY
Checking solution :
All critical pairs have been joined .
The specification is locally−confluent .
The specification is sort−decreasing .

Since the specification is terminating, we can conclude that it is also conflu-
ent. The last requirement is the coherence of equations and rules. The result of

45

the ChC tool is as follows:
Maude> (check ground coherence ABSTRACT−BAKERY .)
Coherence checking of ABSTRACT−BAKERY
Coherence checking solution :
The following critical pairs cannot be rewritten :

ccp for AB and wait2crit
[[dec (BSt : BState) < I : MNat , wait , dec (N : MNat) >]]

=> [[BSt : BState < I : MNat , crit , N : MNat >]]
if N : MNat < minNzNumber (BSt : BState) = true
/\ s 0 < minNzNumber (BSt : BState < I : MNat , wait , N : MNat >) = true .

Inductive ground joinability amounts to proving the following
↪→inductive theorem :

E U A |−ind A (BSt : BState ; I : MNat ; N : MNat)
N : MNat < minNzNumber (BSt : BState) = true
/\ s 0 < minNzNumber (BSt : BState < I : MNat , wait , N : MNat >) = true
=> dec (N : MNat) < minNzNumber (dec (BSt : BState)) = true

/\ [[dec (BSt : BState) < I : MNat , crit , dec (N : MNat) >]]
= [[dec (BSt : BState) < I : MNat , crit , dec (N : MNat) >]]

One single critical pair is given by the tool. And, as we asked for a ground
coherence check, the associated inductive equational proof obligation to be dis-
charged is given as part of the output of the tool.

The first key observation to interpret these critical pairs is that TRUTH-VALUE
and MNAT are protected in ABSTRACT-BAKERY.8 This follows from the conflu-
ence, termination, and the sufficient completeness,9 of the equational part of the
ABSTRACT-BAKERY module, plus the observation that no equations involving ei-
ther 0 or the s_ function, or true or false have been added in ABSTRACT-BAKERY.
An inductive proof discharging this proof obligation is relatively easy to do.

In order to specify the desired mutual exclusion and liveness properties, we
may specify the state predicates wait(N), crit(N), and 2crit, which are
satisfied, respectively, when process N is in wait mode, when process N is in
crit mode, and when there are two processes simultaneously in the critical
section:

(mod BAKERY−PREDS i s
protecting BAKERY−2 .
including SATISFACTION .

subsort GBState < State .
ops wait crit : MNat −> Prop [ctor] .
op 2 crit : −> Prop [ctor] .

vars X Y N M : MNat . var BSt : BState .

eq [[< N , wait , X > BSt]] |= wait (N) = true .
eq [[< N , crit , X > BSt]] |= crit (N) = true .
eq [[< N , crit , X > < M , crit , Y > BSt]] |= 2 crit = true .

endm)

8A sort S is protected in an importation of a module M’ into another module M if no new
data items of sort S are added, and no data items of sort S are identified in M (no junk and
no confusion).

9Note that there is only one conditional equation, the AB equation, which is not required to
be considered in the sufficient completeness check because it operates on constructors. Thus,
although the SCC [35] does not support conditional axioms, it can be used, and has in fact
been used, to prove the sufficient completeness of the specification.

46

The SATISFACTION module is a predefined module declaring sorts State and
Prop and an operator

op _ |=_ : State Prop −> Bool [frozen] .

that represents the satisfaction of a given proposition in a given state.
The preservation of these state predicates can be guaranteed if we show

that the BAKERY-PREDS module protects TRUTH-VALUE. This follows from the
sufficient completeness, termination, confluence and sort-decreasingness of the
BAKERY-PREDS module, plus the observation of the absence of any equations
having true or false in their lefthand sides.

For the checking of the Church-Rosser property the CRC tool can be used.
Maude> (check Church−Rosser BAKERY−PREDS .)
Church−Rosser checking of BAKERY−PREDS
Checking solution :
All critical pairs have been joined .
The specification is locally−confluent .
The specification is sort−decreasing .

The correctness of the abstraction requires deadlock freedom. To ensure
deadlock freedom, we can use the automatic module transformation described
in [10, Section 15.3], which preserves all the desired executability properties.
With this transformation, we obtain a semantically equivalent, deadlock-free
version of our specification.

We can finally verify our desired properties on the specification resulting
from the transformation.

We can check mutual exclusion for, e.g., five processes as follows:
Maude> (red modelCheck ([[initial (5)]] , [] ˜ (2 crit)) .)
result Bool :

true

And liveness also for five processes with:
Maude> (red modelCheck ([[initial (5)]] ,

(wait (1) |−> crit (1)) /\
(wait (2) |−> crit (2)) /\
(wait (3) |−> crit (3)) /\
(wait (4) |−> crit (4)) /\
(wait (5) |−> crit (5))) .)

result Bool :
true

5.4. An Unordered Communication Channel
Consider a communication channel in which messages can get out of order.

There is a sender and a receiver. The sender is sending a sequence of data
items, for example numbers. The receiver is supposed to get the sequence in
the exact same order in which they were in the sender’s sequence. To achieve
this in-order communication in spite of the unordered nature of the channel, the
sender sends each data item in a message together with a sequence number, and
the receiver sends back an ack message indicating that has received the item.
The Full Maude specification of the protocol is as follows:

47

(mod UNORDERED−CHANNEL i s
sorts Nat NatList Msg Conf State .
subsort Msg < Conf .
op 0 : −> Nat [ctor] .
op s : Nat −> Nat [ctor] .
op nil : −> NatList [ctor] .
op _ ; _ : Nat NatList −> NatList [ctor] . --- - list constructor
op _@_ : NatList NatList −> NatList . --- - list append
op ‘ [_ ‘ , _ ‘] : Nat Nat −> Msg [ctor] .
op ack : Nat −> Msg [ctor] .
op null : −> Conf [ctor] .
op __ : Conf Conf −> Conf [ctor assoc comm id : null] .
op ‘{ _ ‘ , _ | _ | _ ‘ , _ ‘} : NatList Nat Conf NatList Nat −> State [ctor] .

vars N M J K : Nat . var C : Conf .
vars L P Q : NatList .

eq nil @ L = L . eq (N ; L) @ P = N ; (L @ P) .

r l [snd] : {N ; L , M | C | P , K} => {N ; L , M | [N , M] C | P , K} .
r l [rec] : {L , M | [N , J] C | P , J}

=> {L , M | ack (J) C | P @ (N ; nil) , s (J)} .
r l [rec−ack] : {N ; L , J | ack (J) C | P , M} => {L , s (J) | C | P , M} .

endm)

The contents of the unordered channel is modeled as a multiset of messages
of sort Conf. The entire system state, involving the sender, the channel, and
the receiver is a 5-tuple of sort State, where the components are:

• a buffer for the sender containing the current list of items to be sent,

• a counter for the sender keeping track of the sequence number for items
to be sent,

• the contents of the unordered channel,

• a buffer for the receiver storing the sequence of items already received,
and

• a counter for the receiver keeping track of the sequence number for items
received.

One essential property of this protocol is of course that it achieves in-order
communication in spite of the unordered communication medium. We can spec-
ify this in-order communication property as an invariant in Maude. We will
assume that all initial states are of the form:
{n1 ; . . . ; nk ; nil , 0 | null | nil , 0}

That is, the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil
and has the counter set to 0, the channel is empty, and the receiver’s buffer is
also empty. Also, the receiver’s counter is initially set to 0.

In specifying the invariant, the auxiliary notion of a list prefix is useful.
Given lists L and L′ we say that L is a prefix of L′ iff either: (1) L = L′, or (2)
there is a nonempty list L′′ such that L @ L′′ = L′.

(mod UNORDERED−CHANNEL−INVARIANT i s
including UNORDERED−CHANNEL .
protecting BOOL−OPS .

48

op _˜_ : Nat Nat −> Bool [comm] . ∗∗∗ equality predicate

vars M N K : Nat .
var C : Conf .
vars L L ’ L ’ ’ : NatList .

eq 0 ˜ 0 = tt .
eq 0 ˜ s (N) = ff .
eq s (N) ˜ s (M) = N ˜ N .

op prefix : NatList State −> Truth .
eq [I1] : prefix (M ; L , {L ’ , N | C | K ; L ’ ’ , K })

= (M ˜ K) and prefix (L , {L ’ , N | C | L ’ ’ , K }) .
eq [I3] : prefix (L , {L , N | C | nil , K }) = tt .
eq [I4] : prefix (nil , {L ’ , N | C | M ; L ’ ’ , K }) = ff .

endm)

Notice that the _~_ predicate is declared commutative, and the _and_ operator
is declared commutative and associative with identity element tt.

The equational part of the specification can be checked terminating and
Church-Rosser using the MTT [19] and the CRC. And the rules can be shown
to be ground coherent with the equations by using the ChC tool.

Maude> (check ground coherence .)

Coherence checking of UNORDERED−CHANNEL
Coherence checking solution :
All critical pairs have been rewritten and all equations are non−

↪→constructor .
The specification is ground coherent .

The problem with this simple example is that one cannot verify the invariant
using the search command in Maude, because, due to the snd rule, the number
of messages that can be present in the channel is unbounded, so that there is
an infinite number of reachable states. One should therefore use an equational
abstraction [49].

(mod UNORDERED−CHANNEL−ABSTRACTION i s
including UNORDERED−CHANNEL−INVARIANT .
vars M N P K : Nat .
vars L L ’ L ’ ’ : NatList .
var C : Conf .

eq [A1] : {L , M | [N , P] [N , P] C | L ’ , K}
= {L , M | [N , P] C | L ’ , K} .

endm)

As in the bakery example in Section 5.3, there are of course several key
properties that such an abstraction should satisfy:

(1) the set of states reachable from any initial state should be finite,

(2) the equational theory should be ground confluent and terminating,

(3) the rules should be ground coherent with the equations, and

(4) the abstraction should preserve the invariant.

Properties (1), (2) and (4) can easily be checked. For (3) we can use the ChC.

49

Maude> (check ground coherence .)
Coherence checking of UNORDERED−CHANNEL−ABSTRACTION
Coherence checking solution :
The following critical pairs cannot be rewritten :

cp for A1 and rec
{ L : NatList , M : Nat | #3: Conf [N : Nat , J : Nat]

| P : NatList , J : Nat}
=> { L : NatList , M : Nat | #3: Conf ack (J : Nat) [N : Nat , J : Nat]

| P : NatList @ N : Nat ; nil , s (J : Nat) } .

Inductive ground joinability amounts to proving the following
↪→inductive theorem :

E U A |−ind A (#3: Conf ; J : Nat ; L : NatList ; M : Nat ; N : Nat ; P : NatList)
{ L : NatList , M : Nat | #3: Conf ack (J : Nat)

| P : NatList @ N : Nat ; nil , s (J : Nat) }
= { L : NatList , M : Nat | #3: Conf ack (J : Nat) [N : Nat , J : Nat]

| P : NatList @ N : Nat ; nil , s (J : Nat) }

cp for A1 and rec
{ L : NatList , M : Nat | [N : Nat , J : Nat] | P : NatList , J : Nat }
=> { L : NatList , M : Nat | ack (J : Nat) [N : Nat , J : Nat]

| P : NatList @ N : Nat ; nil , s (J : Nat) } .
Inductive ground joinability amounts to proving the following

↪→inductive theorem :
E U A |−ind A (J : Nat ; L : NatList ; M : Nat ; N : Nat ; P : NatList)

{ L : NatList , M : Nat | ack (J : Nat)
| P : NatList @ N : Nat ; nil , s (J : Nat) }

= { L : NatList , M : Nat | ack (J : Nat) [N : Nat , J : Nat]
| P : NatList @ N : Nat ; nil , s (J : Nat) }

These critical pairs are in fact not rewritable, and indicate that a rule is missing.
We can add the rule:

(mod UNORDERED−CHANNEL−ABSTRACTION−2 i s
inc UNORDERED−CHANNEL−ABSTRACTION .
vars M N K : Nat . vars L L ’ : NatList . var C : Conf .

r l [rec2] : {L , M | [N , K] C | L ’ , K}
=> {L , M | [N , K] ack (K) C | L ’ @ (N ; nil) , s (K)} .

endm)

After checking again properties (1), (2) and (4) above, we can check also the
ground coherence of the specification.

Maude> (check ground coherence .)
Coherence checking of UNORDERED−CHANNEL−ABSTRACTION−2
Coherence checking solution :
All critical pairs have been rewritten , and no rule can be applied
below non−frozen and non−linear variables of equations .

6. Related Work and Conclusions

The results we present on methods for proving confluence of conditional
order-sorted equational specifications are part of a substantial body of work on
confluence and/or completion methods for such specifications. Among other
references, methods for unconditional order-sorted specifications were studied
in [56], and for the modulo case in [32, 60]. Completion methods for conditional
order-sorted specifications were treated in [30] using a reduction to many-sorted
specifications proposed in [33]. Our work extends that previous work and also
the work of Avenhaus and Loŕıa-Sáenz [2] on confluence of conditional unsorted

50

specifications. To the best of our knowledge, Theorem 2 is the most general
characterization to date for the confluence (resp., ground confluence) of con-
ditional order-sorted specifications modulo axioms which are terminating in a
meaningful “operational” way, that is, such that a reduction interpreter will
always terminate with a term in normal form. Therefore, the CRC tool covers
a very general class of order-sorted equational specifications. Also related to
our work on confluence is previous work on confluence and/or completion of
specifications in membership equational logic [8], as well as the work of Comon
in [11, 12], which in some sense addresses a middle ground between order-sorted
and membership equational specifications using tree automata techniques.

Since our interest is not only on confluence but also on ground confluence, our
work is related to methods for proving ground confluence and ground joinability,
e.g., [53, 39, 46, 6, 38, 7]. The CRC tool generates proof obligations that can then
be subjected to formal analysis for proving ground joinability of critical pairs.
Therefore, the above work can be seen as complementary to ours in helping
to discharge such inductive proof obligations. In particular, the methods of
Bouhoula [7] can treat order-sorted specifications, and the recent constructor-
based inductive methods for ground joinability in [54, 55] can treat order-sorted
specifications modulo axioms.

Regarding work on coherence, there is of course a connection with coherence
work for equational specifications [52, 37, 4], but the most closely related work
studies coherence between equations (and possibly axioms) and non-equational
rules describing transitions in a rewrite theory, including [58, 47, 59]. The work
of Marché [45], which studies coherence between two sets of equational rules,
covers a middle ground between the work on making equational specifications
coherent modulo axioms, and the work on making the rules of a non-equational
rewrite theory coherent with its equations and axioms. Our computation of
critical pairs between equations and rules under frozenness constraints has some
similarities with the computation of critical pairs for context-sensitive equational
specifications in [43], but the purposes are quite different, since in [43] the goal
is to prove the confluence of context-sensitive equational specifications. All the
above-mentioned work addresses only unconditional specifications and, except
for [47], only in the unsorted case. Furthermore, the most complete previous
work on coherence of rewrite theories, namely [59], covers the modulo case only
for AC axioms. To the best of our knowledge, our work is the first to cover
the coherence of conditional order-sorted rewrite theories modulo regular and
linear axioms A, possibly with frozenness constraints. And, as far as we know,
the first to study and give proof methods for the case of ground coherence of
such specifications. Ground coherence is in fact the property most needed in
practice, for example when model checking temporal logic properties of a finite-
state rewrite theory, or when proving that a finite-state abstraction of a rewrite
theory [49, 29, 50] is correct for purposes of verifying temporal logic properties
of an infinite-state concurrent system. Fortunately, unlike the case of ground
confluence, which is harder to prove than confluence, ground coherence is in
some ways easier to prove than coherence.

Regarding tools for checking the Church-Rosser property of equational spec-

51

ifications, in the unsorted and unconditional case the most general tool available
is probably CiMe [13], which supports completion of equational theories mod-
ulo a rich family of equational axioms. To the best of our knowledge, the CRC
tool is the first to support the checking of confluence for operationally terminat-
ing specifications in the general case of conditional order-sorted specifications
modulo associativity and/or commutativity and/or identity. Of course, this in-
cludes as special cases the checking of many-sorted or unsorted specifications
under such general assumptions. For checking coherence of rewrite theories, the
ChC tool seems to be the only tool currently available.

Future work should proceed in several complementary directions. First of
all, since all critical pair computations are instances of narrowing modulo ax-
ioms, new versions of Maude supporting narrowing modulo axioms at the C++
level will lead to more efficient versions of the CRC and ChC tools. The follow-
ing cases are currently not supported and should be investigated: (i) possibly
nonterminating conditional order-sorted equational specifications; (ii) rewrite
theories whose equational part is Church-Rosser but may be nonterminating;
and (iii) rewrite theories whose rules may contain rewrites in their conditions.
Also, a tighter integration between the CRC, ChC, ITP, SCC, and MTT Maude
tools is highly desirable: this will be supported by the upcoming Maude Formal
Environment (MFE) [28]. In particular, support for proofs of ground joinability
in the Maude ITP should be provided, so that proof obligations generated by
the CRC tool can be discharged (using MFE to interoperate both tools); like-
wise, proof obligations generated by the ChC should be discharged using other
tools in the MFE. Finally, modularity techniques, which can facilitate proofs of
confluence or coherence for large specifications, should also be investigated and
supported in future versions of the CRC and ChC tools.

Acknowledgements. We thank the referees for their careful reading of a previous

version and their very helpful suggestions to improve the exposition. We also thank

Salvador Lucas and Camilo Rocha for their help discharging some of the proof obli-

gations encountered when preparing the examples in Section 5, and Santiago Escobar

for very fruitful discussions on the use of the narrowing library in Maude as a com-

ponent of the CRC and ChC tools. F. Durán was supported by Spanish Research

Projects TIN2008-03107 and P07-TIC-03184. J. Meseguer was partially supported by

NSF Grants CCF-0905584, CNS-07-16038, CNS-09-04749, and CNS-08-34709.

References

[1] J. Avenhaus, T. Hillenbrand, and B. Löchner. On using ground joinable
equations in equational theorem proving. Journal of Symbolic Computation,
36(1-2):217–233, 2003.

[2] J. Avenhaus and C. Loŕıa-Sáenz. On conditional rewrite systems with
extra variables and deterministic logic programs. In F. Pfenning, editor,
Logic Programming and Automated Reasoning, 5th International Confer-
ence, LPAR 1994, Proceedings, volume 822 of Lecture Notes in Computer
Science, pages 215–229. Springer, 1994.

52

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[4] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a con-
gruence. Theoretical Computer Science, 67(2&3):173–201, 1989.

[5] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without fail-
ure. In A. H. Kaci and M. Nivat, editors, Resolution of Equations in Alge-
braic Structures, volume 2 (Rewriting Techniques), pages 1–30. Academic
Press, 1989.

[6] K. Becker. Proving ground confluence and inductive validity in constructor
based equational specifications. In M.-C. Gaudel and J.-P. Jouannaud, ed-
itors, Theory and Practice of Software Development, International Joint
Conference CAAP/FASE, Proceedings, volume 668 of Lecture Notes in
Computer Science, pages 46–60. Springer, 1993.

[7] A. Bouhoula. Simultaneous checking of completeness and ground confluence
for algebraic specifications. ACM Transactions on Computational Logic,
10(3), 2009.

[8] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof
in membership equational logic. Theoretical Computer Science, 236(1):35–
132, 2000.

[9] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite
theories. Theoretical Computer Science, 351(1):286–414, 2006.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework:
How to Specify, Program, and Verify Systems in Rewriting Logic, volume
4350 of Lecture Notes in Computer Science. Springer, 2007.

[11] H. Comon. Completion of rewrite systems with membership constraints.
Part I: Deduction rules. Journal of Symbolic Computation, 25(4):397–419,
1998.

[12] H. Comon. Completion of rewrite systems with membership constraints.
Part II: Constraint solving. Journal of Symbolic Computation, 25(4):421–
453, 1998.

[13] E. Contejean and C. Marché. CiME: Completion modulo E. In
H. Ganzinger, editor, 7th International Conference on Rewriting Tech-
niques and Applications, volume 1103 of Lecture Notes in Computer Sci-
ence, pages 416–419. Springer, 1996.

[14] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume Formal Models
and Sematics (B), pages 244–320. Elsevier, 1990.

53

[15] N. Dershowitz and D. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 9, pages 535–610. Elsevier, 2001.

[16] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

[17] F. Durán. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, Universidad de Málaga, Spain, June 1999. Available
at http://maude.csl.sri.com/papers.

[18] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving
operational termination of membership equational programs. Higher-Order
and Symbolic Computation, 21(1-2):59–88, 2008.

[19] F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude termination tool
(system description). In A. Armando, P. Baumgartner, and G. Dowek, ed-
itors, Automated Reasoning 4th International Joint Conference, IJCAR
2008, Proceedings, volume 5195 of Lecture Notes in Computer Science,
pages 313–319. Springer, 2008.

[20] F. Durán, S. Lucas, and J. Meseguer. Methods for proving termination
of rewriting-based programming languages by transformation. Electronic
Notes in Theoretical Computer Science, 248:93–113, 2009.

[21] F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of
equational theories. In S. Ghilardi and R. Sebastiani, editors, Frontiers of
Combining Systems, 7th International Symposium, FroCoS 2009, Proceed-
ings, volume 5749 of Lecture Notes in Computer Science, pages 246–262.
Springer, 2009.

[22] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Termination
of membership equational programs. In N. Heintze and P. Sestoft, editors,
Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-based Program Manipulation, PEPM 2004, pages 147–158.
ACM Press, 2004.

[23] F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer
Programming, 66(2):125–153, April 2007.

[24] F. Durán and J. Meseguer. ChC 3: A coherence checker tool for conditional
order-sorted rewrite Maude specifications. Available at http://maude.
lcc.uma.es/CRChC, 2009.

[25] F. Durán and J. Meseguer. CRC 3: A Church-Rosser checker tool for
conditional order-sorted equational Maude specifications. Available at
http://maude.lcc.uma.es/CRChC, 2009.

54

[26] F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional
order-sorted equational Maude specifications. In P. C. Ölveczky, editor,
Rewriting Logic and Its Applications - 8th International Workshop, WRLA
2010, Revised Selected Papers, volume 6381 of Lecture Notes in Computer
Science, pages 69–85. Springer, 2010.

[27] F. Durán and J. Meseguer. A Maude coherence checker tool for conditional
order-sorted rewrite theories. In P. C. Ölveczky, editor, Rewriting Logic
and Its Applications - 8th International Workshop, WRLA 2010, Revised
Selected Papers, volume 6381 of Lecture Notes in Computer Science, pages
86–103. Springer, 2010.

[28] F. Durán, C. Rocha, and J. M. Álvarez. Tool interoperability in the maude
formal environment. In A. Corradini, B. Klin, and C. Ĉırstea, editors, Al-
gebra and Coalgebra in Computer Science, CALCO 2011, Proceedings, vol-
ume 6859 of Lecture Notes in Computer Science, pages 400–406. Springer,
2011.

[29] A. Farzan and J. Meseguer. State space reduction of rewrite theories using
invisible transitions. In M. Johnson and V. Vene, editors, Algebraic Method-
ology and Software Technology, 11th International Conference, AMAST
2006, Proceedings, volume 4019 of Lecture Notes in Computer Science,
pages 142–157. Springer, 2006.

[30] H. Ganzinger. Order-sorted completion: the many-sorted way. Theoretical
Computer Science, 89:3–32, 1991.

[31] J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In
A. Middeldorp, editor, Rewriting Techniques and Applications, 12th Inter-
national Conference, RTA 2001, Proceedings, volume 2051 of Lecture Notes
in Computer Science, pages 93–108. Springer, 2001.

[32] I. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order-
sorted algebras. Theoretical Computer Science, 72:169–202, 1990.

[33] J. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semantics of
order-sorted algebra. In W. Brauer, editor, Proceedings of the 1985 Inter-
national Conference on Automata, Languages and Programming, volume
194 of Lecture Notes in Computer Science, pages 221–231. Springer, 1985.

[34] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105:217–273, 1992. Also as Technical Report
SRI-CSL-89-10, July, 1989.

[35] J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reason-
ing tool for partial specifications. In J. Giesl, editor, Term Rewriting and
Applications, 16th International Conference, RTA 2005, Proceedings, vol-
ume 3467 of Lecture Notes in Computer Science, pages 165–174. Springer,
2005.

55

[36] J. Hendrix and J. Meseguer. Order-sorted equational unification revisited.
In G. Kniesel and J. S. Pinto, editors, Proceedings of The Ninth Interna-
tional Workshop on Rule-Based Programming (RULE 2008), 2008.

[37] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a
set of equations. SIAM Journal of Computing, 15(4):1155–1194, 1986.

[38] J.-P. Jouannaud and Y. Toyama. Modular Church-Rosser modulo the com-
plete picture. International Journal of Software and Informatics, 2(1):61–
75, 2008.

[39] D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term rewrit-
ing systems. Information and Computation, 86(1):14–31, 1990.

[40] C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ3.
In T. Lepistö and A. Salomaa, editors, Proceedings of 15th International
Coll. on Automata, Languages and Programming, volume 317 of Lecture
Notes in Computer Science, pages 287–301. Springer, 1988.

[41] D. E. Knuth. Additional comments on a problem in concurrent program-
ming control. Communications of the ACM, 9(5):321–322, 1966.

[42] L. Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, 1978.

[43] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal on Functional and Logic Programming, 1(4):446–453,
1998.

[44] S. Lucas, C. Marché, and J. Meseguer. Operational termination of condi-
tional term rewriting systems. Information Processing Letters, 95(4):446–
453, 2005.

[45] C. Marché. Normalised rewriting and normalised completion. In Proceed-
ings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages
394–403. IEEE Computer Society, 1994.

[46] U. Martin and T. Nipkow. Ordered rewriting and confluence. In M. E.
Stickel, editor, 10th International Conference on Automated Deduction,
CADE 1990, Proceedings, volume 449 of Lecture Notes in Computer Sci-
ence, pages 366–380. Springer, 1990.

[47] J. Meseguer. A logical theory of concurrent objects and its realization in
the Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming, pages
314–390. The MIT Press, 1993.

[48] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, Recent Trends in Algebraic De-
velopment Techniques, 12th International Workshop, WADT 1997, Selected

56

Papers, volume 1376 of Lecture Notes in Computer Science, pages 18–61.
Springer, 1998.

[49] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions.
Theoretical Computer Science, 403(2-3):239–264, 2008.

[50] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Algebraic simulations.
Journal of Logic and Algebraic Programming, 79(2):103–143, 2010.

[51] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[52] G. Peterson and M. Stickel. Complete sets of reductions for some equational
theories. Journal of ACM, 28(2):233–264, 1981.

[53] D. Plaisted. Semantic confluence tests and completion methods. Informa-
tion and Control, 65:182–215, 1985.

[54] C. Rocha and J. Meseguer. Constructors, sufficient completeness and dead-
lock freedom of generalized rewrite theories. Technical report, Department
of Computer Science in the University of Illinois at Urbana-Champaign,
Urbana, May 2010.

[55] C. Rocha and J. Meseguer. Constructors, sufficient completeness and dead-
lock freedom of rewrite theories. In C. G. Fermüller and A. Voronkov, ed-
itors, Logic for Programming, Artificial Intelligence, and Reasoning - 17th
International Conference, LPAR-17, Proceedings., volume 6397 of Lecture
Notes in Computer Science, pages 594–609. Springer, 2010.

[56] G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational
computation. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equa-
tions in Algebraic Structures., volume 2 (Rewriting Techniques), chapter 10,
pages 297–367. Academic Press, Inc., 1989.

[57] TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2003.

[58] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis,
D. Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE’94 Par-
allel Architectures and Languages Europe, 6th International PARLE Con-
ference, Proceedings, volume 817 of Lecture Notes in Computer Science,
pages 648–660. Springer, 1994.

[59] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002.

[60] U. Waldmann. Semantics of order-sorted specifications. Theoretical Com-
puter Science, 94(1):1–35, 1992.

57

