Difference between revisions of "Applications"

From The Maude System
Jump to: navigation, search
Line 1: Line 1:
 
Maude and its formal tools have been used in many pioneering applications:  
 
Maude and its formal tools have been used in many pioneering applications:  
  
* Formal definition and verification of programming and hardware, resp. software, modeling languages: full C ([https://dl.acm.org/doi/10.1145/2103621.2103719 ER12]), Java ([https://link.springer.com/chapter/10.1007/978-3-540-27813-9_46 FCMR04]), JVM ([https://link.springer.com/chapter/10.1007/978-3-540-27815-3_14 FMR04]), [https://shemesh.larc.nasa.gov/fm/PLEXIL/ NASA’s PLEXIL] ([https://link.springer.com/chapter/10.1007%2F978-3-642-30729-4_24 RCMS12]), Verilog ([https://ieeexplore.ieee.org/document/5558634 MKMR10]), E-LOTOS ([https://link.springer.com/chapter/10.1007%2F3-540-36135-9_19 V02], [https://link.springer.com/article/10.1007/s10703-005-2254-x VM05]), UML ([https://link.springer.com/chapter/10.1007%2F11784180_28 CE06], [https://doi.org/10.1007/978-3-642-54624-2_11 DRMA14]), MOF ([https://doi.org/10.1007/s00165-009-0140-9 BM10]), ODP ([https://doi.org/10.1016/S0920-5489(02)00121-6 DV03], [https://doi.org/10.1016/j.csi.2004.10.008 DRV05], [https://doi.org/10.1016/j.csi.2006.11.004 RVD07]), AADL ([https://doi.org/10.1007/978-3-319-06410-9_7 BOM14]), Ptolemy ([https://www.sciencedirect.com/science/article/pii/S0167642310001863 BOFLT14]), and BPMN ([https://doi.org/10.1007/978-3-319-59746-1_12 DS17], [https://doi.org/10.1016/j.scico.2018.08.007 DRS18]), and ARMv8 ([https://www.sciencedirect.com/science/article/pii/S1383762122000352 XZ22]).  
+
* Formal definition and verification of programming and hardware, resp. software, modeling languages: full C ([https://dl.acm.org/doi/10.1145/2103621.2103719 ER12]), Java ([https://link.springer.com/chapter/10.1007/978-3-540-27813-9_46 FCMR04]), JVM ([https://link.springer.com/chapter/10.1007/978-3-540-27815-3_14 FMR04]), [https://shemesh.larc.nasa.gov/fm/PLEXIL/ NASA’s PLEXIL] ([https://link.springer.com/chapter/10.1007%2F978-3-642-30729-4_24 RCMS12]), Verilog ([https://ieeexplore.ieee.org/document/5558634 MKMR10]), E-LOTOS ([https://link.springer.com/chapter/10.1007%2F3-540-36135-9_19 V02], [https://link.springer.com/article/10.1007/s10703-005-2254-x VM05]), UML ([https://link.springer.com/chapter/10.1007%2F11784180_28 CE06], [https://doi.org/10.1007/978-3-642-54624-2_11 DRMA14]), MOF ([https://doi.org/10.1007/s00165-009-0140-9 BM10]), ODP ([https://doi.org/10.1016/S0920-5489(02)00121-6 DV03], [https://doi.org/10.1016/j.csi.2004.10.008 DRV05], [https://doi.org/10.1016/j.csi.2006.11.004 RVD07]), AADL ([https://doi.org/10.1007/978-3-319-06410-9_7 BOM14]), Ptolemy ([https://www.sciencedirect.com/science/article/pii/S0167642310001863 BOFLT14]), and BPMN ([https://doi.org/10.1007/978-3-319-59746-1_12 DS17], [https://doi.org/10.1016/j.scico.2018.08.007 DRS18]).
 +
 
 +
* Semantics of hardware architectures: MCA ARMv8 architecture([https://www.sciencedirect.com/science/article/pii/S1383762122000352 XZ22]).  
  
 
* Browser security: uncovering 12 kinds of unknown attacks on Internet Explorer ([https://ieeexplore.ieee.org/abstract/document/4223215 CMSWW07]), and design and verification of the secure-by-construction Illinois’s IBOS browser ([https://link.springer.com/chapter/10.1007/978-3-642-35861-6_14 SKMT12], [https://link.springer.com/chapter/10.1007%2F978-3-030-63595-4_10 SMR20]).
 
* Browser security: uncovering 12 kinds of unknown attacks on Internet Explorer ([https://ieeexplore.ieee.org/abstract/document/4223215 CMSWW07]), and design and verification of the secure-by-construction Illinois’s IBOS browser ([https://link.springer.com/chapter/10.1007/978-3-642-35861-6_14 SKMT12], [https://link.springer.com/chapter/10.1007%2F978-3-030-63595-4_10 SMR20]).
Line 23: Line 25:
 
* Distributed databases: SNOW-​Optimal Read Atomic Transactions ([https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/511821/1/main.pdf TOSEM 2022]), Replicated RAMP Transactions ([https://ieeexplore.ieee.org/abstract/document/9546747 TASE 2021]).
 
* Distributed databases: SNOW-​Optimal Read Atomic Transactions ([https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/511821/1/main.pdf TOSEM 2022]), Replicated RAMP Transactions ([https://ieeexplore.ieee.org/abstract/document/9546747 TASE 2021]).
  
* IoT systems: Attack Surface of Trigger-Action IoT Platforms ([https://dl.acm.org/doi/abs/10.1145/3319535.3345662 CCS 19]).
+
* IoT systems: Attack Surface of Trigger-Action IoT Platforms ([https://dl.acm.org/doi/abs/10.1145/3319535.3345662 CCS 19]), Automated Composition, Analysis and Deployment of IoT Applications ([https://doi.org/10.1007/978-3-030-29852-4_21] TOOLS 2019).
  
 
Please, help us to complete this page. If you know of applications that should be in this list, email us to duran(at)lcc(dot)uma(dot)es.
 
Please, help us to complete this page. If you know of applications that should be in this list, email us to duran(at)lcc(dot)uma(dot)es.

Revision as of 12:23, 10 March 2022

Maude and its formal tools have been used in many pioneering applications:

  • Semantics of hardware architectures: MCA ARMv8 architecture(XZ22).
  • Browser security: uncovering 12 kinds of unknown attacks on Internet Explorer (CMSWW07), and design and verification of the secure-by-construction Illinois’s IBOS browser (SKMT12, SMR20).
  • Cryptographic protocol analysis: Maude-NPA has analyzed many protocols and crypto-APIs modulo algebraic properties, like Yubikey&YubiHSM (GAEMM18), IBM’s CCA (GSEMM14), and PCKS#11 (GSEMM15), using unification and symbolic reachability. Tamarin at ETH, resp. AKISS at INRIA, use Maude’s unification to analyze protocols like 5G-AKA (DC18), resp. RFID (GK17).
  • Cloud transaction system formalization and analysis: Cassandra (LNGRG15), Google’s Megastore (GO14), P-Store (O17), etc. (Betal18), using SMC.
  • Analysis of real-time and cyber-physical systems: CASH scheduling (OC06), sensor (OT09) and MANET (LOM16) networks, timed security protocols (AEMMS20), PALS transformation from synchronous to correct distributed real-time systems (MO12, BMO12) enables model checking of complex models such as AADL and Ptolemy models (BOM14) and distributed control of airplane maneuvers (BKMO12).
  • Models of cell signaling used to explain drug effects, identify pathogen attack surfaces, etc. (Pathway Logic)
  • Specification and analysis of models of Concurrency: Petri Nets (SMO01), CCS, pi-Calculus (S00), Actors (M93), REO (MSA), Orc (AM15).
  • Logical framework applications to prototype logics and build and interoperate theorem provers: Barendregt’s lambda-cube (SM04), linear logic (MM02), modal logics (OPR18), computational algebraic geometry, Maude’s Church-Rosser Checker and Inductive (DM12, DMR20) and Reachability Logic (SSM17), theorem provers, HOL-to-Nuprl translator (NSM01), integration of logic and deep-learning, etc. These applications use meta-level, search, and symbolic features.
  • Networking security: N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures (CSF 2022).
  • Distributed databases: SNOW-​Optimal Read Atomic Transactions (TOSEM 2022), Replicated RAMP Transactions (TASE 2021).
  • IoT systems: Attack Surface of Trigger-Action IoT Platforms (CCS 19), Automated Composition, Analysis and Deployment of IoT Applications ([1] TOOLS 2019).

Please, help us to complete this page. If you know of applications that should be in this list, email us to duran(at)lcc(dot)uma(dot)es.