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Introduction to Maude

What is Maude?
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Introduction to Maude

Maude in a nutshell

http://maude.cs.uiuc.edu

• Maude is a high-level language and high-performance system.

• It supports both equational and rewriting logic computation.

• Membership equational logic improves order-sorted algebra.

• Rewriting logic is a logic of concurrent change.

• It is a flexible and general semantic framework for giving semantics
to a wide range of languages and models of concurrency.

• It is also a good logical framework, i.e., a metalogic in which many
other logics can be naturally represented and implemented.

• Moreover, rewriting logic is reflective.

• This makes possible many advanced metaprogramming and
metalanguage applications.
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Introduction to Maude Foundations

Why declarative?

• Maude follows a long tradition of algebraic specification languages in
the OBJ family, including

• OBJ3,
• CafeOBJ,
• Elan.

• Computation = Deduction in an appropriate logic.

• Functional modules = (Admissible) specifications in membership
equational logic.

• System modules = (Admissible) specifications in rewriting logic.

• Operational semantics based on matching and rewriting.
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Introduction to Maude Foundations

Matching and rewriting

• Given a term t, the pattern, and a subject term u, we say that t
matches u if there is a substitution σ such that σ(t) ≡ u, that is,
σ(t) and u are syntactically equal terms.

• In an admissible equation l = r, all variables in the righthand side r
must appear among the variables of the lefthand side l.
• A term t rewrites to a term t′ using such an equation l = r in E if

1 there is a subterm t|p of t at a position p of t such that l
matches t|p via a substitution σ, and then

2 t′ = t[σ(r)]p is obtained from t by replacing the subterm
t|p ≡ σ(l) with the term σ(r).

• We denote this step of equational simplification by t→E t′.
• As usual, →∗E denotes the reflexive and transitive closure of →E.
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Introduction to Maude Foundations

Confluence and termination

• A set of equations E is confluent (or Church-Rosser) when any two
rewritings of a term can always be joined by further rewriting: if
t→∗E t1 and t→∗E t2, then there exists a term t′ such that t1 →∗E t′

and t2 →∗E t′.
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• A set of equations E is terminating when there is no infinite
sequence of rewriting steps t0 →E t1 →E t2 →E . . .
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Introduction to Maude Foundations

Conditional equations

• If E is both confluent and terminating, a term t can be reduced to a
unique canonical form t↓E, that is, to a term that can no longer be
rewritten.

• Therefore, in order to check semantic equality of two terms t = t′, it
is enough to check that their respective canonical forms are equal,
t↓E = t′ ↓E, but, since canonical forms cannot be rewritten anymore,
the last equality is just syntactic coincidence: t↓E ≡ t′ ↓E.

• This is the way to check satisfaction of equational conditions in
conditional equations.
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Introduction to Maude Foundations

Order-sorted equational specifications

• We can often avoid some partiality by extending many-sorted
equational logic to order-sorted equational logic.

• We can define subsorts corresponding to the domain of definition of
a function, whenever such subsorts can be specified by means of
constructors.

• Subsorts are interpreted semantically by subset inclusion.

• Operations can be overloaded.

• A term can have several different sorts. Preregularity requires each
term to have a least sort that can be assigned to it.

• Maude assumes that modules are preregular, and generates warnings
when a module is loaded if the property does not hold.

• Admissible equations are assumed sort-decreasing.
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Introduction to Maude Example: lists

Predefined modules
CONVERSIONQID

RATSTRING FLOAT

COUNTER

INT

RANDOM

NAT EXT-BOOL

BOOL

TRUTH

TRUTH-VALUE
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Introduction to Maude Example: lists

Lists of natural numbers

fmod NAT-LIST-CONS is

protecting NAT .

sorts NeList List .

subsort NeList < List .

op [] : -> List [ctor] . *** empty list

op _:_ : Nat List -> NeList [ctor] . *** cons

op tail : NeList -> List .

op head : NeList -> Nat .

op _++_ : List List -> List . *** concatenation

op length : List -> Nat .

op reverse : List -> List .

op take_from_ : Nat List -> List .

op throw_from_ : Nat List -> List .

vars N M : Nat .

vars L L’ : List .
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Introduction to Maude Example: lists

Lists of natural numbers

eq tail(N : L) = L .

eq head(N : L) = N .

eq [] ++ L = L .

eq (N : L) ++ L’ = N : (L ++ L’) .

eq length([]) = 0 .

eq length(N : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(N : L) = reverse(L) ++ (N : []) .

eq take 0 from L = [] .

eq take N from [] = [] .

eq take s(N) from (M : L) = M : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s(N) from (M : L) = throw N from L .

endfm
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Introduction to Maude Structural axioms

Equational attributes

• Equational attributes are a means of declaring certain kinds of
structural axioms in a way that allows Maude to use these equations
efficiently in a built-in way.

• assoc (associativity),
• comm (commutativity),
• idem (idempotency),
• id: t (identity, where t is the identity element),
• left identity and right identity.

• These attributes are only allowed for binary operators satisfying
some appropriate requirements depending on the attributes.
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Introduction to Maude Structural axioms

Matching and simplification modulo

• In the Maude implementation, rewriting modulo A is accomplished
by using a matching modulo A algorithm.

• More precisely, given an equational theory A, a term t
(corresponding to the lefthand side of an equation) and a subject
term u, we say that t matches u modulo A if there is a substitution
σ such that σ(t) =A u, that is, σ(t) and u are equal modulo the
equational theory A.

• Given an equational theory A = ∪iAfi corresponding to all the
attributes declared in different binary operators, Maude synthesizes a
combined matching algorithm for the theory A, and does equational
simplification modulo the axioms A.
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Introduction to Maude Example: data type hierarchy

A hierarchy of data types

• nonempty binary trees, with elements only in their leaves, built with
a free binary constructor, that is, a constructor with no equational
axioms,

• nonempty lists, built with an associative constructor,

• lists, built with an associative constructor and an identity,

• multisets (or bags), built with an associative and commutative
constructor and an identity,

• sets, built with an associative, commutative, and idempotent
constructor and an identity.
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Introduction to Maude Example: data type hierarchy

Basic natural numbers

fmod BASIC-NAT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

op max : Nat Nat -> Nat .

vars N M : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

eq max(0, M) = M .

eq max(N, 0) = N .

eq max(s(N), s(M)) = s(max(N, M)) .

endfm
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Introduction to Maude Example: data type hierarchy

Nonempty binary trees

fmod NAT-TREES is

protecting BASIC-NAT .

sorts Tree .

subsort Nat < Tree .

op __ : Tree Tree -> Tree [ctor] .

op depth : Tree -> Nat .

op width : Tree -> Nat .

var N : Nat .

vars T T’ : Tree .

eq depth(N) = s(0) .

eq depth(T T’) = s(max(depth(T), depth(T’))) .

eq width(N) = s(0) .

eq width(T T’) = width(T) + width(T’) .

endfm
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Introduction to Maude Example: data type hierarchy

Nonempty binary trees

• An expression such as s(0) 0 s(0) is ambiguous because it can be
parsed in two different ways, and parentheses are necessary to
disambiguate (s(0) 0) s(0) from s(0) (0 s(0)).

• These two different terms correspond to the following two different
trees:
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0 s(0)
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Introduction to Maude Example: data type hierarchy

Nonempty lists

fmod NAT-NE-LISTS is

protecting BASIC-NAT .

sort NeList .

subsort Nat < NeList .

op __ : NeList NeList -> NeList [ctor assoc] .

op length : NeList -> Nat .

op reverse : NeList -> NeList .

var N : Nat .

var L L’ : NeList .

eq length(N) = s(0) .

eq length(L L’) = length(L) + length(L’) .

eq reverse(N) = N .

eq reverse(L L’) = reverse(L’) reverse(L) .

endfm
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Introduction to Maude Example: data type hierarchy

Lists

fmod NAT-LISTS is

protecting BASIC-NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op __ : NeList NeList -> NeList [ctor assoc id: nil] .

op tail : NeList -> List .

op head : NeList -> Nat .

op length : List -> Nat .

op reverse : List -> List .

var N : Nat .

var L : List .

eq tail(N L) = L .

eq head(N L) = N .
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Introduction to Maude Example: data type hierarchy

Lists

eq length(nil) = 0 .

eq length(N L) = s(0) + length(L) .

eq reverse(nil) = nil .

eq reverse(N L) = reverse(L) N .

endfm

• The alternative equation length(L L’) = length(L) + length(L’)
(with L and L’ variables of sort List) causes problems of
nontermination.

• Consider the instantiation with L’ 7→ nil that gives

length(L nil) = length(L) + length(nil)

= length(L nil) + length(nil)

= (length(L) + length(nil)) + length(nil)

= ...

because of the identification L = L nil.
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Introduction to Maude Example: data type hierarchy

Multisets

fmod NAT-MSETS is

protecting BASIC-NAT .

sort Mset .

subsorts Nat < Mset .

op empty-mset : -> Mset [ctor] .

op __ : Mset Mset -> Mset [ctor assoc comm id: empty-mset] .

op size : Mset -> Nat .

op mult : Nat Mset -> Nat .

op _in_ : Nat Mset -> Bool .

vars N N’ : Nat .

var S : Mset .

eq size(empty-mset) = 0 .

eq size(N S) = s(0) + size(S) .

eq mult(N, empty-mset) = 0 .

eq mult(N, N S) = s(0) + mult(N, S) .

ceq mult(N, N’ S) = mult(N, S) if N =/= N’ .

eq N in S = (mult(N, S) =/= 0) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude and some of its applications PADL 2010, Madrid 21 / 98



Introduction to Maude Example: data type hierarchy

Sets

fmod NAT-SETS is

protecting BASIC-NAT .

sort Set .

subsorts Nat < Set .

op empty-set : -> Set [ctor] .

op __ : Set Set -> Set [ctor assoc comm id: empty-set] .

vars N N’ : Nat .

vars S S’ : Set .

eq N N = N .

The idempotency equation is stated only for singleton sets, because
stating it for arbitrary sets in the form S S = S would cause
nontermination due to the identity attribute:

empty-set = empty-set empty-set → empty-set . . .
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Introduction to Maude Example: data type hierarchy

Sets

op _in_ : Nat Set -> Bool .

op delete : Nat Set -> Set .

op card : Set -> Nat .

eq N in empty-set = false .

eq N in (N’ S) = (N == N’) or (N in S) .

eq delete(N, empty-set) = empty-set .

eq delete(N, N S) = delete(N, S) .

ceq delete(N, N’ S) = N’ delete(N, S) if N =/= N’ .

eq card(empty-set) = 0 .

eq card(N S) = s(0) + card(delete(N,S)) .

endfm

The equations for delete and card make sure that further occurrences
of N in S on the righthand side are also deleted or not counted, resp.,
because we cannot rely on the order in which equations are applied.
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Introduction to Maude Membership equational logic

Membership equational logic specifications

• In order-sorted equational specifications, subsorts must be defined by
means of constructors, but it is not possible to have a subsort of
sorted lists, for example, defined by a property over lists.

• There is also a different problem of a more syntactic character. For
example, with operations of difference and division on natural
numbers, the term s(s(s(0))) div (s(s(0)) - s(0)) would
not be well formed, because the subterm s(s(0)) - s(0) has least
sort Nat, while the div operation would expect its second argument
to be of sort NzNat < Nat.

• This is too restrictive and makes most (really) order-sorted
specifications useless, unless there is a mechanism that gives at
parsing time the benefit of the doubt to this kind of terms.

• Membership equational logic solves both problems, by introducing
sorts as predicates and allowing subsort definition by means of
conditions involving equations and/or sort predicates.
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Introduction to Maude Membership equational logic

Membership equational logic

• A signature in membership equational logic is a triple Ω = (K, Σ, S)
where K is a set of kinds, (K, Σ) is a many-kinded signature, and
S = {Sk}k∈K is a K-kinded set of sorts.

• An Ω-algebra is then a (K, Σ)-algebra A together with the
assignment to each sort s ∈ Sk of a subset As ⊆ Ak.

• Atomic formulas are either Σ-equations, or membership assertions of
the form t : s, where the term t has kind k and s ∈ Sk.

• General sentences are Horn clauses on these atomic formulas,
quantified by finite sets of K-kinded variables.

(∀X) t = t′ if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj)

(∀X) t : s if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj).
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Introduction to Maude Membership equational logic

Membership equational logic in Maude

• Maude functional modules are membership equational specifications
and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification.

• Maude does automatic kind inference from the sorts declared by the
user and their subsort relations.

• Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation.

• The kind corresponding to a sort s is denoted [s].

• If NzNat < Nat, then [NzNat] = [Nat].
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Introduction to Maude Membership equational logic

Membership equational logic in Maude

• An operator declaration like

op _div_ : Nat NzNat -> Nat .

can be understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

• A subsort declaration NzNat < Nat can be understood as the
conditional membership axiom

cmb N : Nat if N : NzNat .
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Introduction to Maude Example: sorted lists

Sorted lists

fmod NAT-SORTED-LIST is

protecting NAT-LIST-CONS .

sorts SortedList NeSortedList .

subsort NeSortedList < SortedList NeList < List .

op insertion-sort : List -> SortedList .

op insert-list : SortedList Nat -> SortedList .

op mergesort : List -> SortedList .

op merge : SortedList SortedList -> SortedList [comm] .

op quicksort : List -> SortedList .

op leq-elems : List Nat -> List .

op gr-elems : List Nat -> List .

vars N M : Nat .

vars L L’ : List .

vars OL OL’ : SortedList .

var NEOL : NeSortedList .
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Introduction to Maude Example: sorted lists

Sorted lists

mb [] : SortedList .

mb N : [] : NeSortedList .

cmb N : NEOL : NeSortedList if N <= head(NEOL) .

eq insertion-sort([]) = [] .

eq insertion-sort(N : L) = insert-list(insertion-sort(L), N) .

eq insert-list([], M) = M : [] .

ceq insert-list(N : OL, M) = M : N : OL if M <= N .

ceq insert-list(N : OL, M) = N : insert-list(OL, M) if M > N .

eq mergesort([]) = [] .

eq mergesort(N : []) = N : [] .

ceq mergesort(L) =

merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

if length(L) > s(0) .
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Introduction to Maude Example: sorted lists

Sorted lists

eq merge(OL, []) = OL .

ceq merge(N : OL, M : OL’) = N : merge(OL, M : OL’) if N <= M .

eq quicksort([]) = [] .

eq quicksort(N : L)

= quicksort(leq-elems(L,N)) ++ (N : quicksort(gr-elems(L,N))) .

eq leq-elems([], M) = [] .

ceq leq-elems(N : L, M) = N : leq-elems(L, M) if N <= M .

ceq leq-elems(N : L, M) = leq-elems(L, M) if N > M .

eq gr-elems([], M) = [] .

ceq gr-elems(N : L, M) = gr-elems(L, M) if N <= M .

ceq gr-elems(N : L, M) = N : gr-elems(L, M) if N > M .

endfm
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Introduction to Maude Parameterization

Parameterization: theories

• Parameterized datatypes use theories to specify the requirements
that the parameter must satisfy.

• A (functional) theory is a membership equational specification
whose semantics is loose.

• Equations in a theory are not used for rewriting or equational
simplication and, thus, they need not be confluent or terminating.

• Simplest theory only requires existence of a sort:

fth TRIV is

sort Elt .

endfth
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Introduction to Maude Parameterization

Order theories

• Theory requiring a strict total order over a given sort:

fth STOSET is

protecting BOOL .

sort Elt .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

eq X < X = false [nonexec label irreflexive] .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

ceq X = Y if X < Y /\ Y < X [nonexec label antisymmetric] .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth
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Introduction to Maude Parameterization

Order theories

• Theory requiring a nonstrict total order over a given sort:

fth TOSET is

including STOSET .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= X = true [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth
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Introduction to Maude Parameterization

Parameterization: views

• Theories are used in a parameterized module expression such as

fmod LIST{X :: TRIV} is ... endfm

to make explicit the requirements over the argument module.

• A view shows how a particular module satisfies a theory, by mapping
sorts and operations in the theory to sorts and operations in the
target module, in such a way that the induced translations on
equations and membership axioms are provable in the module.

• Each view declaration has an associated set of proof obligations,
namely, for each axiom in the source theory it should be the case
that the axiom’s translation by the view holds true in the target.
This may in general require inductive proof techniques.

• In many simple cases it is completely obvious:

view Nat from TRIV to NAT is

sort Elt to Nat .

endv
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Introduction to Maude Parameterization

Parameterization: instantiation

• A module expression such as LIST{Nat} denotes the instantiation of
the parameterized module LIST{X :: TRIV} by means of the
previous view Nat.

NatTRIV - NAT

? ?
LIST{X :: TRIV} LIST{Nat}-

• Views can also go from theories to theories, meaning an
instantiation that is still parameterized.

view Toset from TRIV to TOSET is

sort Elt to Elt .

endv

• It is possible to have more than one view from a theory to a module
or to another theory.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude and some of its applications PADL 2010, Madrid 35 / 98



Introduction to Maude Example: parameterized lists

Parameterized lists

fmod LIST-CONS{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort NeList{X} < List{X} .

op [] : -> List{X} [ctor] .

op _:_ : X$Elt List{X} -> NeList{X} [ctor] .

op tail : NeList{X} -> List{X} .

op head : NeList{X} -> X$Elt .

var E : X$Elt .

var N : Nat .

vars L L’ : List{X} .

eq tail(E : L) = L .

eq head(E : L) = E .
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Introduction to Maude Example: parameterized lists

Parameterized lists

op _++_ : List{X} List{X} -> List{X} .

op length : List{X} -> Nat .

op reverse : List{X} -> List{X} .

op take_from_ : Nat List{X} -> List{X} .

op throw_from_ : Nat List{X} -> List{X} .

eq [] ++ L = L .

eq (E : L) ++ L’ = E : (L ++ L’) .

eq length([]) = 0 .

eq length(E : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(E : L) = reverse(L) ++ (E : []) .

eq take 0 from L = [] .

eq take N from [] = [] .

eq take s(N) from (E : L) = E : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s(N) from (E : L) = throw N from L .

endfm
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Introduction to Maude Example: parameterized lists

Parameterized sorted lists

view Toset from TRIV to TOSET is

sort Elt to Elt .

endv

fmod SORTED-LIST{X :: TOSET} is
protecting LIST-CONS{Toset}{X} .

sorts SortedList{X} NeSortedList{X} .

subsorts NeSortedList{X} < SortedList{X} < List{Toset}{X} .

subsort NeSortedList{X} < NeList{Toset}{X} .

vars N M : X$Elt .

vars L L’ : List{Toset}{X} .

vars OL OL’ : SortedList{X} .

var NEOL : NeSortedList{X} .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude and some of its applications PADL 2010, Madrid 38 / 98



Introduction to Maude Example: parameterized lists

Parameterized sorted lists

mb [] : SortedList{X} .

mb (N : []) : NeSortedList{X} .

cmb (N : NEOL) : NeSortedList{X} if N <= head(NEOL) .

op insertion-sort : List{Toset}{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

op mergesort : List{Toset}{X} -> SortedList{X} .

op merge : SortedList{X} SortedList{X} -> SortedList{X} [comm] .

op quicksort : List{Toset}{X} -> SortedList{X} .

op leq-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .

op gr-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .

*** equations as before

endfm
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Introduction to Maude Example: parameterized lists

Parameterized sorted lists

view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv

fmod SORTED-LIST-TEST is

protecting SORTED-LIST{NatAsToset} .

endfm

Maude> red insertion-sort(5 : 4 : 3 : 2 : 1 : 0 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red mergesort(5 : 3 : 1 : 0 : 2 : 4 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red quicksort(0 : 1 : 2 : 5 : 4 : 3 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []
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Introduction to Maude Rewriting logic

Rewriting logic

• We arrive at the main idea behind rewriting logic by dropping
symmetry and the equational interpretation of rules.

• We interpret a rule t→ t′ computationally as a local concurrent
transition of a system, and logically as an inference step from
formulas of type t to formulas of type t′.
• Rewriting logic is a logic of becoming or change, that allows us to

specify the dynamic aspects of systems.

• Representation of systems in rewriting logic:

• The static part is specified as an equational theory.
• The dynamics is specified by means of possibly conditional rules

that rewrite terms, representing parts of the system, into others.
• The rules need only specify the part of the system that actually

changes: the frame problem is avoided.
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Introduction to Maude Rewriting logic

Rewriting logic

• A rewriting logic signature is an equational specification (Ω, E) that
makes explicit the set of equations in order to emphasize that
rewriting will operate on congruence classes of terms modulo E.

• Sentences are rewrites of the form [t]E −→ [t′]E.

• A rewriting logic specification R = (Ω, E, L, R) consists of:

• a signature (Ω, E),
• a set L of labels, and
• a set R of labelled rewrite rules r : [t]E −→ [t′]E

where r is a label and [t]E, [t′]E are congruence classes
of terms in TΩ,E(X).

• The most general form of a rewrite rule is conditional:

r : t→ t′ if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj) ∧ (
∧
k

pk → qk)
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Introduction to Maude Rewriting logic

System modules

• System modules in Maude correspond to rewrite theories in rewriting
logic.

• A rewrite theory has both rules and equations, so that rewriting is
performed modulo such equations.

• The equations are divided into

• a set A of structural axioms, for which matching algorithms
exist in Maude, and

• a set E of equations that are Church-Rosser and terminating
modulo A;

that is, the equational part must be equivalent to a functional
module.
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Introduction to Maude Rewriting logic

System modules

• The rules R in the module must be coherent with the equations E
modulo A, allowing us to intermix rewriting with rules and rewriting
with equations without losing rewrite computations by failing to
perform a rewrite that would have been possible before an
equational deduction step was taken.

t
1

R/A
!!

!E/A ""

t′

!
E/A

##
w

u 1
R/A

!! u′

!
E/A

$$

• A simple strategy available in these circumstances is to always
reduce to canonical form using E before applying any rule in R.

• In this way, we get the effect of rewriting modulo E∪A with just a
matching algorithm for A.
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

• The four components of U2 are in a tight situation. Their concert
starts in 17 minutes and in order to get to the stage they must first
cross an old bridge through which only a maximum of two persons
can walk over at the same time.

• It is already dark and, because of the bad condition of the bridge, to
avoid falling into the darkness it is necessary to cross it with the help
of a flashlight. Unfortunately, they only have one.

• Knowing that Bono, Edge, Adam, and Larry take 1, 2, 5, and 10
minutes, respectively, to cross the bridge, is there a way that they
can make it to the concert on time?
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

• The current state of the group can be represented by a multiset (a
term of sort Group below) consisting of performers, the flashlight,
and a watch to keep record of the time.

• The flashlight and the performers have a Place associated to them,
indicating whether their current position is to the left or to the right
of the bridge.

• Each performer, in addition, also carries the time it takes him to
cross the bridge.

• In order to change the position from left to right and vice versa,
we use an auxiliary operation changePos.

• The traversing of the bridge is modeled by two rewrite rules: the
first one for the case in which a single person crosses it, and the
second one for when there are two.
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

mod U2 is

protecting NAT .

sorts Performer Object Group Place .

subsorts Performer Object < Group .

ops left right : -> Place .

op flashlight : Place -> Object .

op watch : Nat -> Object .

op performer : Nat Place -> Performer .

op __ : Group Group -> Group [assoc comm] .

op changePos : Place -> Place .

eq changePos(left) = right .

eq changePos(right) = left .
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

op initial : -> Group .

eq initial

= watch(0) flashlight(left) performer(1, left)

performer(2, left) performer(5, left) performer(10, left) .

var P : Place .

vars M N N1 N2 : Nat .

rl [one-crosses] :

watch(M) flashlight(P) performer(N, P)

=> watch(M + N) flashlight(changePos(P))

performer(N, changePos(P)) .

crl [two-cross] :

watch(M) flashlight(P) performer(N1, P) performer(N2, P)

=> watch(M + N1) flashlight(changePos(P))

performer(N1, changePos(P))

performer(N2, changePos(P))

if N1 > N2 .

endm
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

• A solution can be found by looking for a state in which all
performers and the flashlight are to the right of the bridge.

• The search command is invoked with a such that clause that
allows to introduce a condition that solutions have to fulfill, in our
example, that the total time is less than or equal to 17 minutes:

Maude> search [1] initial

=>* flashlight(right) watch(N:Nat)

performer(1, right) performer(2, right)

performer(5, right) performer(10, right)

such that N:Nat <= 17 .

Solution 1 (state 402)

N --> 17
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Introduction to Maude Example: crossing the bridge

Crossing the bridge

• The solution takes exactly 17 minutes (a happy ending after all!)
and the complete sequence of appropriate actions can be shown with
the command

Maude> show path 402 .

• After sorting out the information, it becomes clear that Bono and
Edge have to be the first to cross. Then Bono returns with the
flashlight, which gives to Adam and Larry. Finally, Edge takes the
flashlight back to Bono and they cross the bridge together for the
last time.

• Note that, in order for the search command to stop, we need to tell
Maude to look only for one solution. Otherwise, it will continue
exploring all possible combinations, increasingly taking a larger
amount of time, and it will never end.
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Introduction to Maude Model checking

Model checking

• Two levels of specification:

• a system specification level, provided by the rewrite theory
specified by that system module, and

• a property specification level, given by some properties that we
want to state and prove about our module.

• Temporal logic allows specification of properties such as safety
properties (ensuring that something bad never happens) and liveness
properties (ensuring that something good eventually happens),
related to the infinite behavior of a system.

• Maude 2 includes a model checker to prove properties expressed in
linear temporal logic (LTL).
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Introduction to Maude Model checking

Linear temporal logic

• Main connectives:

• True: > ∈ LTL(AP).

• Atomic propositions: If p ∈ AP, then p ∈ LTL(AP).

• Next operator: If ϕ ∈ LTL(AP), then ©ϕ ∈ LTL(AP).

• Until operator: If ϕ, ψ ∈ LTL(AP), then ϕ U ψ ∈ LTL(AP).

• Boolean connectives: If ϕ, ψ ∈ LTL(AP), then the formulae
¬ϕ, and ϕ ∨ ψ are in LTL(AP).

• Other Boolean connectives:

• False: ⊥ = ¬>
• Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))

• Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.
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Introduction to Maude Model checking

Linear temporal logic

• Other temporal operators:

• Eventually: ♦ϕ = > U ϕ

• Henceforth: �ϕ = ¬♦¬ϕ

• Release: ϕ R ψ = ¬((¬ϕ) U (¬ψ))

• Unless: ϕW ψ = (ϕ U ψ) ∨ (�ϕ)

• Leads-to: ϕ ψ = �(ϕ→ (♦ψ))

• Strong implication: ϕ⇒ ψ = �(ϕ→ ψ)

• Strong equivalence: ϕ⇔ ψ = �(ϕ↔ ψ).
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Introduction to Maude Model checking

Kripke structures

• A Kripke structure is a triple A = (A,→A, L) such that

• A is a set, called the set of states,
• →A is a total binary relation on A, called the transition

relation, and
• L : A −→ P(AP) is a function, called the labeling function,

associating to each state a ∈ A the set L(a) of those atomic
propositions in AP that hold in the state a.

• The semantics of the temporal logic LTL is defined by means of a
satisfaction relation between a Kripke structure A, a state a ∈ A,
and an LTL formula ϕ ∈ LTL(AP):

A, a |= ϕ ⇐⇒ A, π |= ϕ for all paths π with π(0) = a.
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Introduction to Maude Model checking

Kripke structures associated to rewrite theories

• Given a system module M specifying a rewrite theory R = (Σ, E, R),
we

• choose a kind k in M as our kind of states;
• define some state predicates Π and their semantics in a

module, say M-PREDS, protecting M by means of the operation

op _|=_ : State Prop -> Bool .

coming from the predefined SATISFACTION module.

• Then we get a Kripke structure

K(R, k)Π = (TΣ/E,k, (→1
R)•, LΠ).

• Under some assumptions on M and M-PREDS, including that the set
of states reachable from [t] is finite, the relation K(R, k)Π, [t] |= ϕ
becomes decidable.
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Introduction to Maude Model checking

Model-checking modules

MUTEX-CHECK

MUTEX-PREDSMODEL-CHECKERLTL-SIMPLIFIER

MUTEXSATISFACTIONLTL QID

BOOL
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Introduction to Maude Example: Crossing the river

Crossing the river

• A shepherd needs to transport to the other side of a river

• a wolf,
• a lamb, and
• a cabbage.

• He has only a boat with room for the shepherd himself and another
item.

• The problem is that in the absence of the shepherd

• the wolf would eat the lamb, and
• the lamb would eat the cabbage.
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Introduction to Maude Example: Crossing the river

Crossing the river

• The shepherd and his belongings are represented as objects with an
attribute indicating the side of the river in which each is located.

• Constants left and right represent the two sides of the river.

• Operation change is used to modify the corresponding attributes.

• Rules represent the ways of crossing the river that are allowed by the
capacity of the boat.

• Properties define the good and bad states:

• success characterizes the state in which the shepherd and his
belongings are in the other side,

• disaster characterizes the states in which some eating takes
place.
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Introduction to Maude Example: Crossing the river

Crossing the river

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side [ctor] .

op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .

ops s w l c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [lamb] : s(S) l(S) => s(change(S)) l(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm
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Introduction to Maude Example: Crossing the river

Crossing the river

mod RIVER-CROSSING-PROP is

protecting RIVER-CROSSING .

including MODEL-CHECKER .

subsort Group < State .

op initial : -> Group .

eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop .

vars S S’ S’’ : Side .

ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .

ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .

eq (s(right) w(right) l(right) c(right) |= success) = true .

endm
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Introduction to Maude Example: Crossing the river

Crossing the river

• The model checker only returns paths that are counterexamples of
properties.

• To find a safe path we need to find a formula that somehow
expresses the negation of the property we are interested in: a
counterexample will then witness a safe path for the shepherd.

• If no safe path exists, then it is true that whenever success is
reached a disastrous state has been traversed before:

<> success -> (<> disaster /\ ((˜ success) U disaster))

Note that this formula is equivalent to the simpler one

<> success -> ((˜ success) U disaster)

• A counterexample to this formula is a safe path, completed so as to
have a cycle.
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Introduction to Maude Example: Crossing the river

Crossing the river

Maude> red modelCheck(initial,

<> success -> (<> disaster /\ ((˜ success) U disaster))) .

result ModelCheckResult: counterexample(

{s(left) w(left) l(left) c(left),’lamb}

{s(right) w(left) l(right) c(left),’shepherd}

{s(left) w(left) l(right) c(left),’wolf}

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’cabbage}

{s(right) w(right) l(left) c(right),’shepherd}

{s(left) w(right) l(left) c(right),’lamb}

{s(right) w(right) l(right) c(right),’lamb}

{s(left) w(right) l(left) c(right),’shepherd}

{s(right) w(right) l(left) c(right),’wolf}

{s(left) w(left) l(left) c(right),’lamb}

{s(right) w(left) l(right) c(right),’cabbage}

{s(left) w(left) l(right) c(left),’wolf},

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’lamb})
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Introduction to Maude Reflection

Reflection
• Rewriting logic is reflective, because there is a finitely presented

rewrite theory U that is universal in the sense that:

• we can represent any finitely presented rewrite theory R and
any terms t, t′ in R as terms R and t, t′ in U ,

• then we have the following equivalence

R ` t −→ t′ ⇐⇒ U ` 〈R, t〉 −→ 〈R, t′〉.

• Since U is representable in itself, we get a reflective tower

R ` t→ t′

m
U ` 〈R, t〉 → 〈R, t′〉

m

U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉
...
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Introduction to Maude Reflection

Maude’s metalevel

META-LEVEL

META-MODULE

NAT-LISTQID-LIST META-TERM

QID

QID-SET*(β)

QID-SET

*(β)
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Introduction to Maude Reflection

Maude’s metalevel

In Maude, key functionality of the universal theory U has been efficiently
implemented in the functional module META-LEVEL:

• Maude terms are reified as elements of a data type Term in the
module META-TERM;

• Maude modules are reified as terms in a data type Module in the
module META-MODULE;

• operations upModule, upTerm, downTerm, and others allow moving
between reflection levels;

• the process of reducing a term to canonical form using Maude’s
reduce command is metarepresented by a built-in function
metaReduce;

• the processes of rewriting a term in a system module using Maude’s
rewrite and frewrite commands are metarepresented by built-in
functions metaRewrite and metaFrewrite;
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Introduction to Maude Reflection

Maude’s metalevel

• the process of applying a rule of a system module at the top of a
term is metarepresented by a built-in function metaApply;

• the process of applying a rule of a system module at any position of
a term is metarepresented by a built-in function metaXapply;

• the process of matching two terms is reified by built-in functions
metaMatch and metaXmatch;

• the process of searching for a term satisfying some conditions
starting in an initial term is reified by built-in functions metaSearch
and metaSearchPath; and

• parsing and pretty-printing of a term in a module, as well as key sort
operations such as comparing sorts in the subsort ordering of a
signature, are also metarepresented by corresponding built-in
functions.
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Introduction to Maude Reflection

Metaprogramming

• Programming at the metalevel: the metalevel equations and rewrite
rules operate on representations of lower-level rewrite theories.

• Reflection makes possible many advanced metaprogramming
applications, including

• user-definable strategy languages,
• language extensions by new module composition operations,
• development of theorem proving tools, and
• definition of translations between languages or logics within

rewriting logic.

• Theorem provers and other formal tools have underlying inference
systems that can be naturally specified and prototyped in rewriting
logic. Furthermore, the strategy aspects of such tools and inference
systems can then be specified by rewriting strategies.
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Introduction to Maude Reflection

Developing theorem proving tools

• Theorem-proving tools have a very simple reflective design in Maude.

• The inference system itself may perform theory transformations, so
that the theories themselves must be treated as data.

• We need strategies to guide the application of the inference rules.

• Example: Inductive Theorem Prover (ITP).

?

?

6

6

Object theory

Object level

Induction inference rules

Metalevel

Proof strategies

Meta-metalevel
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Introduction to Maude Full Maude

Full Maude

• The systematic and efficient use of reflection through its predefined
META-LEVEL module makes Maude remarkably extensible and
powerful.

• Full Maude is an extension of Maude, written in Maude itself, that
endows the language with an even more powerful and extensible
module algebra of parameterized modules and module composition
operations, including parameterized views.

• Full Maude also provides special syntax for object-oriented modules
supporting object-oriented concepts such as objects, messages,
classes, and multiple class inheritance.
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Introduction to Maude Full Maude

Full Maude

• Full Maude itself can be used as a basis for further extensions, by
adding new functionality.

• Full Maude becomes a common infrastructure on top of which one
can build other tools:

• Church-Rosser and coherence checkers for Maude
• declarative debuggers for Maude, for wrong and missing answers
• Real-Time Maude tool for specifying and analyzing real-time

systems
• MSOS tool for modular structural operational semantics
• Maude-NPA for analyzing cryptographic protocols
• strategy language prototype
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Introduction to Maude The Book

Advertising
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Applications

Application areas
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Applications Overview

Application areas

• Models of concurrent computation

• Equational programming
• Lambda calculi
• Petri nets
• CCS and π-calculus
• Actors

• Operational semantics of languages

• Structural operational semantics (SOS)
• Agent languages
• Active networks languages
• Mobile Maude
• Hardware description languages
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Applications Overview

Application areas

• Logical framework and metatool

• Linear logic
• Translations between HOL and Nuprl theorem provers
• Pure type systems
• Open calculus of constructions
• Tile logic

• Distributed architectures and components

• UML diagrams and metamodels
• Middleware architecture for composable services
• Reference Model for Open Distributed Processing
• Validation of OCL properties
• Model management and model transformations
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Applications Overview

Application areas

• Specification and analysis of communication protocols

• Active networks
• Wireless sensor networks
• FireWire leader election protocol

• Modeling and analysis of security protocols

• Cryptographic protocol specification language CAPSL
• MSR security specification formalism
• Maude-NPA

• Real-time, biological, probabilistic systems

• Real-Time Maude Tool
• Pathway Logic
• PMaude
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Applications Satisfied users

From a satisfied user

In any case, I’d like to say thank you for the great job you have been
doing with Full Maude. I find it to be incredibly useful. I’ve used Full
Maude to model a distributed virtual memory system for TCP/IP
networks, and there’s a pretty good chance that this model will turn into
real software that becomes part of the product of my employer. I have
known Maude for a while, but that was the first time I actually used it to
approach a real world problem. I was surprised how simple and
straightforward the process turned out to be. I had a working prototype
that exposed all tricky design decisions within less than a week. I’ve
modeled software in Haskell before, and quite liked it, but I have to say
that Full Maude is the best system I know so far. My favorite feature are
parameterized views. Please know that your efforts are appreciated.
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Applications Satisfied users

More satisfied users

I’m happy to inform you that with my coworker Marc
Nieper-Wisskirchen, we successfully used your Maude program to
implement the vertex algebra of operators on the cohomology of Hilbert
schemes of points on surfaces. We obtained new results on the
characteristic classes of some bundles. Our paper is published in the
Journal on Mathematics and Computations (London Math. Soc.) and
can be accessed at the following address:
http://www.lms.ac.uk/jcm/10/lms2006-045/
I hope this can be of some interest for you!
Best regards,
Samuel Boissiere
Universite de Nice, France
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Applications Operational semantics

Structural operational semantics

• In general, an inference rule of the form
S1 . . . Sn

S0
can be mapped

into a rewrite rule of the form

S1 . . . Sn −→ S0 or S0 −→ S1 . . . Sn

that rewrites multisets of judgements Si.

• In the operational semantics case, it is better to map an inference
rule of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

to a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites.
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Applications Operational semantics

Executable semantic framework

• The gap between theory and practice was bridged in Alberto
Verdejo’s PhD thesis and papers with several case studies:

• functional language (evaluation and computation semantics,
including an abstract machine),

• imperative language (evaluation and computation semantics),
• nondeterministic language (computation semantics),
• Kahn’s functional language Mini-ML (evaluation or natural

semantics),
• Milner’s CCS (with strong and weak transitions),
• Full LOTOS (including ACT ONE data type specifications).

• The same techniques were used by other authors for Milner’s
π-calculus and other languages.
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Applications Operational semantics

JavaFAN (Java Formal ANalysis)

• Executable rewriting logic semantics of both Java and JVM
Bytecode (except for the libraries).

• To keep the framework user-friendly, JavaFAN wraps the Maude
specifications and accepts Java or JVM code from the user as input.

• The formal semantic specifications become interpreters to run Java
programs on the source code level and/or on the bytecode level.

• Using the underlying features of Maude, JavaFAN can be used to

• symbolically execute multithreaded programs,
• detect safety violations searching through an unbounded state

space, and
• verify finite state programs by explicit state model checking.

• JavaFAN’s efficiency compares well with other Java analysis tools.

• One of the reasons for efficiency: use of equations instead of rules to
express the semantics of deterministic features.
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Applications Operational semantics

Rewriting logic semantics project

• “The broad goal of the project is to develop a tool-supported
computational logic framework for modular programming language
design, semantics, formal analysis and implementation, based on
rewriting logic.”

• Some fundamental references:

• J. Meseguer and G. Rosu, Rewriting logic semantics: from
language specifications to formal analysis tools, IJCAR 2004,
Springer LNCS 3097.

• J. Meseguer and G. Rosu, The rewriting logic semantics project,
Theoretical Computer Science, 2007.

• T. F. Serbanuta, G. Rosu, and J. Meseguer, A rewriting logic
approach to operational semantics, Information and
Computation, 2009.
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Applications Operational semantics

“Ecumenical” approach

• Embedding operational semantics styles in rewriting logic

• “Each of these language definitional styles can be faithfully captured
as an RLS theory: there is a one-to-one correspondence between
computational steps in the original language definition and com-
putational steps in the corresponding RLS theory”

• Big-step operational semantics (natural semantics)
• Small-step operational semantics (transition semantics)
• Modular structural operational semantics (MSOS)
• Reduction semantics with evaluation contexts
• Chemical abstract machine
• First-order continuation-based semantics

• “RLS does not force or pre-impose any given language definitional
style, and its exibility and ease of use makes RLS an appealing
framework for exploring new definitional styles.”
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Applications K framework

K framework

• Two main technical reports by Grigore Rosu (and many other
papers):

• K: A Rewrite-based Framework for Modular Language Design,
Semantics, Analysis and Implementation

• K: A Rewriting-Based Framework for Computations

• Ambitious features:

• Methodology to define languages . . .
• . . . and type checkers, abstract interpreters, domain-specific

checkers, etc.
• Arbitrarily complex language features
• Modular (crucial for scalability and reuse)
• Generic (multi-language and multi-paradigm)
• Support for non-determinism and concurrency
• Efficient executability
• State-exploration capabilities (e.g., finite-state model-checking)
• Formal semantics
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Applications K framework

K basics: computations

• K is based around concepts from Rewriting Logic Semantics, with
some intuitions from Chemical Abstract Machines (CHAMs) and
Reduction Semantics (RS).

• Abstract computational structures contain context needed to
produce a future computation (like continuations).

• Computations take place in the context of a configuration.

• Configurations are hierarchical (like in RLS), made up of K cells.

• Each cell holds specific piece of information: computation,
environment, store, etc.

• Two regularly used cells:

• > (top), representing entire configuration
• k, representing current computation

• Cells can be repeated (e.g., multiple computations in a concurrent
language).
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Applications K framework

K configuration: nested cells

K

k

Map{K,K}
env

Map{K,K}
holds

thread*

Map{K,K}
store

Nat

nextLoc

K

aspect

Set{K}
busy

Agent

me

Agent

parent

agent*

List{KResult}
output

Tuple

message*

messages

Agent

nextAgent

T

List{KResult}
result
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Applications K framework

K basics: equations and rules

• Cell k is made up of a list of computational tasks separated by y,
like t1 y t2 y ... y tn.

• Intuition from CHAMs: language constructs can heat (break apart
into pieces for evaluation) and cool (form back together).

• Represented using 
, like a1 + a2 
 a1 y �+ a2.

• A heating/cooling pair can be seen as an equation.

• Intuition from RS: � can be seen as similar to evaluation contexts,
marking the location where evaluation can occur.

• Computations are defined used equations and rules

• Heating/Cooling Rules (Structural Equations): manipulate term
structure, non-computational, reversible, can think of as just
equations

• Rules: computational, not reversible, may be concurrent
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Applications K framework

K basics: equations and rules
equation:

while BE do S
if BE then S y while BE do S else •

k

rule:

X
K

k

X 7→ L

env

L 7→K

store

rule:

X := V
•

k

X 7→ L

env
σ

σ [ L←V ]

store

rule:

send-synch AV
•

k

agent

receive
V

k

A

me

agent
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Applications K framework

K framework: some accomplishments

• Embeddings of different operational semantics styles in K.

• Semantics of many languages, toy and real.

• Implementation in Maude: K-Maude.

• Static checking of units of measurement in C.

• Runtime verification of C memory safety.

• Definition of type systems and type inference.

• Compilation of language definitions into competitive interpreters (in
OCaml).
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Applications Recent features

Unification

• Given terms t and u, we say that t and u are unifiable if there is a
substitution σ such that σ(t) ≡ σ(u).

• Given an equational theory A and terms t and u, we say that t and u
are unifiable modulo A if there is a substitution σ such that
σ(t) ≡A σ(u).

• Maude 2.4 supports at the core level and at the metalevel
order-sorted equational unification modulo combinations of comm
and assoc comm attributes as well as free function symbols.
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Applications Recent features

Narrowing

• A term t narrows to a term t′ using a rule l⇒ r in R and a
substitution σ if

1 there is a subterm t|p of t at a nonvariable position p of t such
that l and t|p are unifiable via σ, and

2 t′ = σ(t[r]p) is obtained from σ(t) by replacing the subterm
σ(t|p) ≡ σ(l) with the term σ(r).

• Narrowing can also be defined modulo an equational theory A.

• Full Maude 2.4 supports a version of narrowing modulo with
simplification, where each narrowing step with a rule is followed by
simplification to canonical form with the equations.

• There are some restrictions on the allowed rules; for example, they
cannot be conditional.
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Applications Recent features

Narrowing reachability analysis

Narrowing can be used as a general deductive procedure for solving
reachability problems of the form

(∃~x) t1(~x)→ t′1(~x) ∧ . . . ∧ tn(~x)→ t′n(~x)

in a given rewrite theory.

• The terms ti and t′i denote sets of states.

• For what subset of states denoted by ti are the states denoted by t′i
reachable?

• No finiteness assumptions about the state space.

• Sound and complete for topmost rewrite theories.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude and some of its applications PADL 2010, Madrid 91 / 98



Applications Maude-NPA

Maude-NPA

• Maude-NPA (NRL Protocol Analyzer) is a tool to find or prove the
absence of attacks using backwards search.

• It analyzes infinite state systems:

• Active Dolev-Yao intruder,
• No abstraction or approximation of nonces,
• Unbounded number of sessions.

• Intruder and honest protocol transitions are represented by a variant
of strand space model: strands with a marker denoting the current
state.

• Searches backwards through strands from final state.
• Set of rewrite rules governs how search is conducted.
• Sensitive to past and future.
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Applications Maude-NPA

Maude-NPA

• Maude-NPA supports as equations the algebraic properties of the
cryptographic functions used in the given protocol:

• explicit encryption and decryption,
• exclusive or,
• modular exponentiation,
• homomorphism.

• Reasoning modulo such algebraic properties is very important, since
it is well-known that some protocols that can be proved secure under
the standard Dolev-Yao model, in which the cryptographic functions
are treated as a “black box,” can actually be broken by an attacker
that makes clever use of the algebraic properties of the
cryptographic functions of the protocol.
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Applications Maude-NPA

Maude-NPA

• Use rewriting logic as general theoretical framework:

• protocols and intruder rules are specified as rewrite rules,
• crypto properties as oriented equational properties and axioms.

• Use narrowing modulo equational theories in two ways:

• as a symbolic reachability analysis method,
• as an extensible equational unification method.

• Combine with state reduction techniques of NRL Protocol Analyzer
(grammars, optimizations, etc.) by C. Meadows.

• Implement in Maude programming environment:

• rewriting logic provides theoretical framework and
understanding,

• Maude implementation provides tool support.
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Applications Maude-NPA

Basic structure of Maude-NPA

• Each local execution, or session of a honest principal is represented
by a sequence of positive and negative terms called a strand.

• Negative terms stand for received messages
• Positive terms stand for sent messages
• Example: [ pke(B, NA; A)+, pke(A, NA; NB)−, pke(B, NB)+ ]

• Each intruder computation is also represented by a strand

• Example: [X−, pke(A, X)+] and [X−, Y−, (X; Y)+]
• Modified strand notation: a marker denotes the current state

• Example: [ pke(B, NA; A)+ | pke(A, NA; NB)−, pke(B, NB)+ ]
• Sensitive to past and future.

• No data or nonce abstraction.
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Applications Maude-NPA

Basic structure of Maude-NPA

To execute a protocol, associate to it a rewrite theory on sets of strands.
I informally denotes the set of terms known by the intruder, and K the
facts known or unknown by the intruder. Then,

• [ L | M−, L′ ] & {M ∈ I , K} → [ L, M− | L′ ] & {M ∈ I , K}
Moves input messages into the past.

• [ L | M+, L′ ] & {K} → [ L, M+ | L′ ] & {K}
Moves output messages that are not read into the past.

• [ L | M+, L′ ] & {M /∈ I , K} → [ L, M+ | L′ ] & {M ∈ I , K}
Joins output message with term in intruder knowledge.
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Applications Work in progress

Some work in progress

• Connecting Maude to HETS, heterogeneous verification system
developed at Bremen, Germany, which is already connected to
theorem provers like Isabelle.

• Semantics of modeling, real-time, and hardware languages.

• Modeling of cyberphysical systems (avionics, medical systems, . . . ).

• Secure-by-design browsers.

• More and better equational unification algorithms.

• Temporal logic of rewriting.

• Matching logic on top of K framework.

• Multicore reimplementation of Maude.
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Applications The End

Many thanks

• Maude team:

• José Meseguer
• Francisco Durán
• Steven Eker
• Manuel Clavel
• Carolyn Talcott
• Pat Lincoln

• Very helpful colleagues:

• Santiago Escobar
• Grigore Roşu

• PADL 2010 organizers:

• Manuel Carro
• Ricardo Peña
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