Maude ITP 2.0 Tutorial

Joe Hendrix!, José Meseguer! and Ralf Sasse!

University of Illinois at Urbana-Champaign, USA.
{jhendrix,meseguer,rsasse}@cs.uiuc.edu

Abstract. The present tutorial describes the main features, commands,
and proof techniques supported by the Maude ITP 2.0 inductive theorem
prover.

1 Introduction

Inductive theorem proving is one of the most successful verification techniques for
proving complex properties about software algorithms. Many different inductive
theorem provers have been developed over the years including ACL2 [13], Coq [2],
HOL [9], Isabelle [15], Larch [10], the Maude ITP [8I5/3], PVS [I6], RRL [12]
and SPIKE [I]. These tools support a wide variety of different techniques, logics,
and technical approaches.

One common characteristic of inductive theorem provers is that they are
almost always interactive theorem provers, and proving challenging theorems
requires trained user intervention. The advantage of user interaction is that the
user can direct the theorem prover to show theorems that cannot be proven by
fully automatic techniques. However, it is important from the user’s perspective
that the theorem prover not require too much input. It is often the case that
the user already “knows” the theorem is true, and wants the prover to perform
the necessary steps to prove it. However, with current technology the prover will
often need direction on problems that appear trivial to the user. Many inductive
theorem proof attempts are abandoned when the user decides the theorem prover
requires too much involvement.

Techniques to improve and/or reduce user interaction have been a major line
of research in inductive theorem proving, and there are at least three different
research directions aimed at improving a user’s experience with an inductive
theorem prover:

1. Better techniques and heuristics for generating induction schemas;

2. More powerful and better integrated automated reasoning algorithms and
decision procedures to eliminate cases generated from the chosen induction
scheme.

3. Improvements to the logic and proof assistant to help the user understand
the current state of the proof and interact with the prover in a more natural
way.



Let us first mention different improvements that were made to the earlier
version of the Maude I'TP, which was developed by Manuel Clavel, as part of Joe
Hendrix’s thesis [I1], and how they relate to these three areas. We then explain
in that context the other relevant features of the I'TP, and discuss extensibility.
These improvements are summarized below.

Induction schemas. The ITP has traditionally supported two forms of induc-
tion: structural induction and induction over the less than relation < on the
natural numbers. This has been extended with an additional induction scheme:
coverset induction [I8]. Coverset induction generates induction schemes by an-
alyzing recursive calls in an operation defined by a complete set of terminating
rewrite rule. Adding coverset induction to the ITP required developing a new
form of coverset induction for membership equational logic.

In addition to extending coverset induction to membership equational logic,
coverset induction was extended in several other directions. First, a command
was added to the ITP to define an alternate set of memberships for representing
the elements in a sort. These alternate set of memberships can be used by co-
verset induction to generate more appropriate induction schemes. Second, due
to the experience gained with the Powerlist case study [I1], we found it help-
ful to allow coverset induction to take additional patterns other than the one
used to generate the induction scheme. These additional patterns are used to
further specialize the subcases generated by the theorem prover. If used intelli-
gently, they can help reduce a conjecture to a set of proof obligations that can
be proven in a fully automatic way.

Automated Reasoning. The core automated tactics used by the Maude ITP
have been improved by developing new commands and extending existing ones.
The main new feature that has been added is the ability to prove that a com-
mutative relation in the user’s theory is an equivalence relation, and then au-
tomatically propagate facts implied by the transitivity of equivalence relation.
This feature has lead to much simpler proofs in the Powerlist case study [I1].
The other new command is a command eq-split which instantiates universally
quantified variables in a goal to better match the left-hand sides of rules in the
specification. This is essentially a form of constructor splitting that uses the
left-hand side of rules in the specification to control the splitting process.

Previous Maude ITP commands have been improved in several ways: (1)
the auto command has been improved to automatically split conjunctions into
multiple subgoals which are then automatically simplified; (2) a new congruence
closure algorithm has been added which fixes the spurious Maude metalavel
warnings and improves the performance of the old algorithm; (3) commands to
enable and disable rules have been added; and (4) the parsing of formulas to
extract better inference rules from lemmas and the antecedents of a goal which
we are proving has been improved.

User understandability. In order to help the user better understand what
to do next, additional commands for displaying information about the current
state of the proof and figure out which rules can be applied have been added.
The new commands include a command red for evaluating arbitrary terms in



the current theory, a command show-hyps for displaying the current hypotheses,
and a command show-rules with for identifying all inference rules that contain
a given operator. These commands help the user to figure out what existing
lemmas one may want to apply as well as devise new lemmas to simplify the
current goal.

Extensibility. The ITP system has been improved to make it a better platform
for future extension. First of all, the ITP was updated to be compatible with
the new Maude 2.3 metalavel. Furthermore, the ITP’s source code has been
refactored to be more readable and the different data-structures and invariants
of the ITP have been documented. Finally, the command parsing component was
reimplemented to generate better error messages and become more extensible.
One benefit of this work has been that Ralf Sasse was able to port his JAVA+ITP
tool [I7] to the new version of ITP while making no changes to the source code
of the ITP. Previously, JAVA+ITP required Java-specific changes to the ITP
source code.

In the rest of this tutorial we discuss the main improvements to the ITP in
more detail. We start by introducing some of the existing commands already
supported by earlier versions of the ITP [853] in Section [2} In Section (3| we
discuss some useful debugging commands that have been added. In Section
we describe the coverset induction feature, based on the theoretical presenta-
tion given in Joe Hendrix’s thesis [11]. In Section |5} we describe our approach
to propagating additional facts when a relation is known to be an equivalence
relation.

2 The Maude ITP

The Maude ITP is an experimental interactive tool for proving properties of the
initial algebra Tg of a membership equational logic (MEL) [14] specification &£
written in Maude [4]. The ITP has been written entirely in Maude, and is in
fact an executable specification in MEL of the formal inference system that it
implements. The ITP inference system treats MEL specifications as data — for
example, the I'TP command imp adds the hypotheses of the current goal as rules
to the current goal’s associated theory. This makes the ITP a reflective design,
in which Maude equational specifications become data at the metalevel. Indeed,
the fact that membership equational logic is a reflective logic [7] and that Maude
efficiently supports reflective MEL computations is systematically exploited in
this tool. A similar reflective design has been adopted to develop other formal
tools in Maude [6]. Using reflection to implement the ITP tool has one important
additional advantage, namely, the ease to rapidly extend it by integrating other
tools implemented in Maude using reflection, as it is the case of the sufficient
completeness checker, see [I1].

An ITP session begins with the user providing a Maude theory £ whose
equations and rules have been oriented into a conditional rewrite membership
system R along with a first-order MEL formula ¢ which the user wishes to prove
holds in the initial algebra Tg. The ITP is interactive and requires user input to



discharge the formula ¢. At each point in an ITP session, the ITP maintains the
sequence of goals remaining to be proved. Each goal has an associated formula
and an associated theory which extends the original theory with lemmas and
assumed hypotheses introduced by the user. Once all the goals are discharged,
then the original conjecture ¢ has been proven to be trueB

The ITP offers many different commands available to the user to aid in the
task of proving the remaining goals. A tutorial of the older version of the ITP
can be found in [8], and legacy code is preserved as far as possible. This is not
a complete reference, but a tutorial, and we introduce those commands that a
user will most likely need to use.

As the ITP is using Maude’s metalevel, all commands have to be introduced
within parentheses and are finished with a blank space and a period before the
final right parenthesis is added. So whenever a command is shown here, you will
need to wrap it accordingly before passing it to Maude. To give the command
command to the ITP you have to actually write (command .) instead.

Before going into detail, let us mention that a list of all available commands
can be found in Appendix [A] To start an actual proof, the appropriate version
of Maude (at least 2.3) needs to be running. Then the ITP-tool needs to be
loaded, followed by the module about which we want to prove properties, given
in regular Maude syntax. After that, the commands

select ITP-TOOL .
loop init-itp .

need to be given and the actual goal we want to prove needs to be loaded. The
syntax for entering a goal is

(goal goalname : modulename |- formula .)

where the formula needs to have no free variables. Universal quantification uses
Mwars-list} formula asthe syntax, while existential quantification is written
as E{vars-list} formula. After entering the goal, the user only needs to give
commands to discharge the goal. The available commands are described next.

ind and ind*. The ind and ind* commands each take a variable x that is
universally quantified in the current formula, and perform structural induction
on x. The corresponding syntax is:

(ind on = .) (ind* on = .)

The current formula should have the form (Va) 2 : s = ¢, or (Vz : s)¢, and the
structural induction scheme is obtained from the constructor memberships from

! This has to be understood to be a relative claim, since certain proof obligations
that are implicit in the ITP must be discharged with the help of other tools in
the Maude formal tool environment for a full proof to be achieved. For example,
structural induction uses the declared constructors to generate the induction scheme.
But such a scheme would be unsound without a proof of sufficient completeness for
the constructors, for which the SCC tool can be used [I1].



the original specification. The difference between ind and ind* is that ind* will
automatically call the auto command (explained later) for simplifying each sub-
goal, while ind will output the unsimplified subgoals. In many proof attempts,
ind* will completely eliminate all the subgoals, so a single ind* command can
often discharge the current goal without generating any new subgoals.

cnj. The cnj command splits a conjunction A& B into two subgoals, A and B.

cns. The cns command performs universal quantifier elimination when the cur-
rent formula has the form (YY) ¢. When this command is issued, the ITP intro-
duces a fresh constant c, for each variable y € Y. This constant is added to the
current module, each variable y appearing in the formula ¢ is replaced by c,,
and the outermost quantifier is dropped from the current goal.

e-inst. The e-inst command is the counterpart to cns for performing existential
quantifier elimination. When the current formula has the form (3Y) ¢ and the
user issues the command

(e-inst with sub .)

where sub is a substitution 6 : Y — T'x(X), the ITP replaces the current formula
(3Y) ¢ with the formula ¢6. Note that this is of course sound, but may fail to be
complete in case of an inappropriate instantiation. That is, it might be impossible
to do the proof (or the statement may even become false) after instantiation,
even though the original formula holds and could be proved with a different
instantiation.

imp. The imp command can be used when the current formula is an implication
¢ = 1 to introduce additional inference rules into the current module. When
invoked, the ITP parses ¢ to extract one or more (possibly conditional) equations
to add to the module. Each such equation (oriented as a rule from left to right)
is labeled as an hypothesis, numbered, and added to the current module. If the
antecedent ¢ contains formulas that cannot be added to the module, then each
one is added to the current goal as an auxiliary labeled formula which may be
instantiated later by the user. After extracting and labeling the equations in ¢
the conditions in ¢ are eliminated and the current formula is replaced with .

lem. The lem command is used to introduce lemmas to help prove the current
formula. The syntax of the command is

(lem name : formula .)

When this command is issued, a new goal with the given name is added to the
current list of goals with the given formula. In addition, the given formula is
parsed with the same algorithm used by imp command, and one or more new
(possibly conditional) sentences usable as rules may be added to the current
module. If the formula cannot be parsed as a conjunction of admissible sentences



usable as rules, it is added as a formula which may be used with the a-inst
command described below.

a-inst. The a-inst command is primarily used for instantiating universally
quantified labeled formulas added by imp, or by lem when introducing lemmas.
Usually, these are formulas that cannot be executed, because the condition con-
tains extra variables. The syntax of a-inst is

(a-inst mame with sub .)

where name is a labeled formula (VY') ¢ appearing in the current goal, and sub
is a substitution 6 : Y — Tx(X). After this command is issued, the ITP parses
@0 to extract new subformulas usable as rules, and adds them to the current
module.

auto. The auto command is perhaps the most commonly used ITP command.
It attempts to automatically discharge the current goal through a variety of
tactics. If the current goal is a universally quantified formula, it uses the cns
command to perform quantifier elimination. If the current goal is an implication,
it assumes the hypotheses by using the imp command. Otherwise, the auto com-
mand rewrite all the terms in the current formula and the current hypotheses. If
the terms in an equation are reduced to the same term t = ¢, then the equation
is replaced with true. The current goal is eliminated if it reduces to true, or if
one of the equations in the hypotheses is reduced to true = false.

The auto command has been extended in two ways. The first is to perform
equivalence propagation as described later in Section [5} The second extension
occurs when the current formula is a conjunction ¢; A -+ A ¢, with n > 2.
Then, the new auto command will automatically split the conjunction into n
separate goals with the formulas ¢1, ..., ¢, respectively. It will then invoke the
auto command on each subgoal. Previously the auto command would halt on
conjunctions.

split. The split on bool-formula command allows splitting the current goal
into two subgoals, given a formula with a boolean result value. In one of of
the subgoals the given bool-formula is assumed to be true, in the other it is
assumed to be false.

In this section we have introduced several of the commands which a user
will most frequently need. In the remaining sections we will discuss several other
commands that have been added to the ITP in version 2.0 in order to improve
its induction features, core reasoning capabilities, and user interface.

Let us also show an example with the commands introduced so far.

Ezxample 1. For a Maude module representing lists of natural numbers by means
of a cons operator, where nil is the empty list, we would like to show that the
standard append operator is associative.



fmod LIST-of-NAT is protecting NAT .

sort List .

op nil : -> List [ctor]

op cons : Nat List -> List [ctor]

op append : List List -> List .

var N : Nat .

vars L L’ : List .

eq append(nil, L) =L .

eq append(cons(N, L), L’) = cons(N, append(L, L’))
endfm

Based on the above module we can introduce the desired goal to the ITP with
this command:

select ITP-TOOL .
loop init-itp .
(goal list-append-assoc : LIST-of-NAT
|- A{L:List ; L’:List ; L’’:List}
((append (append (L,L’),L’?)) = (append(L,append(L’,L’’)))) .)
First we can apply structural induction on L with the command (ind on L .)
to get two subgoals:

label-sel: list-append-assoc@1.0

A{L’>’:List ; L’:List} append(append(nil,L’:List),L’’:List)

= append(nil,append(L’:List,L’’:List))
The first subgoal can be discharged by (auto .) obviously, as after normalizing
both sides with the equation for append of nil the two sides are syntactically
equal.

label: list-append-assoc@2.0

A{VO#0:Nat ; VO#1:List}(A{L’>’:List ; L’:List}
append (append (VO#1:List,L’:List),L’’:List)
= append(VO#1:List,append(L’:List,L’’:List)))
==>(A{L’’:List ; L’:List}
append (append (cons (VO#0:Nat ,VO#1:List) ,L°>:List),L’>’:List)
= append(cons (VO#0:Nat,VO#1:List) ,append(L’:List,L’>’:List)))

The second subgoal looks a little more complicated, but applying the rules for
appending a natural number twice in the left-hand side and once in the right-
hand side yields two terms that are exactly the terms of the induction hypothesis,
under a wrapping cons application, thus the hypothesis can be applied and both
terms in the equality of the conclusion become syntactically equal. This is also
done with a single application of (auto .). The observant reader will thus have
noticed, that a single application of (ind* on L .) would have taken care of
the original goal altogether.



3 Interface Commands

In this section we describe several commands which were added to the ITP for
developing a proof strategy, and debugging failed proofs.

Enable/Disable. The enable and disable commands control the executability
of the different rewrite rules and memberships in the current goal. The rules can
either come from hypotheses in the current module, lemmas that were previously
added, or labeled equations in the original user’s module.

(enable rule-name .) (disable rule-name .)

If enable is called with the name of a rule in the module labeled with the
attribute nonexec, it will discard the nonexec attribute, thus enabling the rule
during rewriting. Conversely, when the disable command is given for a rule
that is not labeled with the nonexec attribute, it will add the nonexec attribute
to the rule, thus disabling it when rewriting is used to simplify goals. These
commands can be used in debugging to help identify non-terminating hypotheses
or lemmas. They also can be used for information hiding. It is often useful to
prove lemmas that state the essential properties of an operation, and then disable
the operation’s definition.

Reduction. It can be difficult to remember all the lemmas and hypotheses
added to a module, and sometimes rules may fail to apply because a condition
cannot be resolved. Unfortunately, there is no automatic way to fix the second
problem, but to aid the debugging process, the command

(red term .)

has been added. This command computes the canonical form and least sort of
an arbitrary term in the current module.

Showing rules. A large part of the success of inductive theorem provers stems
from a user’s ability to construct a set of terminating rules that yield unique
normal forms for terms appearing in the current goal. In the ITP, the rules
depend not only on the definitions in the user’s module and lemmas, but also
on the hypotheses added to the current proof attempt. Unlike the lemmas, the
hypotheses are usually different for each subgoal, and so it is often helpful to see
the current hypotheses assumed in the current goal. To do this, the command
(show-hyps .) has been added to show the current hypotheses.

In addition to the hypotheses, it is often useful to see all of the rules related
to a given symbol appearing in the current goal. Although the existing show-all
command will display all of the rules, it can be tedious to sort through them
in larger proofs to see the rules that are currently relevant. For more targeted
searches, the command

(show-rules with op .)



has been added. This command will display the equations and memberships
whose left-hand side references the operator op.

Selecting a diffferent goal. Sometimes it may be beneficial to check a goal
different from the one selected by default. For that, the command

(sel goal-name .)

will make the goal with the given name the current proof goal. This command
already existed in prior versions and turns out to be very useful.

4 Coverset Induction in the Maude ITP

For the theory behind coverset induction, see Joe Hendrix’s thesis [11].

The Maude ITP now has two commands cov and cov* which apply coverset
induction when invoked by the user. At the moment these commands should
only be invoked if the given module in which we are reasoning does not make
use of equational attributes in operators, such as associativity, commutativity
and identity, except for commutativity of equivalence relations as explained in
Section [l A future ITP version will eliminate this restriction. The difference
between the two commands is that cov* will automatically simplify all of the
subgoals generated by coverset induction with the auto command, while cov
will leave them unchanged. Each command takes the pattern as an argument
with the syntax:

(cov on pattern) (cov* on pattern)

where pattern is a term whose variables are universally quantified in the current
formula.

One useful feature of coverset induction is that, in addition to generating
potentially useful induction hypotheses, it specializes terms appearing in the
current problem to match additional rules in the specification. This allows them
to be simplified by rewriting. Splitting based on constructors is called construc-
tor splitting, and has been quite useful in the powerlist case study [I1]. The ITP
already offers a command ctor-term-split to do this, but the command only
replaces a single variable with its constructor memberships, and does not explic-
itly attempt to match a term against the left-hand sides of equations. As a con-
sequence, ctor-term-split often had to be invoked several times to achieve the
required matching. In contrast, a single coverset induction command would have
done the job. Coverset induction also potentially introduced induction hypothe-
ses even if they were not necessary. For this reason the commands eq-split and
eq-split* were added. These commands essentially perform coverset induction,
but do not add the induction hypotheses.

(eq-split on pattern .) (eq-split* on pattern .)



The difference between these two commands is that eq-split* invokes the auto
command to attempt to automatically discharge each subgoal, while eq-split
does not modify the generated goals.

For more details on how most demanded variables and a subsumption test
improve practical performance, see Joe Hendrix’s thesis [I1]. Allowing substi-
tutions in subgoals to be further specialized by additional patterns is discussed
next, followed by allowing users to define alternative constructors for sorts in
the specification.

4.1 Additional Patterns

As shown in Joe Hendrix’s thesis [11], many of the lemmas in the powerlist case
study are discharged with a single cov* command. However, for many of the
lemmas where this failed, they could be discharged automatically if one were
to perform additional constructor splitting on terms appearing in the subgoal.
This process requires multiple commands. To help the user, this process has been
automated by introducing two coverset induction commands that take additional
patterns, called split patterns, which are used for splitting the subgoals. They
are not used to generate the induction hypothesis. The two commands have the
following syntax:

(cov-split on pattern split split-patterns)
(cov-split* on pattern split split-patterns)

where pattern is the term used for coverset induction and split-patterns is a
semicolon-separated list of terms.

The cov-split (resp. cov-split*) commands can be thought of as per-
forming coverset induction with the given pattern, and then eq-split (resp.
eq-split*) on the induction cases. The experience gained with the powerlist
case study has shown that virtually all of the lemmas involving coverset induc-
tion and eq-split could be solved in a single cov-split* command.

4.2 Alternative Constructors

The fourth and final extension to coverset induction that has been added to
the ITP is the ability to define alternative constructor declarations with the
command

(ctor-def name : A{z : s}

(E{Vi}ti =x&cond))V ... V(E{Y,}t, =z &cond,) .)
where each formula cond; is a (possibly empty) conjunction of equations and
memberships.

After giving this command to the ITP, the ITP creates a subgoal which

requires the user to prove the given formula, and it adds a set of alternative
memberships

Mame = {t1 : s if cond; . t, : s if cond, }

10



to the current goal. These memberships can then be used in lieu of the normal
constructor memberships with sort s during the narrowing phase of coverset
induction. In order to specify which alternative memberships to use, the following
four commands have been added:

(cov using names on pattern)
(cov* using names on pattern)
(cov-split wusing names on pattern split split-patterns)
(cov-split* using names on pattern split split-patterns)

where names is a semicolon-separated list with the names of constructor defi-
nition names. Each name in the list must be associated to memberships for a
distinct sort, and when a name is provided the memberships in £ for that name
are replaced with the memberships M,,qme for the purposes of instantiating a
variable using the inference rule given in [I1].

Alternate constructors are used in the powerlist case study in several places.
A key property of powerlists is that each powerlist with more than one element
can be represented as either the concatenation P | Q of two powerlists or the
interleaving P x @ of two powerlists. In the Maude specification of powerlists,
given in [II], a membership with | as the main constructor is used, but an
alternate set of constructors with x was proved to be correct, too. For operations
that are most naturally defined using X, the alternate constructors were used
when performing coverset induction.

In some cases, one may want to make the alternative constructor definitions
the default constructors. This can be done with the command

(set-default-ctor name.)

After issuing this command the memberships with the given name will be used
for their associated sort whenever constructor narrowing occurs. The default set
of memberships for a sort can be used by calling set-default-ctor with the
name of the sort.

5 Equivalence Propagation

In addition to coverset induction, the ITP has been extended with specialized
support for equivalence relations. As membership equational logic is functional
and does not support relations other than the sort predicates, a relation in the
context of this section is a binary function whose output kind is the kind used
by the built-in Boolean type. A relation p is an equivalence relation over a sort
s € S for our purposes if it is labeled with the comm attribute marking the symbol
as commutative and satisfies the following two properties:

Te = (Vx:s) p(x,x) = true
Te = (Vx:s,y:8,2:8) p(x,y) =true A p(y, z) =true —> p(x,z) =true

where true refers to the operator for true in the predefined BOOL module and
(Vx : s) ¢ is syntactic sugar for the formula (Vz) z:s = ¢.

11



Equivalence relations benefit from specialized automated reasoning support,
because ordinary rewriting cannot deal with extra variable y in the condition of
the transitivity axiom

p(z,2) if p(x,y) A p(y, 2).

The solution to this has been to extend the ITP with two commands: a command
defequiv for defining equivalence relations, and a command equiv-propagate
for propagating facts implied by transitivity. In addition, the built-in auto com-
mand has been extended to also perform equivalence propagation in addition to
its other tactics.

To indicate that a given operation is an equivalence relation, the following
command has been added to the ITP:

(defequiv p on sort .)

The operation p must be labeled with the commutativity attribute. When this
command is issued to the ITP, the ITP generates two subgoals — one for each
equation that an equivalence relation must satisfy, and then records in the orig-
inal goal that the operation p is an equivalence relation for arguments with a
sort sort.

Once one or more equivalence relations are added using defequiv, equiva-
lence propagation will automatically occur when the user calls the auto com-
mand, which automatically applies several tactics including rewriting, equiva-
lence propagation, and hypothesis simplification to resolve the formula. In addi-
tion, the user may request equivalence propagation to occur with the command
(equiv-propagate .). When equivalence propagation is used with either com-
mand, for each predicate p that is an equivalence relation on s, the following
rule is applied until completion.

p(t,u) = true,p(u,v) = true € & s.t. p(t,v) |¢# true
E =8 {p(t,v) = true}

where £ denotes the theory containing the current module and any hypotheses
assumed in the current goal, and p(t,v) |¢ denotes the term obtained by rewrit-
ing p(t,v) with the equations in &£ oriented as rules. After applying the rule,
the current goal’s theory £ is replaced with £, and then the process is repeated
until either: (1) the rule can no longer be applied, or (2) a conflict is detected
because p(t,u) = true, p(u,v) = true and p(t,v) |¢= false. If a conflict is
detected, then the current hypotheses are unsatisfiable, and the current goal is
immediately discarded.

6 Conclusions

We have presented the most common commands for using the ITP. This is not a
full reference, but hopefully should be enough for a user familiar with the basics
of the Maude language [4] to use the ITP effectively. For the more advanced

12



features discussed in Sections [4] and |5 the powerlist case study presented in [I1]
can be a very good source of examples and insight about their use.

Acknowledgements. The current 2.0 version of the Maude I'TP was developed
by Joe Hendrix [II] as a refactored implementation of the ITP developed by
Manuel Clavel. It adds a number of new features such as coverset induction,
alternative constructors, equivalence propagation, and new proof automation
commands. It has been applied to a large and substantial case study, namely
properties of powerlist functions [I1]. We gratefully acknowledge the great help
provided by Manuel Clavel in developing the earlier I'TP functionality now incor-
porated in the 2.0 version, and in providing in-depth accounts of his implemen-
tation. The theoretical work on which the coverset induction feature is based is
joint work by Manuel Clavel, Joe Hendrix, Deepak Kapur, and José Meseguer.
We thank Manuel Clavel and Deepak Kapur for their contribution.

References

1. N. Berregeb, A. Bouhoula, and M. Rusinowitch. SPIKE-AC: A system for proofs
by induction in associative-commutative theories. In H. Ganzinger, editor, Proc.
of RTA-96, volume 1103 of Lecture Notes in Computer Science, pages 428-431.
Springer, 1996.

2. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer, 2004.

3. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, 2000.

4. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

5. M. Clavel, F. Duran, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal
Method. Elsevier, 2000. http://maude.cs.uiuc.edu.

6. M. Clavel, F. Durdn, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In J. M. Wing, J. Woodcock, and J. Davies, editors, World Congress
on Formal Methods, volume 1709 of Lecture Notes in Computer Science, pages
1684-1703. Springer, 1999.

7. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, horn logic with equality, and rewriting logic.
Electronic Notes Theoretical Computer Science, 71, 2002.

8. M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial.
Journal of Universal Computer Science, 12(11):1618-1650, 2006.

9. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.
10. J. V. Guttag, J. J. Horning, S. J. Garland, and K. Jones. Larch: Languages and

Tools for Formal Specification. Springer, 1993.
11. J. Hendrix. Decision Procedures for Equationally Based Reasoming. PhD thesis,
University of Illinois at Urbana-Champaign, 2008.

13


http://maude.cs.uiuc.edu

12.

13.

14.

15.

16.

17.

18.

D. Kapur and H. Zhang. An overview of Rewrite Rule Laboratory (RRL). Journal
of Computer and Mathematics with Applications, 29(2):91-114, 1995.

M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, 2000.

J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18-61. Springer LNCS
1376, 1998.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, Proc. of CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 748-752. Springer, 1992

R. Sasse and J. Meseguer. Java+ITP: A verification tool based on hoare logic and
algebraic semantics. Electronic Notes Theoretical Computer Science, 176(4):29-46,
2007.

H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction prin-
ciple for equational specifications. In E. Lusk and R. Overbeek, editors, Proc.
of CADE-9, volume 310 of Lecture Notes in Computer Science, pages 162—181.
Springer, 1988.

List of ITP commands

a-inst nmame with sub

auto

cnj

cns

cov on pattern

covx on pattern

cov-split on pattern split split-patterns

cov-split* on pattern split split-patterns

cov using names on pattern

cov* using names on pattern

cov-split using names on pattern split split-patterns
cov-split* using names on pattern split split-patterns

ctor-def name: A{z : s} (E{Vi} t1 = z & cond) V ... V (E{Y,} t,=z

& cond,,)
ctor-term-split war
def-equiv p on sort
disable rule-name
e-inst with subd
enable rule-name
equiv-propagate
eq-split on pattern
eq-split* on pattern
imp

ind on =

14



ind* on

lem name : formula

red term

sel goal-name
set-default-constructor name
show-all

show-hyps

show-rules with op

split on bool-formula

15



	Maude ITP 2.0 Tutorial 
	 Joe Hendrix, José Meseguer and Ralf Sasse 

