(© 2008 Joseph D. Hendrix

DECISION PROCEDURES FOR
EQUATIONALLY BASED REASONING

BY

JOSEPH D. HENDRIX

B.A., The University of Texas at Austin, 2000
B.S., The University of Texas at Austin, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair

Professor Gul Agha

Professor Deepak Kapur, University of New Mexico
Associate Professor Cesare Tinelli, University of lowa
Associate Professor Mahesh Viswanathan

Abstract

This work develops new automated reasoning techniques for verifying the cor-
rectness of equationally specified programs. These techniques are not just theo-
retical, but have been implemented, and applied to actual program verification
projects. Although the work spans several different areas, a major theme of
this work is to develop better techniques at the boundary between decidable
and undecidable problems. That is, this work seeks out not just positive decid-
ability results, but ways to extend the underlying techniques to be effective on
problems outside of decidable subclasses.

For program verification to succeed, we feel that two important directions
must be pursued: (1) considering more expressive logics to allow designers to
more easily specify systems, and (2) develop decision procedures that can rea-
son efficiently about these more sophsticated logics. This work pursues both
directions, and the main topics addressed include: new decidability and unde-
cidability results for equational tree automata (Chapter 3), order-sorted uni-
fication (Chapter 4), sufficient completeness for specifications with partiality
and rewriting modulo axioms (Chapter 5), completeness problems for context-
sensitive specifications (Chapter 6), coverset induction in membership equa-
tional logic (Chapter 7), and a case study for verifying properties of powerlists
with the Maude ITP (Chapter 8).

Each of these theoretical topics have lead to the development of new libraries
and tools. Two of the tools have already been used in external projects including
our tree automata library’s integration into the ACTAS protocol verification
tool [126], and the order-sorted unification procedures use in the Maude-NRL

protocol analyzer [49].

ii

To Tanya Crenshaw

iii

Acknowledgments

I would not have finished this dissertation without the support, encouragement
and advice of many people.

My adviser, José Meseguer, has been a consistent source of research ideas
and enthusiasm for this work. He has shown me the value of deep thinking as
well as a broad experience in different areas. I am grateful for the unwavering
financial support that he has provided me through research assistantships and
conference travel.

I thank the other members of my dissertation committee. They have all
eagerly provided me with advice on both my research and career. I have learned
from Gul Agha the importance of concise programming models particularly
when considering concurrency. Much of my research follows work developed by
Deepak Kapur, and I have learned a great deal from him and his papers. Cesare
Tinelli graciously took the time to mentor me on satisfiability modulo theories.
Mahesh Viswanathan taught me virtually all I know of machine learning and
finite model theory.

I also thank my main research collaborators and other researchers who influ-
enced my work. I wrote my first conference paper while visiting Manuel Clavel.
His persistence in encouraging me to write and rewrite again and again and
again forced me to become a much better writer. Hitoshi Ohsaki introduced
me to to equational tree automata, a subject which I have enjoyed studying
immensely, and inviting me to visit Japan for a summer. Santiago Escobar
has been a good friend, and developed interesting applications on top of my
order-sorted unification procedure. Finally, Nikolaj Bjgrner arranged an excit-
ing summer in Seattle at Microsoft where I learned a tremendous amount, met
many interesting researchers, and heard some great talks.

I am also grateful for many of the great staff at the University of Illinois.
I especially thank Andrea Whitesel has handled many different travel arrange-
ments and administrative task with extraordinary efficiency. Mary Beth Kelley
was also extraordinarily helpful in finishing the degree. Without her help on re-
solving some last minute coursework problems, my graduation would likely have
been significantly delayed. In addition to them, I thank the staff and technical
support including Fran Bell, Barb Cicone, Shirley Finke, Molly Flesner, David

Mussulman, and Chuck Thompson.

v

My office mates and fellow students over the years for great conversations
and interesting research ideas. My office would have been much drab without
them. I especially thank my first office mate, Miguel Palomino, who patiently
explained many mathematical concepts even when I had already asked before
and forgotten. I thank Azadeh Farzan for her friendship over the years. She
was the first person to graduate in our research group, and showed me that
it was actually possible to get a Ph.D. In addition Mike Katelman, Camilo
Rocha, Ralf Sasse, Traian Serbanuta, Ambarish Sridharanarayanan, and Ram
Prasad Venkatesan have been a source for great conversation, encouragement,
and feedback on my research.

Finally, I thank my parents for their support, advice, and consistent encour-
agement for graduating. Most of all, I thank Tanya Crenshaw for her friendship,
love, and support. She has been there through both good and bad times. For

all those times, this thesis is dedicated to her.

Contents

Chapter 1 Introduction
1.1 Equational specification
1.2 Equational tree automata
1.3 Order-sorted equational unification
1.4 Sufficient completeness checking
1.5 Completeness in context-sensitive rewriting
1.6 Inductive theorem proving
1.7 Powerlist case study L.
1.8 Conclusions and a look ahead

Chapter 2 Equationallogic
2.1 Unsorted equational theories
2.2 Rewriting modulo axioms 0oL
2.3 Order-sorted logic,
2.4 Order-sorted rewriting modulo axioms
2.5 Membership equational logic
2.6 Conditional rewrite-membership systems

Chapter 3 Equational tree automata
3.1 Equational tree automata definitions
3.2 Non-modularity of intersection emptiness
3.3 A+AC propositional emptiness L

3.3.1 Freesymbols
332 Aand ACsymbols
3.3.3 Constructing subsets L.
3.3.4 Solving language equations for associativity
3.3.5 Angluin’s algorithm
3.3.6 CETAlbrary,
3.4 AC intersection free propositional emptiness
3.4.1 Profilegraphs oo
342 Freesymbols L L
343 ACand AClsymbols
3.4.4 Computing the size of a language
3.4.5 Constructing the profile graph
3.5 Related work and conclusions

Chapter 4 Order-sorted equational unification
4.1 General order-sorted equational unification
4.2 Order-sorted AC + ACU unification
4.3 Correctnesso
4.4 Related work and conclusions 0L

vi

15
16
19
20
25
28
30

39
42
46
49
o1
51
54
o7
99
62
63
65
69
70
78
82
85

Chapter 5 Sufficient completeness

5.1
5.2
5.3

5.4
9.5

Defining sufficient completeness in MEL
Ground reducibility for CERM systems
Checking sufficient completeness with Maude ITP
5.3.1 The sufficient completeness analyzer
5.3.2 MaudeITP L.
5.3.3 Example. o
Tree automata-based checking
Conclusions and future work

Chapter 6 Completeness in context-sensitive rewriting

6.1 CS order-sorted term rewrite systems.
6.2 CS canonical term algebras 0L
6.3 Completeness in context-sensitive rewriting
6.3.1 Canonical completeness
6.3.2 Semantic completeness L.
6.3.3 Context-sensitive sufficient completeness
6.4 Checking completeness properties
6.4.1 Checking canonical completeness
6.4.2 Checking semantic completeness
6.4.3 Checking sufficient completeness
6.5 Related work and conclusions
Chapter 7 Inductive theorem proving.
7.1 The Maude ITP
7.2 Coverset induction
7.3 Coverset induction in the Maude ITP
7.3.1 Most demanded variables
7.3.2 Subsumption checking 0oL
7.3.3 Additional patterns L.
7.3.4 Alternative constructors
7.4 Equivalence propagation L.
7.5 Other commands
7.6 Conclusions and future work oL
Chapter 8 Powerlist casestudy
8.1 Powerlists in membership equational logic
8.2 Basicresults. L Lo
8.2.1 Similarity
822 Zipandunzip
823 Lgl. .. .
8.2.4 Permutationso
8.3 Fast Fourier transform oL
84 Batchersort
8.5 Ripple carry and carry lookahead adders
8.6 Conclusions and related work
Appendix A Basic powerlist scripts 0.
Al powerlist.maude
A.2 powerlist-nat.maude
A3 lem-sim-basics.itp
A4 lem-zip-ctor.itpo
A5 lem-zip-sim.itp
A6 unzip-l-zip.itp

vii

A7 unzip-r-zip.itp 205

A8 rl-rr.itp. 206
A9 rr-rl.itp. 206
A.10 lem-rev-basics.itpo 206
Alllem-rev-rev.itp 207
Al2rev-rr-rev-rr.itp 207
Al31s-rs.itp. 208
Aldrs-1s.itp. .« . o v v it 208
A.15 lem-inv-basics.itpo 208
Al6inv-inv.itp L 209
Al7inv-rev.itp 209
Al18lem-1gl.itp 209
Appendix B Fast Fourier transform scripts 211
B.1 powerlist-fft.maude 211
B.2 lem-fft-basics.itp L. 214
B.3 fft-ft.itp 220
B4 fft-ift.itp 221
B.b ift-fft.itp 222
Appendix C Batcher sort scripts 223
C.l bit.maude e 223
C.2 powerlist-sort.maude 223
C.3 sorted-bs.itpo 225
Appendix D Adder scripts 0000000, 232
D.1 powerlist-adder.maude 232
D.2 lem-adder.itp 236
D3 rc.itp. . . . o 236
D4 re-cl.itp. o e 238
References i i i i i i e e e e e e e e e e e e e e e 241
Author’s Biography, 252

viii

Chapter 1

Introduction

As computer systems have become both more powerful and less expensive, many
different applications and services have grown to depend on them. This in-
cludes essential safety-critical systems such as power systems, communication
networks, and medical devices. These systems have often benefited from com-
puter technology, but they now also depend on the correct operation of computer
hardware and the software controlling it. This software has become extraordi-
narily complex to deal with the diverse requirements of these different applica-
tions. Handling this complexity while insuring that the system satisfies all of its
requirements has become one of the greatest challenges in software development.

It is widely believed that no single idea is capable of solving this challenge.
Numerous software development processes, programming paradigms, and pro-
grammer tools have been proposed to help build reliable software that is capable
of satisfying its complex requirements. Two of the main approaches to attack
this problem have been to: (1) develop new languages, libraries, and develop-
ment frameworks to enable a developer to more easily specify and implement
a system; (2) create analysis and verification tools that enable a developer to
verify a system satisfies formally defined requirements.

When it comes to overall system development and validation, these two
approaches cannot be considered in isolation. Different languages may have
different properties that must be checked for the program to be considered
correct, and different analysis techniques may be more or less effective depending
on the language. Using a more powerful and highly expressive language may
make the validation task easier, by allowing the developer to write a more
compact and easier to analyze program, but it may also make that task harder,
because existing tools and techniques cannot deal with the new programming
constructs in the richer language.

Fundamental to any formal verification attempt is a clear and precise seman-
tics to the meaning of both programs and properties. One prominent method
to doing that lay in the area of equational specification. In this approach, pro-
grams are specified aziomatically by means of equations | = r, and a state of
the program is represented by a term ¢. Programs are executed by interpreting
the equations as rules [— r and replacing instances of [appearing in ¢ with the

corresponding instance of r. This approach to program specification is simple

with a clear mathematical semantics, yet quite expressive. Correctness proper-
ties of a program can then be expressed in a standard mathematical logic such
as first-order logic, while operational properties can be expressed through modal
logics such as various temporal logics [110].

Although this work spans many different areas, all of it relates to verifying
and reasoning about equationally specified programs. A major motivation is to
develop techniques for reasoning about specifications with partial operations and
advanced algebraic data types. We feel that equational specification represents
an elegant and powerful approach for specifying, executing and reasoning about
different algorithms, data structures, and systems. However, as the applica-
tions and variety of equational specifications has grown, it has been found quite
useful to add advanced features to equational specification languages such as
support for partiality via sorts and subsorts, and reasoning modulo fundamen-
tal structural properties such as associativity and commutatvity. These extra
features can allow complex systems to be specified in a significantly simpler and
more elegant way, and those systems can be executed by rewrite engines such as
Maude that support those features. However, these more expressive formalisms
pose a major challenge for reasoning about specifications that use these extra
features in order to identify errors and verify correctness properties. Both au-
tomated reasoning techniques and tools must be extended to handle these more
expressive features. A major point of this thesis is to answer that challenge.

In particular, we feel that this work represents a major step forward in rea-
soning about specifications with partial operations and operations over algebraic
data types such as lists, sets, multisets, and trees. We develop new correctness
properties and extend existing notions of correctness to more expressive logics
in Chapters 5 and 6. We also develop new reasoning techniques for verifying
correctness of a specification in Chapters 3, 4, and 7. These techniques are
not just theoretical, but have been implemented in a number of different freely
available tools for automated reasoning and checking correctness properties in
your own specifications. Finally, there is an extended case study using one of
the tools extended in this work in Chapter 8.

A diagram depicting the different topics in this work and their connections
appear in Figure 1.1. This diagram breaks the topics covered into theoretical
results, tools, and a case study using one of the tools. The diagram also refer-
ences two external protocol verification tools that are not part of this work, but
use tools developed as part of this work. In addition, these tools are both used
for protocol verification, and illustrate how seemingly disparate techniques such
as tree automata and unification may both have applications in the same area.

In the rest of this chapter, we present a very high level overview of the
different topics covered by this work and their relationships. We begin with
a discussion of topics in the area of equational specification that are relevant
to this work. We then discuss two different automated reasoning areas involv-

ing equational theories: equational tree automata and order-sorted equational

Theoretical Results

Coverset Induction
in Membership
Equational Logic

Sufficient
Completeness in
Membership
Equational Logic

Equational Tree
Automata

Context
Sensitive (CS)
Completeness

Order-sorted
Unification

ool / \ |
00is Maude ITP Maude+CiME
CETA Library Order-sorted
SCcC N
Unification
Coverset Maude Maude CS
Induction in TA-based Completeness
Maude ITP SCC Checker

Case Study\ /

Powerlists

External Tools \

Maude-NRL
Protocol Analyzer

ACTAS Protocol
Verification Tool

Figure 1.1: Relationships between contributions

unification. We next discuss two different correctness properties for equational
specifications: sufficient completeness and different notions of context-sensitive
completeness. Finally, we discuss a new theorem proving technique for verifying
properties of equational specifications called coverset induction, and how cover-
set induction can be applied to formally verify the correctness of many different

parallel algorithms.

1.1 Equational specification

Equational specification is a simple specification paradigm which strikes a nice
balance between expressiveness and verifiability. In equational specification,
systems are specified mathematically via equations that are executed by term
rewriting. The equations in a specification can be used to both define functions
that operate on data and equivalences between different representations of data.
When all of the variables appearing in an equation [= r appear in the left-hand
side [, the equation can be interpreted as a oriented rewrite rule [— r and used
to simplify terms by rewriting. The idea is that the user gives the rewriter an
expression to evaluate, and the rewriter replaces subexpressions that match the
left-hand side [of a rule [— r with the appropriate instance of the right-hand
side r. This process is repeated until the expression no longer matches the
left-hand side of a rule.

Term rewriting has been heavily studied as a theoretical framework by many

textbooks and surveys (e.g., [6, 38, 39]), and is a fundamental algorithm used by

many different theorem provers (e.g., [27, 88, 91, 115, 128]). Term rewriting can
be used as a programming paradigm that is quite expressive, yet still possesses
a simple algebraic semantics. It can quite naturally model both deterministic
and non-deterministic systems, and there are several different programming lan-
guages based on these ideas, including ASF-SDF [21], CafeOBJ [51], ELAN [15],
Maude [28], and OBJ [52].

Once one has specified a program in a rewrite system, the harder task of
verifying that it satisfies its requirements must be confronted. Fortunately,
there are a wide variety of systems available for proving properties about an
equational specification or its associated rewrite system. For example, there are
tools capable of checking termination of a rewrite system (e.g., [36, 44, 61, 104]),
confluence of a rewrite system (e.g., [29, 36]), and inductive theorems of the
equational specification (e.g., [27, 68, 88]).

As users have gained more experience in specifying different types of sys-
tems in these languages, many different extensions have been proposed to make
specifying systems easier. Most relevant to my work has been: (1) using more
expressive logics such Order-Sorted Logic [63, 64] and Membership-Equational
Logic [19, 111] that allow constructor symbols to be partial and only defined
on relevant data; (2) rewriting modulo certain basic axioms of the data such
associativity and commutativity; and (3) conditional rewriting, where a rule
will only be applied if its conditions hold.

These extensions make it easier to express many fundamental algorithms and
data structures, but come with a cost — if a user wants to use a formal analysis
tool on a specification using one or more of these extensions, the tool must be
capable of handling a class of specifications with those extensions. This problem
arises quite often in practice, as most theoretical results in term rewriting deal
with the simplest logics, yet rewrite engines such as CafeOBJ, Maude, and OBJ
are capable of executing specifications with many different features that have
not been as deeply studied theoretically. Users of these languages want to take
advantage of the features the language offers, but using these features may make
validation very difficult, because existing tools capable of verifying the desired
property are incapable of handling all of the features the programmer wants
to use. The user is often forced to rewrite the specification into a format the
formal analysis tool can handle, or to make do with checking fewer properties

of the specification.

1.2 Equational tree automata

In applying automated reasoning to verify properties of term rewrite systems,
it is often essential to have a framework for reasoning about potentially infinite
sets of terms that satisfy properties of interest. Additionally, one may often
want to perform operations on those sets such as union, intersection, or comple-

mentation. One may also want to check properties like whether a set is empty,

4

whether a given term belongs to the set, or whether one set is the subset of an-
other. For example, in our later discussion on sufficient completeness checking,
we want to check whether every term either matches a rule or belongs to a sub-
set of terms called constructor terms. A major avenue of research is to identify
and develop frameworks capable of reasoning about sets of terms that satisfy
interesting properties such as the properties needed for sufficient completeness
checking and other applications.

The automata theoretic framework of regular tree automata [33] is one ma-
jor framework that has proven quite useful in many different applications in
term rewriting, logic, verification, and databases. Tree automata can be used to
recognize potentially infinite sets of terms, and can be equivalently represented
as rewrite rules with a particular form, order-sorted theories, or Horn clauses
over a monadic signature. The sets of terms that are recognized by tree au-
tomata are called reqular tree languages. Regular tree languages are effectively
closed under determinzation, Boolean operations (including intersection, union,
and complementation), linear homomorphisms, and inverse-homomorphisms. In
addition, they have decidable emptiness, membership, containment, and univer-
sality problems.

In many applications, one wants to take the equational closure of a language.
That is given a language £ and an equational theory £ over the same signature
Y., one wants to reason about the equivalence classes L/€ = {[t]e | t € L } where
[t]e denotes the set of all ground terms equivalent to t modulo =¢. In particular,
this is important in rewriting modulo axioms, because in that extension to term
rewriting, the rewrite relation can most naturally be viewed as rewriting &-
equivalence classes of terms rather than particular terms.

One approach to representing the equational closure of a language is the
equational tree automata framework [123]. This framework extends ordinary
tree automata by associating an equational theory £ to a regular tree automaton
A. Recall that a theory £ is linear if for each equation ¢ = u, no variable appears
more than once in ¢ nor more than once in u. Equational tree automata have the
nice property that the language £(A/€) recognized an equational tree automata
A/E over a linear theory £ can be viewed as the equational closure of the regular

automaton A, that is for each ground term ¢ € Ty,
te LIAJE) < (FueTs)u=¢tand ue L(A).

The importance of this result is that it means that equational tree automata
capture the minimal equational closure of regular tree languages when the as-
sociated equational theory £ is linear. This result does not hold for non-linear
theories [123]. However, by using an alternative formalization of equational tree
automata with a slightly different semantics that captured the same basic idea,
this connection was lifted to non-linear theories in [138].

Unfortunately, when one wants to perform Boolean operations on the equa-

tional closure of tree languages there are two problems: (1) the equational clo-
sure of a regular tree language is not in general a regular tree language; (2)
equational tree languages are not closed under Boolean operations. Due to
these limitations, in [76] we presented a framework called Propositional Tree
Automata which recognize the minimal extension to equational tree languages
that are closed under Boolean operations. However, propositional tree automata
have their own limitation: the emptiness problem is in general undecidable for
languages recognized by propositional tree automata.

Due to these inherent undecidability issues, most research on equational tree
automata focuses on particular types of axioms and combinations of axioms
such as associativity (A) (x +y) + 2z =z + (y + 2), commutativity (C) x +y =
y + x, unit (U) 2 4+ 0 = =z, and idempotence (I) x + x = x. For example,
it is known that AC tree languages (equational tree languages over a theory
where every symbol is associative and commutative or free) are closed under
Boolean operations [125]. Likewise, it is known that equational tree languages
over a theory with free symbols and an associative symbol are not closed under
intersection or complementation [125].

My main contributions on tree automata in Chapter 3 are to develop ef-
fective decision procedures for solving the emptiness problem of propositional
tree automata for several important theories. We call the emptiness problem
for propositional tree automata the propositional emptiness problem. Our work

has three main contributions:

e Our first result is a negative result that is nevertheless quite important.
We show that intersection emptiness and propositional emptiness are non-
modular problems. This means that even if intersection emptiness or
propositional emptiness is decidable for disjoint theories £ and &, the

same problem may be undecidable for the combined theory & U &s.

e Our second contribution is to develop a semi-algorithm which uses to
machine learning techniques to solve the propositional emptiness problem
for theories with combinations of free, A and AC symbols. This problem is
undecidable in general, but our semi-algorithm has been implemented in
the CETA library [69] and proven remarkably successful in practice. It is
the basis for the implementation of our next generation Maude sufficient

completeness checker discussed in Chapter 5.

e Qur final result is to develop a decision procedure for solving the proposi-
tional emptiness problem for a large subclass of tree automata over theo-
ries with free, AC, and ACI theories. Both intersection and propositional
emptiness are undecidable in general for this class of theories with these
combinations of axioms, but our decidable subclass is large enough to solve

two previously open problems.

1.3 Order-sorted equational unification

The goal of a unification algorithm is to generate a complete (preferably small)
set of solutions which represent all of the solutions to a system of equations.
In equational unification, we are given a theory £ and a unification problem
=1 =u1 A+ Aty = uyp). A solution to I' is a substitution 6 such that
td =¢ ub for each equation ¢ = v in I'. We call a set of solutions U complete
if every solution to I' is an instance of some solution in U. Unfortunately, a
unification problem for an arbitrary theory £ may not have a complete finite
set of solutions U. However, there are many useful equation theories important
in automated deduction for which each equational unification problem has a
complete finite set of unifiers [7].

Unification is a fundamental operation in many other tools in automated
deduction. This includes paramodulation-based theorem proving [119], com-
puting critical pairs for confluence checking and completion [6], and solving
reachability problems using narrowing [47]. Our main interest stems from uni-
fication’s fundamental role in the Maude-NRL protocol analyzer [48, 49], which
uses unification to identify vulnerabilities in security protocols.

In this application, the tool must solve unification problems over order-sorted
theories. The sort information in the theory is used to restrict the tool to only
consider well-formed states. The use of sort information is essential. If we were
to drop the sort information by performing unsorted unification, then the tool
can fail to successfully verify a protocol or find attacks in a feasible amount of
time.

Unfortunately, the use of order-sorted equational unification poses a diffi-
cult implementation challenge for the tool. Writing an equational unification
procedure is quite complex, so we would strongly prefer to reuse an existing uni-
fication procedure. However, the existing equational unification procedures that
we are aware of perform unsorted unification and do not support order-sorted
unification.

The solution, originally proposed by Meseguer et al. [112], is that under
certain conditions, a simple sort propagation algorithm can be used to obtain a
complete set of order-sorted unifiers from a complete set of unsorted unifiers. By
implementing the sort propagation algorithm, we can use an existing unsorted
equational unification procedure to generate a set of unsorted unifiers U and
obtain a complete set of order-sorted equational unifiers U without much work
— at least provided the theory £ satisfies the conditions in [112].

For the Maude-NRL protocol analyzer, there was a problem which we did
not discover until long after the algorithm had been implemented and being used
extensively for free, AC, and ACU unification by calling the unsorted unification
tool CiIME [35]. The results in [112] were correct, but one of the conditions was
too strong in a rather subtle way, and essentially meant that the technique is

unsound for many theories with collapsing equations like identity. The problem

is largely theoretical in nature. However, it is theoretically possible for the
approach to fail to return a complete set of unifiers for the theories we were
using in the Maude-NRL protocol analyzer

In Chapter 4, we present our solution to this problem, which is to relax the
conditions in [112] imposed on the equational theory, but impose an additional
condition on the unsorted unifiers which the unsorted unification procedure is
allowed to return. Existing unification algorithms and their implementations
appear to generate unifiers that always satisfy this extra condition, but we do
not rely on that. Instead, the extra condition is easy to check when parsing the
unsorted unifiers back into Maude, and we will catch the violation and fail if
the unsorted unifiers violate the condition. This means that our tool will never
silently give an incomplete set of unifiers, and so far in our testing, we have
never seen this extra check fail.

Our main contributions in Chapter 4 are as follows:

e We give a simple rule based algorithm for sort-propagation. The algorithm
only consists of three confluent and terminating rules, and it should be
possible to modularly compose these rules with other inference rules if
desired. This is in contrast with the presentation in [112], where the
algorithm was buried in a function definition appearing in the proof of

Theorem 34, and not explicitly discussed much beyond that.

e We present a new correctness proof of the algorithm under more relaxed
conditions. Relaxing the conditions on the proof is essential to proving
the correctness of the approach in our applications with the Maude-NRL
protocol analyzer.

e Finally, we show how the abstract technical conditions in the previous
proof relate to concrete conditions on Maude specifications with any com-
bination of free, commutative, AC, and ACU symbols. Each of the con-
crete conditions can either be checked automatically, or obtained by a
theory transformation on the Maude specification that guarantees the con-

dition is satisfied.

Although the techniques for order-sorted unification and tree automata are
quite different, both are theoretical tools that are sometimes used in similar
applications. For example, the unification procedure discussed here is used in
the Maude NRL protocol analyzer while the CETA tree automata library [69]
discussed previously has been added into the ACTAS tool [126] for protocol
verification. Connections between unification techniques and tree automata is

a fruitful area of research (e.g., [30, 31]).

1.4 Sufficient completeness checking

For automated reasoning techniques to be useful, one needs applications to
apply them to. One such application which we discuss in this work is the
sufficient completeness problem for equational specifications. Roughly speaking,
a specification is sufficiently complete if enough equations have been specified
so that each operation is fully defined on all relevant data. This concept was
introduced by Guttag in [66], and has been heavily studied in the context of
unsorted and unconditional specifications (e.g., [32, 89, 90, 120]).

Sufficient completeness is much less well-studied for logics such as mem-
bership equational logic (MEL) which have conditional equations and support
partiality via sorts. There are several important issues in the case of sorted

logics that do not occur in the unsorted case.

e The first issue is that operations may intentionally not be defined on all

inputs, but only on the well-sorted inputs that an operator expects.

e The second issue is that the definition of the data may in fact depend on
defined functions on that data. For example, in the powerlist specification
which we will discuss later in Chapter 8, powerlists may be concatenated
together to construct a new powerlist, but only when they have the same
length. So in this case, the definition of a powerlist depends on an opera-

tion on powerlists.

e The third issue is that symbols may be overloaded, so that the same
symbol may be a constructor on one domain and a defined symbol on
another. The successor symbol is an example of this: it is a constructor

on the natural numbers, but defined on the integers.

In this work, we introduce a notion of sufficient completeness for membership
equational logic which naturally addresses these three issues. The basic idea
is that instead of defining sufficient completeness in terms of constructor and
defined symbols, sufficient completeness should be defined in terms of constructor
and defined membership axioms. A theory is then sufficiently complete with
respect to a a set of constructor memberships if there defined memberships
are an inductive consequence of the equations together with the constructor
memberships. Our definition is not the first definition of sufficient completeness
for membership equational logic, since a notion of sufficient completeness for
MEL specifications was proposed in [19]. However, that work only addressed
the first of the three issues outlined above, and is inadequate for specifications
like powerlists.

A definition of sufficient completeness is not necessarily useful by itself with-
out a means for checking that a specification is sufficiently complete. Our second
contribution is to extend existing approaches for checking sufficient completeness

that only work on unsorted specifications to the case of membership equational

logic. Our first step in this work is to note that all existing approaches to suffi-
cient completeness operate by reducing the sufficient completeness problem for
specifications satisfying specific properties to a ground reducibility problem. In
this work, we introduce a property called defined reducibility which generalizes
ground reducibility to membership equational logic, and show how sufficient
completeness and defined reducibility relate under a general set of conditions.

The reduction from sufficient completeness to defined reducibility is one step
towards checking sufficient completeness, but by itself it is not enough. We also
need tools for checking defined reducibility. Unfortunately, due to the potential
for both conditional axioms and rewriting modulo axioms, checking defined
reducibility in full generality is quite hard, and beyond the capabilities of any
known automated techniques. In this work, we introduce two different tools
for checking defined reducibility (and consequently sufficient completeness) on
different large subclasses of Maude specifications.

Our first sufficient completeness checker first generates a set of proof obli-
gations which together imply defined reducibility. The proof obligations are
generated by narrowing the defined memberships against the left-hand sides of
the equations in the module. The checker then passes those proof obligations to
the Maude Inductive Theorem Prover. If the proof obligations are discharged,
then the specification is sufficiently complete under quite general conditions.

Our second sufficient completeness checker casts sufficient completeness as a
propositional emptiness problem for equational tree automata. This emptiness
problem is then forwarded to our equational tree automata library CETA. If
CETA shows that the language is empty, then the specification is sufficiently
complete. If the language is not empty, then CETA will generate a counterex-
ample showing that the specification is not sufficiently complete.

To summarize, this work makes the following contributions to sufficient com-

pleteness checking:

e We define a new notion of sufficient completeness for membership equa-
tional logic which naturally addresses many of the issues for sufficient

completeness in sorted logics.

e We define a property called defined reducibility which generalizes a prop-
erty for checking sufficient completeness in unsorted specifications called
ground reducibility, and show how it relates to our new definition of suf-

ficient completeness.

e Finally, we have developed two sufficient completeness checkers: the first
checks conditional specifications by generating a set of proof obligations
that are automatically forwarded to the Maude Inductive Theorem Prover
(ITP); the second casts sufficient completeness as a equational tree au-
tomata decision problem for order-sorted specifications with rewriting

modulo axioms.

10

1.5 Completeness in context-sensitive rewriting

Context-sensitive term rewriting [101, 103, 145] is an extension to term rewrit-
ing where certain completeness problems are important. In context-sensitive
(CS) rewriting, the rewrite relation is restricted so that it may only occur in
a restricted set of contexts, and not at any position in the term. The idea is
that a context-sensitive rewrite system R over a signature with operators F' is
equipped with a mapping p : F — P(N), called the replacement map. The
rewrite relation —x ,, is defined so that rewriting may only occur in a subterm
t; of a term f(t1,...,tn) if ¢ € p(f).

By restricting rewriting in this way and intelligently defining the replace-
ment map u, we can achieve at least two things. First, we can improve the
efficiency of rewriting, so that terms are evaluated only as needed. This effi-
ciency improvement can in fact infinitely speed up normalization by turning a
non-terminating specification into a terminating CS specification. Second, we
can use the replacement map to model infinite data structures in a lazy way.
In this case, the replacement map is typically used to restrict evaluation of the
constructors to restrict evaluation of data until it is consumed.

Although there has been significant progress in checking properties such as
termination and e.g., [60, 102, 145] and confluence [103] of CS rewriting, one
area that has not seen as much attention is the mathematical semantics of CS
specifications. In this work, our first contribution is to define an algebra, called
the CS canonical term algebra Can’y JA> whose elements are the canonical forms
obtained by context sensitive rewriting modulo axioms A.

Our second contribution is to introduce three important CS completeness

problems, namely:

1. p-canonical completeness, which means that the CS canonical forms and

canonical forms of unrestricted rewriting coincide;

2. u-semantic completeness, which means that the CS canonical term algebra
Can% /A is isomorphic to the initial algebra T¢ of the underlying equational
theory £ = R U A; and

3. p-sufficient completeness, which extends sufficient completeness to the
context-sensitive case. The difference here is that it would be too strong
to require that every term reduces to a constructor term: we only require

that defined symbols are reducible if that appear in replacing positions.

In addition to defining the CS canonical term algebra and introducing these
three completeness notions, we develop techniques for checking all three com-
pleteness problems via the equational tree automata techniques presented in
Chapter 3. Furthermore, these techniques are implemented in a publicly avail-
able tool which can fully automatically check these properties in many Maude

specifications.

11

1.6 Inductive theorem proving

We have already briefly mentioned how inductive theorem proving is useful in
sufficient completeness checking of conditional specifications. However, induc-
tive theorem proving has many other applications. For example, there is an
enourmous body of work on using inductive theorem provers to formally prove
mathematical theorems [143], correctness of hardware (e.g., [131]), compilers
(e.g., [98]), and virtual machines (e.g., [99].

The Maude Inductive Theorem Prover (ITP) [27] is designed for proving
that a first-order sentence holds in the initial model T¢ of a membership equa-
tional logic specification £. As with any such theorem prover, a sentence may
be true in Tg, but not provable with the ITP due to inherent incompleteness is-
sues. However, inductive theorem provers can be extraordinarily useful in many

applications, provided they satisfy several requirements, including:

e Support for generating good induction schemes;
e Strong core reasoning tactics and decision procedures;

e A good user interface for enabling the user to understand what the theorem

prover is doing, and debug failed proof attempts; and

e A modular design that enables the prover to be combined with other tools.

The ITP already offers many features in support of these four criteria. How-
ever, there is always room for improvement. In this work, we have extended the
ITP with additional features and improved existing features to better satisfy all
four of the previously mentioned requirements. Chief among our new features

are the following:

e We have added support for a new induction schema, called coverset in-
duction [146], which uses the fact that a specification is terminating to

generate induction schemes that are quite useful in practice.

e We have extended the core reasoning command auto to support extra
equivalence relations in addition to equality, and automatically propagate

facts implied by the transitivity of an equivalence relation.

e To improve the user interface, we have enhanced the I'TP’s parser to give
better error messages for incorrect commands, and added additional com-

mands for displaying information that may be relevant to the current goal.

e Finally, to make it easier to integrate other tools with the ITP, we have
heavily refactored the ITP’s source code to allow the ITP’s command
grammar to be extended in a modular way without changing any existing
source code. We have also made significant improvements to the source
code’s documentation and readability. Finally, we have updated the ITP
to work with the most recent version of Maude, version 2.3, so that it may

interact with other tools supporting Maude 2.3.

12

1.7 Powerlist case study

The last chapter in this dissertation is an extensive case study using the ITP. In
this case study, we have formally modeled Misra’s powerlists [113] as a Maude
specification in membership equational logic. We have also specified many of the
operations on powerlists described in [113] including operations for permuting
elements in the powerlist, the fast Fourier and inverse Fourier transformations,
Batcher’s merge sort algorithm. Finally, we have modeled the two types of adder
circuits for powerlists over bits described in [1].

In addition to specifying the algorithms in Maude, we have formally proven
many of the properties about powerlists and these algorithms in the Maude I'TP.
This has been done before in other theorem provers including ACL2 [55-57] and
RRL [85, 87]. However, it is widely felt that the specifications and proofs in
these tools lack the elegance of the hand proofs in [1, 96, 113]. A major goal of
this work has been to specify and reason about powerlists in a natural way, so
that the elegance in the hand proofs manifests itself in the machine proofs.

We have successfully proven the main correctness properties for the various
permutation operations, Fast Fourier transform, and Batcher sort algorithms
described in [113]. We have also modeled the two adder circuits described
in [1], and shown that they both correctly implement addition modulo. Our
experience with the proofs so far has generally been positive, but also suggests
further ways to improve the ITP. Many of the improvements in the previous
section were directly motivated by the powerlist case study. Already our proofs
follow relatively close to Misra’s hand proofs, however our experience in the case
study suggests other avenues of future research that are not yet implemented

which can improve the ITP even further.

1.8 Conclusions and a look ahead

In many ways, automated reasoning for program verification is a wonderful re-
search topic. Few believe that the problem of buggy programs will be solved
anytime soon, but the world has grown to depend on computer systems in so
many different ways that even incremental steps can be quite useful. These
systems are used in different contexts, and consequently offer an environment
where many different techniques are potentially useful. For some highly safety-
critical systems, it may be justifiable to employ relatively time-intensive tech-
niques such as inductive theorem proving to obtain programs which provably
satisfy their formal requirements. For less safety-critical systems, more highly
automated techniques that prove more limited correctness properties such as
sufficient completeness may be useful for catching errors early in a systems de-
velopment to reduce the cost of catching errors later on.

This work spans several different areas of equational specification, term

rewriting, tree automata, and inductive theorem proving. One of the key themes

13

in this work is to develop definitions and automated reasoning techniques for
logics with sophisticated mechanisms for expressing partiality, lazy evaluation,
and rewriting modulo axioms. These features make program specification easier,
but often make automated analysis much harder. By developing better auto-
mated reasoning techniques, we hope to help the user to write programs in a
natural way, but without giving up useful verification and debugging techniques.

One major direction for future research is to attempt to expand the bound-
aries of this work from equationally specified functional programs to programs
that interact with the world in a much richer way. This requires different speci-
fication models such as actors [2], process calculi, or rewriting logic [109]. Nev-
ertheless, even programs in these models often need to compute the value of
functions between interactions, and it would be interesting to explore the prob-
lem of embedding some of the equational reasoning techniques discussed here
into these more general classes of programs. In particular, for rewriting logic-
based programs, this generalization seems very natural, since rewriting logic
contains membership equational logic as a sublogic, and shares many of its

rewriting-based techniques.

14

Chapter 2

Equational logic

Equational definitions are ubiquitous in computer science. Equations can be
used both to define operations and properties of those operations. As a simple
example, addition over the natural numbers formed from 0 and successor s may

be defined with the two equations:
r+0=2z z+s(y) = s(z +y)

Furthermore, important properties of addition like associativity and commuta-

tivity may be defined equationally:

(F+y)t+z=z+y+z) zt+y=y+uz
Associativity Commutativity

Equational logic offers a simple yet expressive way of describing functions.
It possesses both a simple proof theory for deduction as well as a clear model
theory for defining semantics. Furthermore, in many applications, the equations
[= r that define an operation may be oriented left-to-right as rules I — r, and
interpreted by replacing instances of the left-hand side [with the corresponding
instance of the right hand side. This approach to equational specification, called
term rewriting, has been extensively studied by many authors, and constitutes
a Turing complete model of computation.

One limitation with equational specifications is that operations are assumed
to be total, while in practice, many operations are partial, and not defined on all
inputs. For example, division by zero is typically left undefined in mathematics.
Over the years, many different logics have been proposed supporting different
degrees of partiality. The two approaches most relevant to this work are order-
sorted logic [63, 64] and membership-equational logic [19, 111] (MEL). In both
of these logics, sorts are associated to the operations in a specification and used
to indicate when a term has a well-defined value. Of the two logics, membership-
equational logic is much more expressive, so much so that it is undecidable in
general whether a term in membership-equational logic has a given sort.

In this chapter, we will survey results in unsorted equational logic, order-
sorted logic, and membership-equational logic that are relevant to the later

chapters. We will also introduce basic concepts from term-rewriting, and show

15

how different term rewriting frameworks can be used to execute specifications in
unsorted, order-sorted, and membership equational logic. In particular, we will
focus on a major extension to term rewriting, called rewriting modulo axioms,
in which some of the equations in a specification may be treated directly as
equations, and not oriented into rules.

Rewriting modulo axioms is essential when the specification contains equa-
tions like commutativity = + y = y + x which can not be oriented into a termi-
nating rule. It is also important in applications involving data structures such
as lists, sets, and multisets, because it is often the case that the specification
will assume underlying equational properties such as associativity or commuta-
tivity about the data structure and its operations. Rewriting modulo axioms
is also necessary in certain programming styles such as object-oriented modules
in Full Maude [42], where objects can send messages to each other that are
routed automatically by intelligent use of matching modulo associativity and
commutativity.

This chapter is structured as follows: In the next section, we introduce the
fundamental concepts in unsorted equational specification. In Section 2.2, we
give basic definitions in (unsorted) term rewriting including rewriting modulo
axioms. We describe order-sorted logic in Section 2.3, and order-sorted rewrit-
ing in Section 2.4. We discuss membership equational logic in Section 2.5, and
finally in Section 2.6, we present a rewriting framework that supports the ad-
ditional features in membership-equational logic called conditional equational
rewrite-membership (CERM) systems.

2.1 Unsorted equational theories

We begin with a brief introduction to the terminology of equational specifica-
tions, and the notation used in this work. For a more comprehensive introduc-
tion to equational specification and term rewriting, see one of the many surveys
or books (e.g., [6, 38—40, 122]).

Syntax. An unsorted (functional) signature X is just a ranked alphabet: that
is a set of symbols ¥ where each function symbol f € 3 has an associated arity
arity(f) € N. We say that a function symbol f € X is a constant iff it has arity
0. We let X denote a fixed countably infinite set of variables distinct from the
symbols in ¥. The set of terms formed from the symbols in ¥ and the variables
in X is denoted by Tx(X). That is, Tx(X) is the smallest set containing: (1)
the variables in X, and (2) a term f(t,...,t,) for each symbol f € ¥ with
arity n and terms t1,...,t, € Tx(X). Note that the number of arguments n
in f(t1,...,tn) is 0 if f is a constant. For each term ¢ € Tx(X), we let vars(t)

denote the variables appearing in t, i.e.,

vars(z) ={a} and vars(f(ti,...,t,)) = vars(t1) U--- Uvars(ty).

16

Reflexitivity

t=¢t
t=cgu
Symmetry £
u=¢gt
t = =
Transitivity £u vzl
t =g v
Congruence =g .- tn=eUn
f(t17"'7tn) =& f(u17"'7u71)
Replacement —_ withl=re€é&
10 =¢r6

Figure 2.1: Inference system for the unsorted theory &

If vars(t) = &, then we say a term ¢ is ground, and we let Ts, denote the set of
ground terms. If each variable x € vars(t) appears at most once in t, then we
say that t is linear.

Relative to a signature % with variables X, a substitution is a mapping
0:Y — Tx(X) with a finite domain Y C X. For each term ¢t € T (Y), we let
t0 € Tx(X) denote the term obtained by substituting each variable 2 appearing
in ¢t with 6(x), i.e.,

Fltr,. . tn)0 = f(£10,. .. t.0) 20 = 0(z)

If every term in the right-hand side of a substitution 6 is a ground term, then
we say that 0 is a ground substitution. A context C' is a term containing a single
instance of a special variable 0. Given a term ¢ € Tx(X), C[t] denotes the term
obtained by replacing [with ¢.

Theories. An unsorted equational theory £ over a signature X is a set of
equations of the form [= r for terms I, € Tx(X). The essential characteristic
of an equational theory £ is not the specific equations in £, but the equivalence
relation =¢C Tx(X) X Tx(X) generated by those equations. This relation
=¢ is the smallest equivalence relation containing the equations in £ that is
closed under substitutions and contexts. Closure under substitutions means
that ¢ =¢ w implies t0 =¢ uf for all substitutions #. Closure under contexts
means that ¢t =¢ u implies that C[t] =¢ C[u] for all contexts C. Alternatively,
=¢ may be defined using an inference system. It is not difficult to show that for
each pair of terms t,u € Tx(X), t =¢ u iff there is a proof using the inference
rules in Figure 2.1.

Algebras. An algebra A of an unsorted signature X consists of a set A (called
the universe or carrier set) together with a function Ay : A™ — A for each
function symbol f € ¥ with arity n. Given algebras A and B over the same
signature X, a homomorphism h : A — B is a function from the universe of A to

the universe of B that commutes with the functions. That is, for each function

17

f € ¥ with arity n and elements a4, ...a, € A,
h(Af(a1,...,an)) = Br(h(a1),. .., h(an)).

The set of terms in Tx(X) may be viewed as an algebra T%x), called the
term algebra generated by X, whose universe is the the terms in Tx(X), and
where for each function f € ¥ with arity n € N, Ty(x),; is the function

TE(X)J‘(tl M tn) = f(tla s 7tn)

In the same way, the set of ground terms 7% may be viewed as algebra. The
algebra T has the property that for each algebra A, there is a unique homo-
morphism h 4 : Ty, — A where for each term f(t1,...,t,),

h.A(f(th s 7tn)) = Af<h.A(t1)7 BN} h.A(tn))

Due to this property, the algebra T%; is often referred to as an initial algebra,
because it is an initial object in the category formed with Y-algebras as objects
and Y-homomorphisms as arrows.

Relative to a set of variables Y and algebra A, a valuation v is a mapping
from Y into the universe of A. Additionally, the valuation v : ¥ — A for a
Y-algebra A defines an interpretation of each term ¢ € Tx(Y) in A. Specifically,
for each term ¢ € Tx(Y'), we let tv denote the element in A defined by

flt1, .. tn)v = ftiv, ..., tov) xv =v(x)

It is worth observing that valuations into 7% (X) are substitutions while val-
uations into Ty are ground substitutions. Furthermore, for each substitution
0: X — Tx(Y), the application of a substitution ¢ is just the interpretation of
t under the valuation 6.

An algebra A satisfies an equation ¢ = u, denoted A | t = wu, iff for every
valuation v : vars(t) U vars(u) — A, tv = uv. Furthermore, a 3-algebra A is
a model of an equational theory &, denoted A |= £ iff all equations t = u € E
hold in A. An equational theory may have many models, and every equational
theory has at least one model, denoted Tg, whose universe contains equivalence
classes of ground terms in 7% with respect to =¢. For each ground term t € T,
we let [t]¢ denote the set of all ground terms equivalent to ¢ with respect to =g,
that is,

[t}g = {UETE ‘ t =¢ u}

When the theory £ is clear from the context, we write [t] for [t]c. The algebra
Te has the universe Tg = {[t]¢ | t € Tx }, and for each symbol f € ¥ with arity

n, Tg r is the function
Teg [0l lta] = (s)

18

It is not difficult to show that there is a unique homomorphism from T¢ to each
model of €. Accordingly, Te is an initial algebra in the category of £-models

and Y-homomorphisms.

2.2 Rewriting modulo axioms

Equational theories provide a mathematical interpretation of what the opera-
tions mean, but they are not directly executable — in other words, they lack
an operational interpretation. One classic approach for giving an operational
interpretation is to treat each equation t = w in a theory £ as an oriented rule
t — u. Given a term v € Tx(X), one then rewrites v by replacing instances
C[t0)] of the left hand side of a rule t — u with the corresponding right-hand side
C[ud]. For many specifications, the equations can be easily oriented so that the
rewriting process always terminates with a unique normal form v |z for each
term v € Tx(X).

Rewriting has proven fruitful and is the basis for many tools including: a va-
riety of different rule-based programming languages, including ASF-+SDF [21],
CafeOBJ [51], Maude [28] and OBJ [52]. Additionally, rewriting is one of the
fundamental techniques used by many inductive theorem proving tools includ-
ing ACL2 [91], the Maude ITP [27], PVS [128] and RRL [88]. Rewriting has also
been integrated into conventional programming languages with systems such as
Tom [8].

It is well known (see [81, 130] for some prominent early work) that it is not
always suitable to simply treat every equation as a rule. Instead, tools should
provide built in support for specific equations like associativity and commutativ-
ity. This is the idea behind rewriting modulo axioms: an approach to rewriting
where some of the equations are treated directly as equational axioms while the
rest of the equations are treated as rules. In the rest of this section, we introduce
basic notation for rewriting modulo axioms.

For a signature X, a term rewrite system (TRS) with rewriting modulo
axioms is a pair written R/A where R is a set of rewrite rules of the form | — r
where [, € T (X) are terms such that vars(r) C vars(l), and A is an equational
theory for the signature ¥.. A term ¢ € Tx(X) rewrites to u € Tx(X) modulo
a set of equational axioms A, denoted ¢t —x /4 u, if there is a rule | — r € R,
context C, and substitution 0 such that ¢t =4 C[l0] and C[rf] =4 . In general,
observe that when rewriting modulo the instance 16 of the left-hand side of the
rule may not appear in t. We let —>,J,g /A denote the transitive closure of —x 4,
and write ¢ —>§3/A wif ¢ _’7+2/A uwort=4u Wewritet |, 4 u if there is a term
v € Tx(X) such that ¢ =%, v and u =% 4 v. A term t is R/A-irreducible
if it cannot be further rewritten. We sometimes refer to an R/A-irreducible
term t as being in normal form. We write ¢ —>!R/A w if ¢ —>’7*3/A u and wu is
R/A-irreducible.

There are several important subclasses of rules in rewriting. A set of rules

19

R is ground iff all the terms appearing in rules in R are ground while R is
linear iff all the terms in rules in R are linear. R is left-linear iff all the terms
| appearing in the left-hand side of a rule | — r € R is linear.

There are also several properties of the rewrite relation —% that are of-
ten important. A rewrite system R/A is weakly normalizing iff for each term
t € Ty (X), there is an R/A-irreducible term u € Tx(X) such that ¢ —% , u.
R/A is strongly normalizing if —>7‘; /A is well-founded. A strongly normalizing
rewrite system is often called terminating. We say that R/A is confluent iff for
all terms t,u,v € Tx(X), t —>;‘3/A u and ¢ _);Q/A v implies u |r/4 v. We say
that R/A is ground confluent when it is confluent when only considering ground
terms. Sometimes we will say that R is confluent modulo A instead of saying
that R/A is confluent.

If R /A is terminating and ground confluent, then for all ground terms ¢t € T,
there is a R /A-irreducible term ¢ |z /4 € Tx that is unique up to =4. When R/A
is terminating and ground confluent, we let Cang /4 denote the canonical term
algebra whose universe is the set of A-equivalence classes of R/A-irreducible

ground terms,
Cang/a = {[t]a | t € Ts is R/A-irreducible. }
and for each symbol f € ¥ with arity n, Cang /4 s is the function

CanR/A}f . [tl}, s [tn] — [f(tl,,tn) lR/A]

We let £ = R U A denote the equational theory extending A with an additional
equation [= r for each rule in R. We call this the underlying equational theory
of R/A. Under the assumption that R/A is terminating and ground confluent,
it is not difficult to show that the algebra Cang 4 is isomorphic to the initial
algebra T¢ with the mapping

h: [t]A € CanR/A — [t]g eTe.

If matching modulo A is decidable and R/A is confluent and terminating,
Canp /4 provides a computational interpretation of the algebra Tg, since each
equivalence class [t] € Tg is represented by the equivalence class of the normal

form [t |z 4] € Ta obtained by rewriting.

2.3 Order-sorted logic

In formalizing different systems, it has been found quite useful to extend the
basic unsorted rewrite theories to support types. Unsorted specifications are
total and allow any term to be given as an argument to any function in the
specification, yet functions in mathematics and software are often partial, and

only defined on a subset of the inputs. A basic example of this is division over

20

the rationals, where the divisor may not be zero. To deal with partial functions,
Goguen proposed order-sorted logic, a logic where sorts may be partially ordered
with larger sorts containing all of the elements in smaller sorts, and operators
may be overloaded. Order-sorted logic is an extension of many-sorted logic in
which a partial order <, called the subsort ordering is associated to the sorts.
The subsort ordering builds a notion of subtype and supertype into the logic.

Before diving into the details, we present three order-sorted theories in Fig-
ure 2.2 using Maude syntax. The module BOOL introduces a single sort Bool and
constants true and false representing true and false respectively. The ctor
attribute is used to indicate that true and false are constructors which can
be used to construct new data. Operators used to define operations on data
should not be labeled with ctor. This distinction is the subject of Chapter 5,
and can be ignored for now since it does not affect the mathematical semantics
described in this chapter.

The module NAT extends BOOL by adding an additional sort Nat for defin-
ing the natural numbers with zero denoted by the constant 0, and successor
denoted by the operator s. This module introduces operations for addition +
and less than or equal <, and defines those operations with equations. Finally,
the module INT illustrates two essential features of order-sorted logic: the use of
subsorts, and the ability to extend operator definitions to large domains via sub-
sort overloading. The module imports both the Bool and Nat sorts and related
operators, and defines an additional sort Int for representing the integers. To
indicate that every natural number is an integer, Nat is declared to be a subsort
of Int. The module introduces the operator p for the predecessor operation,
and adds equations so that predecessor and successor cancel out. We use the
ctor attribute on predecessor, but not on successor, because predecessor is a
constructor on negative integers while successor was already previously defined
as a constructor on the natural numbers and is defined on all the integers other
than the natural numbers. Finally, the module extends the addition and <
operation to the integers with overloaded operation declarations, and defines
additional equations for handling predecessor.

As illustrated by the INT example, a key feature of order-sorted logic is that
the same symbol may be overloaded with different sorts associated to the do-
main and range. There are two distinct types of overloading that may occur in
order-sorted logic: ad-hoc overloading and subsort overloading. Ad-hoc over-
loading just means that the same symbol may be used for unrelated operations,
while subsort overloading means that an operation may be defined over different
related sorts. An example of ad-hoc overloading would be using the same symbol
+ for addition over the natural numbers and string concatenation. An example
of subsort overloading would be using + for addition over both natural numbers
and integers. In subsort overloading, the operation must be consistent when
applied to the same elements. When given natural numbers as arguments, ad-

dition over the integers must yield the same result as the operation for addition

21

fmod BOOL is

sort Bool .

ops true false : -> Bool [ctor].
endfm

fmod NAT is protecting BOOL .
sort Nat .
op 0 : -> Nat [ctor].
op s : Nat -> Nat [ctor].

var M N : Nat

op _+_ : Nat Nat -> Nat
eq M+ s(N) = s(M + N)
eqM+0=M.

op _<=_ : Nat Nat -> Bool .

eq 0 <= N = true .

eq s(N) <= 0 = false .

eq s(M) <= s(N) =M <=N .
endfm

fmod INT is protecting NAT .
sort Int .

subsort Nat < Int

op s : Int -> Int
op p : Int -> Int [ctor].

var I J : Int

eq p(s(I)) =1
eq s(p(I))

1]
H

op _+_ : Int Int -> Int
eq p(I) + J =p(I + J)
eq I +p(J) =p(d+ J)

op _<=_ : Int Int -> Int

eq p(I) <=J =1 <= s(J)

eq I <= p(J) =s(I) <=7 .
endfm

Figure 2.2: Order-sorted example

22

over the naturals.

There are different formalizations of order-sorted logic with support for dif-
ferent degrees of ad-hoc and subsort overloading (see [63, 111] for surveys).
Ad-hoc overloading can be eliminated by annotating symbols to appropriately
disambiguate them, while subsort overloading is an essential feature of order-
sorted logic. Our definition of an order-sorted signature below rules out ad-hoc

overloading in order to simplify later results.
Definition 2.3.1. An order-sorted signature ¥ = (S, F, <) is a tuple such that:

e (5,<) is a partial order called the subsort ordering which generates the
equivalence relation =<C S x S, denoting the reflexive, symmetric and

transitive closure of <.

o F'={Fustws)es-xs s a family of operators in which for each over-
loaded symbol f € Fs, 5, s NFs s s, we have that m =n, s =< s, and

s; =< s for all indices i € [1,n].

For each sort s € S, the connected component of s is the equivalence class
[s] € S/ =<. In the INT example in Figure 2.2, Nat and Int belong to the same
connected component, while Bool belongs to a different connected component
containing no other sorts. The restrictions on operators are given so that the
sorts associated to the output and each argument position belong to the same
connected component.

In order-sorted logic, the variables of a signature ¥ = (S, F, <) are a S-sorted
family X = { X, }scs where each set X is countably infinite and disjoint from
both the operators in F' and the other sets of variables. If a variable x is in X,
we say that x has sort s, and will sometimes write zs to indicate that x has sort
s. To simplify later statements, we overload the notation for families so that a
family such as the variables X = { X, }.ecs also denotes the set X = J g Xs.
Finally, when the signature ¥ = (S, F, <) is clear, we write f : s1...s, — s for
fEFs 5,5

For a signature ¥ = (5, F, <), the terms of ¥ form a S-indexed family
Ts(X) = {Tx(X)s }scs where for each s € S, Tx(X), denotes the terms with
a sort s’ < s formed by the operators in ¥ and variables in each sort X, with
s' <'s. The ground terms of ¥ form a S-indexed family T = {Tx s }sc5 where
Ty, s denotes the terms formed solely from the operators in F' and not containing
any variables in X. An order-sorted substitution is a mapping 6 : Y — Tx(X)
where Y is a finite subset of X and with the condition that 6(z;) € Tx(X), for

each variable z, € Y.

Definition 2.3.2. A theory for an order sorted signature ¥ = (S, F,<) is a
set € of equations of the form | = r with l,r € Ts(X) having sorts in the same

equivalence class in S/ =<.

There are various inference systems in order-sorted logic for deriving equa-

tions of the form ¢t = w. In this work, we reuse the inference system in Figure 2.1

23

for the unsorted case, but with the additional restriction that terms are required
to be well-sorted and substitutions must be order-sorted substitutions. For the
unconditional order-sorted theories we consider, our inference system has the
same semantics as the sound and complete inference system presented in [111].

Our definitions for order-sorted algebras and homomorphisms is from [111].

Definition 2.3.3. An Y-algebra A for an order-sorted signature 3 = (S, F, <)

consists of:
e a set A, for each sort s € S such that A, C Ay for s <s';

e a function Af.y_s : Ay — Ag for each symbol f € F, s where w =
51...8n, Ay = A5, X ... As,,, and for each symbol f € F, s N Fyy o and

common arguments @ € A, N Ay,
Af:w—m(a) = Af:w’—>s’ (a)

For an order sorted signature X, a X-homomorphism h : A — B is a family
of functions h = {hs : A;s — Bs}secs such that:

e For sorts s =< ¢’ and common elements a € A;N Ay,

e For each symbol f € Fy, , . and elements a; € As,,...,a, € A;,,
hs(Af(ar,...,an)) = Bf(hs, (a1), ..., hs, (an)).

Given an order-sorted theory £ over X, an £-algebra is a 3-algebra satisfying the
equations in E. We let Tx, denote the ground term algebra for ¥, and T denote
the £-algebra such that Tg s = {[t]g | t € Tx s} for each sort s € S, where [t]¢
denotes the set of ground terms equivalent to t modulo £. Both Ty, and T¢ are
initial for the categories of Y-algebras and £-algebras respectively, so there is a
unique homomorphism from 7% to any »-algebra, and a unique homomorphism
from T¢ to any E-algebra. For a 3-algebra A and ground term ¢t € Ty, we
let A(t) denote the value of ¢ in the unique homomorphism A : 75, — A, i.e.,
A(f(tr, ... tn)) = Af(A(tr), ..., A(tn)).

Underlying unsorted theories. Our later results will often depend on the
ability to discard the sort information in an order-sorted theory £ and reason
in the underlying unsorted theory &, defined below, that contains the same

equations as &£, but without reference to specific sorts.

Definition 2.3.4. Given an order-sorted theory £ over a signature ¥ = (S, F, <
), we let € denotes the underlying unsorted theory € over an unsorted signature
3 such that

24

o X is an unsorted signature containing an operator f with arity n iff there

is an operator f € Fy, s s for some sorts si,...,sp,5 € S.
o & contains the equations in € with sort information dropped on variables.
Furthermore, we let X = Uses Xs be the variables associated to £.

This definition will be used in the next section for defining order-sorted
rewriting modulo axioms. It will also be used in Chapters 3-6 to simplify
different decision problems involving order-sorted theories to problems involving

only unsorted theories.

2.4 Order-sorted rewriting modulo axioms

As in the unsorted case, an order-sorted theory £ may be interpreted oper-
ationally by orienting the equations [= r € &£ as rewrite rules | — r and
simplifying expressions from left to right. As in the unsorted case one may
perform rewriting modulo axioms such as associativity and commutativity in
order-sorted theories. However when performing order-sorted rewriting modulo
axioms, the variables in the axioms are typically constrained so that the equa-
tional matching algorithm can ignore the sort information. We call axioms that

satisfy this constraint sort-independent and define the property formally below:

Definition 2.4.1. An equational theory € over ¥ is sort-independent iff for all
well-sorted terms t,u € Tx(X),

t=zu=1t=¢u.

where & is the underlying unsorted theory as described in Definition 2.3./.

As an example of how sort independence is used in practice, we briefly
discuss how rewriting modulo axioms is performed in the rewriting engine of
the Maude programming language [28]. Maude supports order-sorted rewriting
modulo any combination of associativity, commutativity, and identity. However,
Maude modules are syntactically required to satisfy certain syntactic properties
required to guarantee sort independence. In this section, we call signatures
satisfying these syntactic restrictions Maude compatible, and formalize the re-

quirements below:

Definition 2.4.2. An order-sorted signature ¥ = (S, F, <) is Maude compati-
ble iff each connected component [s] € S/ =< has a unique mazimal sort called
the kind ks € [s] such that

1. §' < ks forall s’ € [s], and

2. for each operator declaration f : s1...8, — s in F, F also contains the

declaration f : ks ... ks, — ks.

25

We call a set of equational axioms A mazximal when each variable x appearing
in an equation [= r € Az has a maximal sort k5. We call a theory A non-trivial
if it does not contain an equation with the form x = y. All of the theories that
Maude supports rewriting modulo are both maximal and non-trivial. Thus we

are able to show the following result for axioms A supported by Maude.

Proposition 2.4.3. If A is a maximal non-trivial order-sorted theory over a

Maude compatible signature 33, then A is sort-independent.

Proof. To show that A is sort-independent, we must show that for each pair of
well-sorted terms ¢, u € Tx(X)

t=gu=1t=¢u.

The proof of this is by induction on the inferences used to show that ¢t =z wu.
Since t and u are well-sorted terms and ad-hoc overloading is disallowed, the
different cases turn out to be quite straightforward. The only interesting case

is the use of Replacement

19 =z rf
where [= r is an equation in both £ and £. The substitution 6 is an unsorted
substitution. However, as each variable xj € vars(l) U vars(r), has a maximal
sort k, both 16 and 7 are well-sorted. We can use the definition of a Maude
compatible signature to show by induction on / and r respectively that 0(z) €

Ts(X)y for all variables z, € vars(l) and x € vars(r) respectively. It follows

that @ is also an order-sorted substitution, and therefore 16 =¢ 6. O

This digression into Maude compatible signatures and axioms was merely to
illustrate a major way that sort-independence is achieved in practice. For this
thesis, we will state most results in terms of the sort-independence property
rather than the particular way that sort-independence is achieved in Maude.
The sort-independence property is assumed in our definition of order-sorted

term rewrite systems below:

Definition 2.4.4. An order-sorted term rewrite system for a signature ¥ =
(S, F, <) is a pair R/A such that

e A is a set of sort-independent X-equations, and

e R is a set of rewrite rules of the form | — r with l,r € Tx(X)s for some

s €8 and vars(r) C vars(l).

As in the unsorted case, each order-sorted TRS R/A defines a rewrite re-
lation —x /4. In this case, rewriting occurs on well-sorted terms, and given
terms ¢, u € Tx(X), we write t —x /4 u iff there exists a context C, order-sorted
substitution # and rule [— r € R such that ¢t =4 C[lf] and C[rf] = u. In addi-

tion, properties of unsorted term rewrite systems such as weak-normalization,

26

fmod NAT-LIST is protecting NAT .
sort NeList List .
subsorts Nat < NeList < List .

op nil : -> List [ctor].

op __ : NeList NeList -> NelList [ctor assoc id: nil].
op __ : List List -> List [assoc id: nil].
var N : Nat . var L : List .

op head : NelList -> Nat .
eq head(N L) = N .
op end : NeList -> Nat .
eq end(L N) = N .

op reverse : List -> List .
eq reverse(N L) = reverse(L) N .
eq reverse(nil) = nil .

endfm

Figure 2.3: Rewriting modulo axioms example

termination and confluence can be extended to order-sorted term rewrite sys-
tems in an obvious way. Additionally, it is often important that if a term ¢
has a particular sort s, i.e., t € Tx(X)s, then any term it rewrites to can be
further rewritten to a term with sort s. We call this property sort-preservation.
Formally, R/A is sort-preserving if for each sort s € S, term ¢ € Tx(X),, and
u € Ts(X), if ¢ —R,/a U then, there exists a v € T5(X) such that u —R/a U
and v € Tx(X)s,.

As an example of an order-sorted specification that uses rewriting modulo
axioms, we present in Figure 2.3 a specification of lists of natural numbers with
an associative append operator. In this specification, the operators consist of
those imported from the natural numbers module, along with a constant nil for
the empty list, and an append operator __. The operator attributes assoc and

id: nil define the axioms in A. Specifically, A contains the following axioms:
(zy)z = z(y2) znil =gz nilez =z

The equation declarations define the rules in R. The append operator __ is
subsort overloaded to indicate that it is yields a non-empty list when given
non-empty lists as arguments, and a list more generally. The ctor attribute
is used to indicate that certain declarations are used to construct data, and as
mentioned previously this is explained in much more detail in Chapter 5.
With a traditional description of lists, one would use a cons operator, and
would need to express append and end as recursive operations that walked

down the structure of a list. By rewriting modulo associativity, we are able

27

to treat append directly as a constructor, and define end with a single non-
recursive equation. Thanks to Maude’s support for efficient rewriting modulo
associativity, the above specification will run faster on large lists than one using

cons.

2.5 Membership equational logic

Although order-sorted logic can encode many partial operations, it is still fairly
limited in the degree of partiality it supports. Order-sorted logic can not, for
example, express the idea that the sum of two vectors is only defined when the
vectors have an equal length. To deal with more general notions of partiality,
one can use membership equational logic (MEL) [111]. In MEL, atomic pred-
icates are either equations ¢ = u or memberships ¢ : s which can be read as
saying t has sort s, where ¢ having a sort is equivalent to ¢ being defined. In
addition, MEL allows the axioms to be conditional Horn clauses over equations
and memberships. For example, the axiom x + y : vector if len(z) = len(y)
might be used in a specification to say that the sum of two vectors x and y
is a vector if the lengths are equal. MEL has a proof theory that is sound
and complete with respect to a model theory [19], and can be used to encode
order-sorted logic [111].

Membership equational logic is essentially Horn logic with equality and unary
predicates. The logic has two levels of typing: kinds type operator declarations
in a signature, and sorts type terms using membership axioms in a particular
theory. We review the basic terminology of MEL below (see [19] or [111] for a

more comprehensive introduction).

Definition 2.5.1. A membership equational logic (MEL) signature is a triple
¥ =(K,F,S), in which:

e K is a set of kinds;

o F'= {ng}@ ek K 1S 0 K-kinded family of function symbols such that
Fy and F ., are disjoint for distinct k, k'€ K; and

o S ={Sktrex is a disjoint K-kinded family of sets of sorts.

In membership equational logic, the variables are typed by the kinds. Specif-
ically, each signature ¥ = (K, F,S) is equipped with a K-index family of vari-
ables X = { X, }xex which are pairwise disjoint and also distinct from constant
in F. When the variables X are clear from the context, we write x; to denote
that z is a variable with kind k, i.e., x € Xi. The terms of a MEL signature
Y are a K-indexed family T5(X) = { Ts(X)r }rex where each set Tx(X)y de-
notes the set of well-kinded terms with kind & formed from the function symbols
in F' and variables in X. The variables of a term ¢ € Tx(X) are denoted by
vars(t). We denote the ground terms by Tx, = { Tx ; } where Ty, denotes the

28

Reflexitivity pa—)

t J—
t=u
Symmetry
u==t
e t=u U=
Transitivity
t=wv
C tl = U1 . tn = Up
ongruence
f(tl,. 7tn) = f(ul,...,un)
a1 ... a,lf
Repl t
eplacemen T

withl=rifag A Na, In &

t= :
Subject Reduction ? v-s
o
0 ... 0
Membership my - b
0 : s

witht:sif a; A+~ Ay, in €

Figure 2.4: Inference system for MEL theory &

set of all terms of kind k that do not contain variables. A MEL X-substitution
is a mapping 0 : Y — Tx(X) with a finite domain ¥ C X and the condition
that 0(xg) € Ts(X)g for each variable z € Y.

A Y-equation is a formula ¢ = u with ¢,u € T5(X); for some k € K. A
Y -membership is a formula ¢ : s with ¢t € Ts(X), and s € Si. X-sentences are
universally quantified Horn clauses of the form (VY') a if a3 A --+ A o, where
a and «; (i € [1,n]) are either X-equations or ¥-memberships with variables in
Y. We will typically leave the variables Y implicit. If « is a 3-equation, the
sentence is a conditional equation; if « is a X-membership, the sentence is a
conditional membership. A MEL theory over a signature ¥ is a set of (possibly
conditional) equations and memberships. As explained in [19], there is a sound
and complete inference system to derive all valid atomic formulas of a MEL
theory. We reproduce this inference system in Figure 2.4, and write £ - « if «
is an atomic formula with the form ¢t = u or ¢ : s which can be derived using
the inference rules in the figure. For consistency with the unsorted notation,
we write t =¢ u iff &€ F t = u, and let [t]¢ denote the set of all ground terms

equivalent to a term ¢ € T, ;, by the equations in &, i.e.,
[t]g:{UETE,k |AFt:u}.

Algebras in membership equational logic are defined as follows:
Definition 2.5.2. An algebra A for a signature ¥ = (K, F,S) consists of

e a carrier set Ay for each kind k € K,

29

o a function Ay : Ap, X --- X A, — Ay for each symbol f € Fy, ., 1k, and
o qa set A; C Ay for each sort s € Sy.

Furthermore, a Y-homomorphism h : A — B from a Y-algebra A to X-
algebra B is a K-indexed family of mappings h = { hy, } ke x where each mapping
is a function hy : A — By such that:

e For each symbol f € Fi, &, .k,
hk(Af(a1, ey an)) = Bf(hkl (al), ey hkn (an))

e For each sort s € Si and element a € Ay, hi(a) € Bs.

Given a set of variables Y C X, a valuation in MEL is a mapping v : Y — A
such that for each variable x, € Y, v(zp) € Ag. As in the unsorted case,
valuations can be extended to interpret each term t € Tx(Y') For each term
t € Tx(Y'), we let tv denote the element in A defined by

fltr, .. tn)v = ftiv, ...,) xv =v(x)

Each MEL atomic formula « has the form t = w or ¢t : s. We write A, vt =u
iff tv =wv,and A,vt:siff tr € 4;. A X-algebra A is a model of a MEL
Y-theory & iff for each clause o if a; A--- Ay, in &,

AvEa AN - NAVvEQ = AvEa

For a given MEL theory £, we can define the initial algebra T¢ as the algebra
such that:

e For each kind k € K, Tng = { [t]g | t e Tg,k }

e For each symbol f : ki ...k, — k, Tg 5 is the function
Tep:[ta].. - [tn] = [f(t1,. .., t)]
e For each sort s, € S, Te o C T, is the set

TE,s:{[t]ETg’k|5|—t:S}.

2.6 Conditional rewrite-membership systems

Executing MEL specifications requires more general rewriting techniques to
deal with the memberships and conditions supported by the logic. This was
done in [19] by introducing a rewriting framework called conditional rewrit-
ing/membership (CRM) systems. In this work, equations were interpreted in

two different ways. An equation [= r appearing in the consequent of a rule

30

fmod POWERLIST is protecting NAT .

sort Pow .
op [_] : Nat -> Pow [ctor]
op _I_ : [Pow] [Pow] -> [Pow]

vars M N : Nat .
vars P Q R S : Pow .

op len : Pow -> Nat .
eq len(P | Q) = len(P) + len(Q)
eq len([N]) =1 .

cmb (P | Q) : Pow if len(P) = len(Q)

op _x_ : [Pow] [Pow] -> [Pow]

cmb (P x Q) : Pow if len(P) = len(Q) [metadata "dfn"].
eq Pl Qx®RIS)=C=xR | (Qs).

eq M1 x [N] = [M] | [N]

endfm

Figure 2.5: Powerlist example

l=rif a;A...a, € Ris interpreted as a rewrite rule I — r. An equation t = u
appearing in one of the conditions aq,...,a, of arule a if oy A ..., € R is
interpreted as a join condition t | u. The idea is that terms ¢ and u are join-
able in a CRM system R, denoted R F t | u iff they can be rewritten to the
same term. More formally, R F ¢ | w iff there is a term v € Tx(X) such that
REt—"vand RFu—*wv.

To illustrate a CRM system, we present a formalization of unnested pow-
erlists [113] over natural numbers. Unnested powerlists are lists of length 2"
for some n € N formed by two constructors: an operator | called tie that ap-
pends two lists with the same length together, and an operator x called zip
that interleaves two powerlists together. For example, both (1]2) | (3] 4) and
(1]12)x(3]4)=(1]3)]|(2]4) are well-formed powerlists, while (4 | 3) x (1)
and (1] 2) | (3) are not well-formed. We only discuss unnested powerlists in
this chapter. For a more complete treatment of powerlists that includes nested
powerlists, see our case study in Chapter 8.

We formalize unnested powerlists in the POWERLIST module defined in Fig-
ure 2.5. The module POWERLIST imports the predefined module NAT from Fig-
ure 2.2. We introduce the sort Pow, which we will reserve for those terms
representing powerlists; Maude automatically introduces also the kind [Pow]
to denote the kind of the sort Pow. We also introduce four operators: [_] for
representing the operation that forms powerlist elements; _|_ for representing
the powerlist tie operation; _x_ for representing the powerlist zip operation; and
len for representing the operation that computes the length of a powerlist. Since

not all terms constructed with the operators _|_ and _x_ will represent pow-

31

erlists, we declare those operators at the kind level. For example, ([2] | [3]) x [4]
is not a powerlist. This is represented in POWERLIST by the fact that the term
([2] | [3]) x [4] has kind [Pow], but it does not belong to the sort Pow. On
the other hand, since we want to use the [_] operator to construct powerlists
(specifically, powerlists with only one element), we declare this operator at the
sort level and with the ctor attribute. Finally, since we expect that the len
operator applied to a powerlist will always evaluate to a natural number, we
declare this operator at the sort level, but without the ctor attribute.

In the variable declaration section, we associate the sort Nat to the variables
M and N, and the sort Pow to the variables P, Q, R, and S. By doing this, we are in
fact declaring: (i) that M and N are variables of the kind [Nat], and P, Q, R, and S
of the kind [Pow], and (ii) that in all memberships and equations in which those
variables appear, there is an implicit extra condition stating that those variables
only range over the set of terms belonging to their associated sort. Finally, in
the membership declaration section, we declare that both the tie and the zip
of two powerlists are powerlists if they have equal length; however, since we do
not want to use the zip operator as a constructor for powerlists, but rather as a
defined function, we declare the membership for the zip operator with the dfn
metadata. In fact, if we go back to the operator declarations section, we can

realize that the declarations:

op [_] : Nat -> Pow [ctor]
op len : Pow -> Nat .

is just syntactic sugar for the following declarations:

op [_] : [Nat] -> [Pow]

mb [N]: Pow .

op len : [Pow] -> [Nat]

mb len(P): Nat [metadata "dfn"].

The CRM rewriting framework given in [19] is quite general, but lacks sup-
port for a couple different features that are important in many specifications and
supported by Maude. The first limitation of CRM systems is that they do not
allow rewriting modulo axioms. A second limitation is that all equations in the
condition of a CRM system are interpreted as join conditions and variables not
in the left-hand side of the equation may not appear in the condition. Maude
allows an equation t = w in the condition of a formula to be interpreted as an
oriented rule t — u, where the right hand side may contain extra variables.
Oriented conditions strictly generalize join conditions. When oriented condi-
tions are allowed, we may replace a join condition ¢ | u by introducing an extra
constant tt and binary operator eq along with a rule eq(x,z) — tt. The join
condition ¢ | u can then be expressed as the oriented condition eq(,u) — tt.

To support these further extensions, we defined a class of rewrite systems
called Conditional Equational Rewrite Membership (CERM) systems in [74].

32

t=au

Equivalence
t—*u
t=4Cl|l0 0 ... 0
Replacement A Cl t]ﬂaé’[T f n
withl - rifog A---ANa,, iIn R
. t—u u—*v
Transitivity —_—
t—*v
t=410 0 ... 0
Membership A 0;1 Gn
.S

withl:sif oy A---Na, in R

t :
Subject Reduction #
]

Note that af denotes the atomic formula ¢t —* uf when « has the form t — u,
and t0 : s when « has the form ¢ : s.

Figure 2.6: Inference system for R/A

CERM systems support all of the features of CRM systems as well as oriented

rules in conditions and matching modulo unconditional equations.

Definition 2.6.1. A conditional equational rewrite/membership (CERM) sys-
tem over a MEL signature ¥ = (K, F,S) is a pair R/A in which:

o A is a set of unconditional X-equations which are kind-independent which

means that for all well-typed terms t,u € Tx(X),

t=u=1t=4u.

e R is a set containing two types of rules:

l:sif/\ui—>vi/\/\wj:sj l—>rif/\ui—>vi/\/\wj:sj
Membership Rule Rewrite Rule

l,r € Ts(X), and s € Si, for some k € K, each u;,v; € Ts(X), for some
ki € K, and each w; € Ts(X)g; and s; € Sk, for some kj € K.

Conditional equational rewrite systems provide a unifying for defining the
operational semantics of systems with conditional memberships such as the
POWERLIST example and systems with rewriting modulo axioms such as the
NAT-LIST example in Figure 2.3. Properties such as weak-normalization, termi-
nation and confluence can be extended to CERM systems easily.

When « is an atomic formula, R/A F « denotes that o can be derived from

the inferences rules in Figure 2.6 for R/A. This inference system refines and

33

extends the one used [19, Figure 7|. Specifically, we define refined notions of
rewriting and membership directly in the proof theory, combine several rules
into a single rule to allow simpler proofs later on, and allow rewrites to take
place modulo the axioms A.

When R/A is weakly normalizing and confluent, then for each term ¢ €
Tx(X) there is an R/A-irreducible term ¢ |z 4€ Tx(X) such that ¢ *)!R/A
t |rsa that is unique up to equivalence modulo =4. We can use this fact
to define the canonical term algebra Cang,4 as the algebra over the R/A-

irreducible equivalence classes in T4 as follows:

e For each kind k € K,

Cang a, = {[t] € Ta |t is R/A-irreducible }.
e For each function f : ky...k, — k, Cang /4 ; is the mapping
Canga,p: ([t1] .- [tu]) = [f(t1, .. t0) LRyal.

e For each sort sort s, € S,

Cang s, = {[t] € Cangya | R/AFt:s}.

We let £ = R U A denote the MEL theory in which every atomic formula
t — u appearing in a clause in R is replaced with the equation ¢ = u. In the
unsorted case, the algebras Te and Cang 4 are isomorphic provided that R/A
is confluent and weakly normalizing. This is not true in general for CERM
systems. In addition to confluence and weak normalization, we require two
additional properties: R/A must be sort-preserving and pattern-based.
Sort-preserving. Sort preservation means that a term ¢ which can be proven
to have a sort s € S may only be rewritten to terms that also can be proven
to have sort s. Specifically, a CERM system R/A is sort-preserving relative to
variables Z C X iff reducing a term ¢t € Tx(Z) with sort s is guaranteed to

result in a term with sort s, i.e., for all ¢,u € Tx;(Z) and sorts s € S,
R/AFt:sA\R/AFt -u = R/AFu:s.

This property was called sort-decreasingness in [19]. In this definition, note
that the term w may be further rewritten before checking whether it has sort
s. When R is sort-preserving relative to Z = &, then we say R is ground
sort-preserving.

Pattern based. If we only consider conditional rewrite systems with join
conditions, sort-preservation along with weak normalization and confluence is
enough. However rewrite systems with oriented conditions required an addi-

tional property. To see this, let > be a signature with constants a, b and ¢ all

34

having the same kind k and no sorts. Then let A = & and let R be the rewrite

system with the following rules:
b—a c—bifa—b

This rewrite system is clearly terminating, ground confluent, and ground sort-
preserving. However, Cang 4 contains two elements {a} and {c} while the
initial algebra Tra contains only a single element { a, b, ¢ } and is therefore not
isomorphic to Cang /4.

We can achieve the desired isomorphism between Cang /4 and Tryua by re-
stricting our attention to theories where each term v appearing in an oriented
clause u — v appearing in the condition of a rule in R satisfies certain con-

straints captured in the definition below:

Definition 2.6.2. A CERM system R/A is pattern-based relative to variables
Z when for each rule in R of the form

« if /\ u; — v; N\ /\ wj S5

i€[1,m)] J€E1,n]

with « of the form I — r orl : s, we have that each v; € {v1,...,v, } is a

pattern. Specifically, we require:

e The variables in v; are fresh, i.e.,

vars(v;) N (vars(l) U U vars(ug) U U vars(vg)) = @.
1<k<i 1<k<i

e Any rewriting of a term v;0 occurs below the pattern v;, i.e., for each
substitution 0 : Y — Ts(Z), if R/A F v;0 —* t, then there is a substitution
¢:Y — T5(Z) such that t =4 v;¢.

The restrictions on variables are based on the idea that conditions in a rule
are resolved sequentially, and the variables introduced in the right hand side
v; of an oriented condition u; — v; may not have appeared in terms evaluated
earlier. For CERM systems with extra variables in the condition, the order of
the conditions may be critical. It is worth noting that the previous definition
allows variables to be introduced in the right-hand side r or one of the terms w;.
Without the additional requirement that no extra variables are vars(r) C [U
U1 <k<m vars(vy) and each vars(u;) C IUJ, <), ; vars(vx), pattern-based systems
are not directly executable, unless a strateéy to instantiate the additional free
variables in r and each w; is given. Nevertheless, our results hold in generality
without this extra requirement.

If R/A is pattern-based, then we can obtain a substitution ¢ satisfying the

oriented conditions in a rule « if w1 — v1 A+ Ay, — vy A ... from a substi-

35

tution which satisfies the conditions when they are treated as join conditions
aifur Jogr Ao Aty L om At

This is shown in the following lemma.

Lemma 2.6.3. Let R/A be a CERM system that is pattern-based with respect

to variables Z C X containing a rule

(VY) aif /\ Uy — v; A /\ wj S5
i€[1,m] JEL,n]
If0:Y — Tx(Z) is a substitution such that R/A ;0 | w0 fori € [1,m],
then there is a substitution ¢ 1 Y — Tx(Z) such that:

e R/AF O(y) —=* ¢(y) for eachy €Y and

o R/AF wip —* v fori € [1,m].

Proof. If R/A F u;0 —* v;0 for all i € [1,m], then we let ¢ = 6 and we are
done. Otherwise, there must be an index k such that R/A F u;¢p —* v;¢ for all
i <k and R/AV updp —* vio.

As R F ugp¢ | vip, there must be a term ¢ such that R + up¢p —* ¢ and
R b v —* t. Moreover, since R is pattern-based, we know ¢ has the form
t =4 v for some substitution 1. Consequently, R F upp —* vgt).

Let ¢ be the substitution such that ¢(y) = ¥(y) if y € vars(v;) and otherwise
o(y) = 0(y). As v; is a pattern, it is easy to show that u;¢ = u,;0 for i < k,
vip = v;0 for ¢ < k, and v;¢0 = v;1p. Collectively, this implies that R - u;¢p —*
vi¢ for all ¢ < k. We then repeat this process for indices greater than k, and

since the total number of indices if finite, we are done. O

With the additional constraint that R is pattern-based, we can show that
the inference system for R constitutes a complete proof theory [74].

Theorem 2.6.4. Let R/A be a confluent, sort-preserving and pattern-based
CERM system, and let £ = R U A denote the underlying MEL theory. For all
terms t,u € Ts(X) and s € S,

Ebt=u < R/AFt|u and Ebt:s < R/AFt:s

Proof. We can show that R/AF ¢ | wimplies £+t =wand R/AF t: s implies
&€ F t : s by simultaneous structural induction on CERM proofs formed from the
rules in Figure 2.6. The other direction can be shown by structural induction
on proofs formed from the rules in Figure 2.4. We consider each of the inference

rules which may appear at the top separately:

36

Subject Reduction
t=u u:s

t:s
By induction, we know that R/AF ¢ | v and R/AF u: s. Consequently,
there must be a v € T (X) such that R/AF ¢t —* v and R/AF u —* v.
As R is sort-preserving, R/AF v : s, and thus R/AF ¢ : s.

Membership

wl =v10 ... upl =v,0 wil:s1 ... w,0: s,
to: s

By induction R/A + u0 | v;0 for i € [1,m], and R/A F w;0 : s; for
J € [1,n]. By definition of £, R must contain the membership rule:

m n
t:sif /\uiﬂvi/\/\wj:sj.
i=1 j=1

As R/A is pattern-based, by Lemma 2.6.3, there is a substitution ¢ :
Y — Tx(X) such that R/AF 6(y) —* ¢(y) for each y € Y, and R/A |
u;¢p —* v;¢ for each i € [1,m]. It is not difficult to show that for each
je€l,n], R/IAF w;0 —* w;¢ and furthermore R/At w;¢ : s; as R/A is
sort-preserving. It follows both that R/A F t0 —* t¢ and R/AF t¢ : s.
Therefore, R/AF 10 : s.

Reflexivity
t=t
Clearly R/AFt —*t.
Symmetry
t=u
u==t

By induction we have R/A + t | w, which is commutative, and thus
R/AFw | t.
Transitivity
t=u u=v
t=v
R/AFt | uand R/AF u | v by induction. Using confluence, we can

construct the diagram:

NSNS
%

Congruence:
tl = U1 . tn = Un

f(tl,...,tn) = f(ul,...7un)
37

By induction, R/A F t; | u; for each i € [1,n]. Consequently, there
must be a term v; € Tx(X) such that R/A F ¢; — v; and R/A F
u; — v;. It is not difficult to show both that R/A F f(t1,...,tn) —*
f(vi,...,v,) and R/A & f(uy,...,u,) —=* f(v1,...,v,). Consequently,
RJ/AE f(t1, ... tn) | flug, ... un).

Replacement:

wl =v10 ... upl =v,0 wil:s1 ... w,0:s,

t0 =16

If the equation used is in F, then the proof is trivial. Otherwise using
an inductive argument identical to that of the Membership rule, we can
show there must exist a substitution ¢ such that R/A F t0 —* t¢ and
R/AF té —* t'¢. Tt is not difficult to show both that R/A F t0 —* t'¢
and R/AF t'60 —* t'¢. Consequently, R/AF t0 | t'6.

O

If R/A is additionally weakly normalizing, then we have the expected agree-
ment between Cang /4 and Tg¢.

Corollary 2.6.5. If R/A is a weakly normalizing, ground confluent, ground
sort-preserving and ground pattern-based CERM system over a signature ¥ and

& =TRUA, then Cang 4 is isomorphic to Tg.

Proof. Let ¥ = (K, F,S). We define h : Cang /4 — T¢ to be the homomorphism

where each mapping hy, is the function
hi : [t]a € CanR/A — [tle € Ts.

We easily have that h is a ¥-homomorphism, and our main task is to show that
it is an isomorphism.

As R/A is weakly-normalizing and ground confluent, for each term ¢ € Ty
there is a unique normal form [t |z,4] € Cang 4. Moreover, from Theo-
rem 2.6.4, we know that £ -t = w iff [t |g/a] = [u |r/a]. We also know that
for each sort s € S, [t] € Te s iff [t |z 4] € Cang,a,. It follows that we can
define the inverse of h~! of h is a Y-homomorphism as well, and consequently

Cang 4 and Tg are isomorphic. O

This last proof shows conditions under which the mathematical semantics
of membership equational logic theories and operational semantics of CERM
systems coincide. These results are heavily used in Chapter 5 in order to solve
an important correctness problem for MEL specifications. However, before dis-
cussing different problems in rewriting, we prefer to focus on automated tech-

niques for solving problems.

38

Chapter 3

Equational tree automata

Tree automata are a theoretical tool with applications in many areas of com-
puter science. Perhaps the fundamental motivation for studying tree automata
is that they offer a finite representation of potentially infinite sets of trees with
good closure and decidability properties. The sets of trees recognizable by tree
automata are called regular tree languages. Both the emptiness and membership
problems are decidable for regular tree languages, and regular tree languages
are closed under the Boolean operations of intersection, union, and complemen-
tation as well as under signature homomorphisms [33].

Tree automata were originally introduced in the context of circuit verifi-
cation, but have proven quite useful in decidability results in logic and term
rewriting [33]. Some other recent applications include sufficient completeness
of algebraic specifications [32, 75], protocol verification [4, 50, 59], consistency
of semi-structured documents [79, 117], type inference [41, 53|, querying in
databases [133, 144], and theorem proving [94]. Many different frameworks have
been proposed for addressing these applications, and each framework must bal-
ance the often competing goals of expressive power and tractability of different
operations.

In many of these applications, tree automata are used to represent algebraic
terms formed from different operator symbols, and it is often important that
these sets are closed with respect to properties of the operators. For example,
in protocol verification, one may use a regular tree language to represent the
potential knowledge of an intruder. In this case, if the intruder can learn the
value of the sum (z + y) + 2, then the tree language should contain the term
(z+y)+ 2. However, the language should contain algebraically equivalent terms
such as x + (y + z) or (z + z) + y, as the intruder who knows (z + y) + 2z can
easily infer the other terms. Given a theory £ and a tree language L, we call
the set of terms equivalent modulo £ to a term in £ the equational closure of L.

Unfortunately, the equational closure of a language is rarely regular. For
example, the set of terms equivalent modulo associativity to a term in a regular
tree language is not in general a regular tree language [123]. As a consequence,
users of tree automata techniques are often forced to resort to complicated and
specialized ways of encoding the problem as a tree automaton problem [14].

Many extensions of tree automata have been suggested to address this prob-

39

lem, including multitree automata by Lugiez [105], two-way alternating tree
automata by Verma [136, 138], and equational tree automata by Ohsaki [123].

In the completeness applications which we discuss later in Chapters 5 and 6,
the most important properties for a tree automata framework are: (1) an ef-
fective procedure for emptiness checking, (2) closure under Boolean operations,
and (3) closure under equational congruences. Regular tree automata have a
decidable emptiness problem and are closed under Boolean operations, however
they are not closed in general under equational congruences. Equational tree
automata add closure under equational congruences, but are not closed under
Boolean operations. Multitree automata [105] satisfy all three properties, but
are only defined for AC theories and the other frameworks lack closure under
Boolean operations. Due to these problems, we proposed the propositional tree
automata (PTA) framework in [76]. PTA are closed under both an equational
theory and Boolean operations — but have an undecidable emptiness problem.

As few properties are decidable for arbitrary theories, our work, like most
work on equational tree automata, focuses on equational theories with particular
combinations of axioms. In particular, we focus on theories containing particu-
lar combinations of associativity (A), commutativity (C), and idempotence (I).
The main focus of this chapter is to solve the emptiness problem for a Boolean
combination of equational tree automata over theories with specific combina-
tions of axioms. We call this problem the propositional emptiness problem as it
is equivalent to the emptiness problem for propositional tree automata. We fo-
cus on this problem, because it generalizes many other tree automata problems,
and it is useful for the applications discussed in Chapters 5 and 6.

This restriction to particular theories is unavoidable due to decidability is-
sues, but leaves open the question as to whether these results can be combined.
For example, using known closure properties, it is easy to show that intersection
emptiness is decidable for tree automata over a theory Exc with an AC symbol
and free symbols [125] as well as a theory Eacy with an ACI symbol and free
symbols [136]. Does this imply decidability of intersection emptiness for tree
automata over the combined theory Eac U Eact?

In fact, we show that intersection emptiness is undecidable for tree automata
over Eac U Eaci- We obtain this result by showing that every alternating tree
language [138] over a theory £ can be effectively expressed as the intersection
of two regular tree languages over a theory £ containing £ and an additional
ACI symbol. Since the emptiness problem for alternating AC-tree automata
is undecidable [138], it follows that intersection emptiness is undecidable for
regular tree automata over Eac U Eacr-

Our result implies that decidability of intersection emptiness is a non-mod-
ular property — even for disjoint combinations of theories. Modularity is an
important property to have, because it aids in the process of decomposing com-
plex problems into simpler parts which can be reasoned about separately. For

example, the Nelson-Oppen [118] and Shostak [134] combination methods have

40

been fundamental to the development of general-purpose theorem provers that
combine the capabilities of many different decision procedures. Given the impor-
tance of modularity, we decided to study two specific equational combinations of
tree automata: (1) theories with any combination of associativity and commuta-
tive equations including free, associative (A), commutative (C), and associative
and commutative (AC) symbols; (2) restricted subclasses of automata with AC
and ACI symbols.

Combinations of associativity and commutativity. In our first combina-
tion problem, we study the propositional emptiness problem for theories where
symbols may satisfy any combination of associativity and commutativity ax-
ioms. We show how previously known results easily imply that the proposi-
tional emptiness problem is undecidable for theories with an associative symbol
that is not commutative, but decidable for AC symbols (i.e., symbols that are
associative and commutative).

For arbitrary combinations of associativity and commutativity, we show that

tree automata and machine learning techniques can be combined to create a
semi-decision procedure which can always show non-emptiness, and can show
emptiness under certain regularity conditions. Our algorithm has been imple-
mented in a tree automata software library, called CETA [69], that can check the
emptiness of propositional tree automata modulo associativity, commutativity,
and identity. Although it is a semi-decision procedure and not guaranteed to
terminate, the CETA library has been quite successful in practice when used to
solve the applications we discuss later in Chapter 5 and 6.
AC intersection free automata. Our next contribution in this chapter is
to define a restricted class of tree automata over a theory £ with AC and ACI
symbols. We further show that the propositional emptiness problem is decidable
for this class. We call tree automata in the restricted class AC' intersection free
tree automata and require that each ACI symbol + in £ satisfies one of two
constraints: (1) either the clauses in the automaton where + appears must
satisfy certain syntactic restrictions to avoid simulating the intersection clauses
of alternating tree automata; or (2) the idempotence equation z + 2 = z in
&€ must be treated as a rewrite rule z + x — z as in the tree automata with
normalization framework of [124].

In the tree automata with normalization framework, some of the equations in
& may be treated as rewrite rules in a confluent and terminating rewrite theory
R. Rather than computing the congruence closure of the tree language mod-
ulo &£, terms are first normalized by rewriting with R modulo the remaining
equations & C &, and then checked for membership in the underlying equa-
tional tree languages L£(A/E’). This framework has different semantics than
standard equational tree automata, but is often able to obtain better closure
and decidability properties [124].

An important consequence of our decidability result on AC intersection free

automata is that it solves two open problems: (1) We show that the emptiness

41

problem is decidable for tree automata with normalization over idempotence
rules and AC equations. This problem was mentioned in [124] and left unsolved.
(2) We show that the propositional emptiness problem is decidable for equation
tree automata over the theory £4c1 containing a single ACI symbol and arbitrary
free symbols. This problem is interesting, because equational tree automata
over Eacr are not closed under complementation [137]. Its decidability also has
a further implication: propositional emptiness is a non-modular property. Our
earlier undecidability result implies that propositional emptiness is undecidable
for equational tree automata over Eaoc U Eacr, while propositional emptiness is
decidable for Exc¢ [125].

One underlying goal in this work is to develop better tree automata tech-
niques for non-linear theories. This is important in applications such as sufficient
completeness checking where existing techniques either do not support rewriting
modulo axioms [32] or are restricted to left-linear rewrite rules [75]. Although
sufficient completeness checking is undecidable in general for specifications with
non-linear rules and rewriting modulo AC [90], our decidability results show
that sufficient completeness is decidable modulo AC when every non-linear rule
in the specification has the form f(xz,2) — r. It would be interesting to see
if the techniques presented here can be extended to other forms of non-linear
rules.

The rest of this chapter is organized as follows: In Section 3.1, we introduce
the basic definitions for equational tree automata. In Section 3.2, we present our
result showing that intersection emptiness is a non-modular property for equa-
tional tree automata. We then investigate two specific combinations of theories:
the combination of A and AC symbols in Section 3.3 and the combination of
AC and ACI symbols in Section 3.4. Finally, we conclude this chapter with a
discussion of directions for future research in Section 3.5. Many of the results

in this chapter have previously appeared in 72, 76].

3.1 Equational tree automata definitions

We treat tree automata as collections of Horn clauses of particular forms as
in [138]. Given a X-theory &, a regular E-tree automaton A is a finite set of

Horn clauses each with the form:

p(f(x1,...,20)) <= p1(x1)s -, po(Tn) regular clause

where f € ¥ has arity n and p, p1,...,p, are elements of a finite set of unary
predicate symbols @ called the states of the automaton. In some definitions,
tree automata may also contain e-clauses of the form p(z) < ¢(x), but these
can be eliminated without loss of expressive power [33]. We write A/E F p(t) if
p(t) is entailed by the axioms in AUE. There are a variety of different inference

systems for entailment with equivalent semantics. When it is necessary to refer

42

t=¢u A/E T+ p(u)
A/E T p(t)
A/E - aq6 A/E+ anb
A/EF ab

Equivalence

Membership fa<ca...ape A

Figure 3.1: Inference System for A/E

to a specific inference steps, we use the inference rules in Figure 3.1.

We keep the acceptance condition separate from the automaton itself, and
since the automaton only recognizes languages that are closed modulo &, we
define languages as subsets of Tg rather than 7. For each state p belonging to
A, the language recognized by p in A, denoted L,(A/E) C Tg, is defined by

Ly(AfE) =Lt € Te | A/EF p(t) }. (3.1)

For an equational theory & = @ with no equations, we write A F p(t) for
A/EF p(t) and L,(A) for £,(A/E).
One important result from [138] about regular £-tree automata is the fol-

lowing:

Theorem 3.1.1. For each theory £ and regular €-tree automaton A,
A/EFp(t) <= (Fu € [t]le) AF p(u).

O

This theorem implies that an equational tree language can be alternatively

defined as the quotient of a regular tree language.

Corollary 3.1.2. For each theory £ and regular E-tree automaton A,

L(A/E) = {[] € Te | (u € L, (A)t =¢ u}.

For an arbitrary theory &£, the class of languages recognized by regular £-tree
automata is closed under union, but not under intersection or complementa-
tion [123]. Motivated by this fact, we introduced propositional tree automata
in [76]. This framework is an extension to equational tree automata framework
that is effectively closed under Boolean operations in all theories. The key idea
is to use a propositional formula rather than a set of final states as the accep-
tance condition for defining the language recognized by the automaton. We
present a slightly simpler formalization that preserves the basic idea. Given a

tree automaton A with states @), we extend the definition (3.1) of a language

43

L,(A/E) recognized by a state p to languages L4(A/E) recognized by a proposi-
tional formula ¢ constructed from atomic predicates Q and Boolean connectives
A and —:

‘C¢1/\¢2 (A/(‘:) = £¢1 ("4/5) N £¢'2 (A/g) ‘Cﬁ¢1 (A/g) =Te - £’¢1 (A/‘S)

As we will later see in our discussion of decision problems, there is a drawback
of using propositional tree automata — the emptiness problem is undecidable
in general. However, propositional tree automata over the same theory do have
trivial algorithms for performing Boolean operations. Given a propositional tree
language L£,(A/E), the complement is just the language £4(A/E). Given two
propositional tree languages L4, (A1/€) and Ly, (A2/E), one can use renaming
to guarantee the states of A’ and ¢’ are disjoint from those in A. It is then
not difficult to show that the intersection of Ly, (A;/€) and Ly, (A2/E) is the
language Lg, ng, (A1 W A2/E) where Ay & Ay denotes the disjoint union of A,
and As.

Example. One important relationship is that every order-sorted signature ¥ =
(S, F, <) can be viewed as a regular tree automaton Ay, whose states are the
sorts S. Specifically, we map each operator declaration f : s;...s, — s to a

regular clause

s(f(z1, .-) < s1(x1), .-y Sn(Tn),

and we map each subsort declaration s < s’ to an e-clause s'(z) < s(z). It is
not difficult to show then that for each sort s € S, the set of terms with sort
s, Ts(X)s, is identical to the language L£4(Ax). This mapping between order-
sorted signatures and regular tree automata can be done in the other direction
by viewing the states of the automaton as sorts and the regular rules in the
automaton as operator declarations.

As an example, consider the NAT-LIST module defined in Figure 2.3 of Sec-
tion 2.4. In the automaton Ayyr.p1st representing the signature of NAT-LIST,
the states are the sorts Nat, NeList and List. The subsort declarations Nat <

NeList and NeList < List induce the e-clauses:

List(x) < NeList(x) NeList(z) < Nat(x)

44

The operator declarations induce the regular clauses:

Nat(0
Nat(s x) < Nat(z)
List(nil

NeList(xy) < NeList(xz),NeList(y)

Nat(head(z)
)

)
)
)
)
List(zy) < List(z),List(y)
)
) <= NeList(z
)

(

)
(x)) < NeList(x
Nat(end(x) (
())

List(reverse(r)) < List(x

For sort-independent order-sorted theories £, this connection can be ex-
tended to equational tree automata. Let £ denote the unsorted theory obtained
by dropping the sort information from &, and recall Definition 2.4.1 which states
that an order-sorted theory is sort-independent if for each pair of well sorted
terms t,u € T (X),

t=cu <— t=zu.

For each sort s € S, by Theorem 3.1.1, the language £,(As/€) is the equivalence
classes modulo =z of terms in L,(Asx) As L,(As) = Ty s, our assumption that
£ is sort-independent means that the set of well-sorted equivalence classes T¢ s
is isomorphic to L4(As/€) with the bijective mapping

h:ltle €Tes— [t]g € ES(AE/?)

This relationship between sort-independent order-sorted theories is fundamen-
tal to our tree automata-based sufficient completeness checker (Chapter 5) and
canonical completeness checker (Chapter 6). These chapters show how different
decision problems can be cast as decision problems for propositional tree lan-
guages. As a simple example, we could use tree automata techniques described
later in this chapter to check that every list in NAT-LIST is equivalent modulo
the axioms to either nil or a non-empty list. We first let Eyar-r1st denote the
unsorted theory containing the associativity and identity axioms in NAT-LIST,
and then define the automaton B containing the rules in Ayar_r1st as well an

additional state Nil and rule Nil(nil). It is not difficult to see that the language

LList/\ﬁNil/\ﬁNeList (B/?NAT—LIST)

accepts the equivalence class of ground terms that are lists, but not equivalent
tonil or NeList. For this simple example, it is easy to see that this language is
empty by hand, however the results in this section can be used to automatically
check emptiness of much more complicated examples.

Decision problems. We now define a few of the many of decision problems that

45

have been studied in the context of tree automata and equational tree automata.
The membership problem for £ is the problem of deciding for an equivalence
class [t] € Tg, E-tree automaton A and state p in A whether [t] € £,(A/E).
Membership is undecidable for arbitrary theories since otherwise one could solve
arbitrary equivalences t =¢ u. However, it is decidable in the case where each
equivalence class [t]¢ is finite. In this case, one can enumerate the elements of
[t]e and check each for membership in £,(A).

The emptiness problem for £ is the problem of deciding for an £-tree au-
tomaton A and state p whether £,(A/€) = @. This problem is decidable in
linear time for an arbitrary theory £. Corollary 3.1.2 implies that £,(A/E) = @
iff £,(A) = @ and the question of whether £,(A) = @ is decidable in linear
time using standard tree automata techniques [33].

The intersection emptiness problem for & is the problem of deciding for
an E-tree automaton A and states pi,...,p, of A whether £, (A/E)N---N
L, (A/E) = @. Finally, the propositional emptiness problem for £ is the prob-
lem of deciding for an E-tree automaton A with states () and propositional
formula ¢ over atomic predicates @ whether £4(A/€) = @. Both the intersec-
tion emptiness and propositional emptiness problems are decidable for regular
equational tree automata over a theory ac with AC and free symbols [123].
In contrast, both intersection emptiness and propositional emptiness are unde-
cidable for regular equational tree automata over a theory £4 with associative
and free symbols [125]. As an example of a tree automata framework where
intersection emptiness is decidable and propositional emptiness is undecidable,

we refer the reader to the monotone AC tree automata framework of [127].

3.2 Non-modularity of intersection emptiness

One extension to tree automata is the alternating tree automata framework
of [135], which was extended to the equational case in [138]. In a Horn-clause
representation, an alternating tree automaton is a tree automaton which in

addition to regular clauses, may also contain intersection clauses of the form:
p(z) <= pi(z), p2(x) intersection clause.

Alternating £-tree automata are closed under both intersection and union, but
are not always closed under complementation. If £ is the free theory, i.e., £ = @,
then the class of languages recognized by alternating and regular automata co-
incide. However, this is often not the case for other theories. For example, alter-
nating AC-tree automata are strictly more powerful than regular AC-automata.
In particular, the emptiness problem is undecidable for alternating AC-tree au-
tomata [138].

Our first new result in this section is to show that every alternating E-tree

language is isomorphic to the intersection of two regular £'-tree languages where

46

£’ is the theory obtained by adding a fresh ACI symbol o to £.

Theorem 3.2.1. Let £ and £’ be equational theories over the signatures ¥ and
Y respectively such that £ contains the symbols and equations in £ and adds a
fresh ACI operator o.

Given an alternating E-tree automaton A with states @QQ, one can effectively
construct a regular &'-tree automaton B containing the states Q@ and an addi-
tional fresh state k such that

e Forallpe Q andt € Ty, A/EF p(t) <= B/E' F p(t).

o ForallteTs, B/E'Fk(t) < (FueTx)t=¢ u.

Proof. Let B be the automaton only containing the following clauses:
e 3 contains all of the clauses in A that are not intersection clauses.

e For each intersection clause p(z) < p1(x), p2(z) in A, B contains the clause
p(z1 0 22) <= p1(z1), p2(22).

e For each symbol f € 3 with arity n, B contains the clause
k(f(xh s 7:177l)) <~ k(gjl)7 BN k(xn)

We first show that A/E F p(¢t) implies B/E" F p(t) for all p € Q. Since B
contains all the clauses in A other than the intersection clauses, all we need to
show is that BUE’ entails each intersection clause ¢(z) < ¢1(z), g2(z) in A. This
is immediate, because B must contain the clause g(z10x2) < ¢1(21), g2(z2), and
so B entails g(z o z) <= q1(z), g2(x). The theory £’ contain the axiom xox = =,
and thus BU &’ entails q(z) < ¢1(2), ¢2(x).

We now show that B/’ b p(t) implies A/E - p(¢) for all p € Q. If B/E'
p(t) then by Theorem 3.1.1, there is a term u € Ty such that ¢ =¢ u such that
B F p(u). To prove that A/E F p(t), we construct a term v € Ty such that
v =g u and A/E p(v). Since t =¢/ u =¢/ v and neither ¢ nor v contain the
added symbol o, it is not difficult to show that ¢ =¢ v, and thus A/E F p(t).

We construct v € T, in a bottom-up fashion from the proof that B F p(u).

Each inference step with the form

BEag(u) ... BbEgy(uy)
BEq(f(ur,...,um))

referencing a symbol f # o has a direct corresponding inference step using
the clauses in A. For each i € [1,n], we first obtain the term v; € T such
that v; =g w; and A/E F ¢;(v;). If we let v = f(vy,...,v,), then clearly,
w= f(ug,...,uy) =g v and A/E - q(v).

47

On the other hand, given an inference step of the form

B l_ ql(ul) B l_ QQ(UQ)
BE q(uy ous)

with g(z10x2) < q1(x1), g2(x2) in B, we first observe that u1 =g ug =g/ uq oug,
because u1 o us is a subterm of u, and u is equivalent to ¢t € T, which does not
contain the symbol o. By induction, we know that for ¢ € [1, 2], there is a term
v; € Tx; such that u; =¢ v; and A/E F q;(v;). As v1 =g up =g us =g vo and
both v; and vy are in T, it follows that v =¢ v, and thus A/E + pa(v1). By
using the intersection clause p(x) < pi(x),p2(x) in A, it follows that A/E
p(v1) and thus we are done as v; =¢ u1 =¢ uy 0 us.

Finally, we show that B/E’ - k(¢) if and only if there exists a term u € T,
not containing the fresh operator o such that ¢ =g w. This follows by first
observing that B F k(u) iff u is in T%, and so by Theorem 3.1.1,

B/E'F k(t) < (Gue [t]le)BF k() < TsN[te # 2.

O

From this theorem, it follows that for each state p € @, the languages
L,(A/E) and L,(B/E") N Li(B/E") are isomorphic with the bijective mapping

hy ¢ [te € Lo(A/E) — [ter € L,(B/E) N Li(B/E).

Although this connection between alternating and regular languages seems
worth further study, our main interest in this result is that it allows us to use
the result in [138] about the undecidability of emptiness for alternating AC-tree
automata to show that intersection emptiness is undecidable for regular tree
automata over a theory £ with both AC and ACI symbols.

Corollary 3.2.2. If £ is an equational theory with at least 4 constants, an AC
symbol, and an ACI symbol, then the intersection emptiness problem for reqular

tree automata over £ is undecidable.

Proof. Let Eoc denote the equational theory obtained by removing the ACI sym-
bol from &. The theory Eac is torsion-free according to the definition in [138]
with regard to the 4 constants, and consequently the emptiness problem is
undecidable for alternating £xc-tree automata by Prop. 11 in [138]. By Theo-
rem 3.2.1, for each alternating automaton .4, we can construct a regular £-tree
automaton B such that £,(A/Eac) =@ ift L,(B/E)NLL(B/E) = 2. O

The theory £ in the previous statement can be partitioned into disjoint
theories Eaoc and Eacr where Ea¢ contains the AC symbol and Eacr contains
the ACI symbol and the constants are split freely between them. Intersection
emptiness is decidable for both Exc [125] and Eacr [136], but as the previous
statement shows it is undecidable for £ = EacU&EAcr. It follows that intersection

48

emptiness is a non-modular property for equational tree automata even for

combinations of disjoint theories.

3.3 A-+AC propositional emptiness

In this section, we study the propositional emptiness problem for equational tree
automata — given an automaton A over a theory £ and propositional formula ¢
over the states in A, does L4(A/€) = @7 This problem is undecidable in general,
and computationally quite hard even for specific theories where it is decidable.
Even in the free case, the problem is EXPTIME-complete. The tree automata
universality problem (L,(A) = Tx) is EXPTIME-complete [33, Theorem 14].
This problem can be converted in linear time into the propositional emptiness
problem of £_,(A).

In the AC case, regular equational tree automata are known to be closed
under Boolean operations [133], and the emptiness problem is decidable [125].
It follows that propositional emptiness is decidable for tree automata over an
AC-theory. In the A case (associativity without commutativity), the emptiness

problem is undecidable [76]:

Theorem 3.3.1. The propositional emptiness problem for tree automata over

a theory Ea with a single associative symbol and constants is undecidable.

Proof. It was shown in [123] that it is undecidable whether L,(B/Ex) = Tk, for
an arbitrary regular £a-equational tree automaton B containing a state g. This

problem is equivalent to checking whether £.,(B/Ea) = @. O

Despite the lack of decidability, our goal in this section is to develop a semi-
decision procedure that works well in practice for a theory &£ containing: (1)
free symbols g; (2) symbols Eac that are associative and commutative (AC)
in &; and (3) symbols X5 that appear in an associativity axiom in &, but no
other axioms. If ¥, is empty, we can obtain a decision procedure. Due to
undecidability, we cannot hope for a decision procedure for associative symbols.
However, by using techniques from machine learning, we have developed a semi-
algorithm which may not terminate, but can always show non-emptiness, and
show emptiness if the language is empty and certain regularity conditions are
satisfied by each language recognized by states in the automaton.

Our decision procedure can be further extended to handle commutative sym-
bols that are not associative by a completion process which adds additional
clauses to A and then treating commutative symbols as free symbols. Specifi-
cally, for each clause p(f(x1,z2)) <= p1(21), p2(x2) in A where f is commutative,
we add the implied clause p(f(x1,22)) < p2(x1),p1(z2). After performing this
completion, we can treat f as a free symbol without affecting the languages
accepted by each state.

Our semi-algorithm generalizes the subset construction algorithm for regular

tree automata in the free case presented in [33, Theorem 1.1.9]. For a given

49

automaton A with states @ over a theory £ and each equivalence class [t] € Tg,
we define the states of [t] to be the set states 4/¢([t]) € Q such that

states 4/e([1]) = {p € Q@ | A/E - p(t) }.

In the free case, a subset construction algorithm for regular tree automata [33],
constructs the set R4 C P(Q) of reachable states:

Ra={PC Q|3 € Ts)states4/5([t]) = P }.

By computing this set, we can decide if £4(A) # @ by checking whether there
is a set P € R4 such that P = ¢ — where P |= ¢ is defined inductively:

For associative symbols, it does not seem possible to construct R4 directly.
Let =4/¢C Tx x Tx, be the equivalence relation over terms where ¢t = 4/¢ u iff.
states 4/¢([t]) = states /g ([u]). For tree automata, the correctness of subset
construction typically relies on the fact that =4 is a congruence with respect
to contexts. i.e. s =4 t implies C[s] =4 C[t] for all contexts C. However,
this fact does mot hold in the case when the root of s or t is an associative
symbol e and the hole [J appearing in C' appears immediately beneath f. Due
to this complication, our subset construction algorithm for A and AC symbols
maintains additional information.

Rather than the set of reachable sets of states R4, our subset construction

algorithm constructs a set of reachable profiles of A.

Definition 3.3.2. Let profile 4 /¢ : Te — E£xP(Q) be the function such that:

profile 4 ¢ ([t]) = (root(t), states 4/ ([t])).

Since the only equations in £ are associativity and commutativity axioms,
each equivalence class [t] € Te has a unique root symbol which is the same for
all terms u € [t]. We let D4 denote the set of profiles of Tg, that is

D a = {profile 4 /¢([t]) € ¥ x P(Q) | [t] € T¢ }.

The set D4 is finite, because the total number of profiles is finite. However,
when & contains associative symbols, D 4 may not be computable. Otherwise,
we could easily decide a propositional emptiness problem £4(A) by computing
D 4, and checking whether there exists a pair (f, P) € D4 such that P = ¢.
Our approach is to incrementally construct D 4. We start with the empty
set Dy = &, and apply inference rules until completion to form increasingly
larger sets Dy C Dy C --- C D 4. Before we can present the inference rules, we

must present several definitions related to the different types of symbols in £.

50

3.3.1 Free symbols

For each free symbol f € X, we define a function states; which computes the

states of a term f(t1,...,t,) when the states for each term ¢; are already known:

Definition 3.3.3. Given a free symbol f € ¥ with arity n, we define the func-
tion statesy : P(Q)" — P(Q) so that for Pi,...,P, C Q,

statesg(Pr,...,P,) ={qe Q|
(Bpr1€Pr,...,pn€PR) q(f(z1,...,2,)) < p1(21),. .., pu(x,) € A}

The following lemma relates states /¢ and statesy:

Lemma 3.3.4. For each term t = f(ty,...,t,) where f € ¥ is free in &,
states 4 /¢ (t) = statesy(Pi, ..., Py)

where P; = states 4/¢ ([ti]) for i € [1,n],.

Proof. We first show that if p € states 4/¢([t]), then p € statesy(Py,..., P,). By
Theorem 3.1.1 we know that p € states 4/¢([t]) iff there is a term u =¢ ¢ such
that A F p(u). Since u is equivalent modulo € to a term whose root symbol is
the free symbol f, u must have the form v = f(uq,...,u,) with u; =¢ t; for
i € [1,n]. It follows by the definition of states; that p € statesy(Pi,...,Py).
On the other hand, if p € states;(P,..., P,), then it is easy to show that
A/EF p(f(t1,...,t,)). Consequently, p € states 4/¢([t]). O

3.3.2 A and AC symbols

For each symbol e € ¥ that is associative in £ and possibly commutative, we
define a context-free grammar G(e). Intuitively, the grammar captures infer-
ences in the automaton A over flattened terms of the form ¢, e --- e t,, where
root(t;) # e for i € [1,n].

Definition 3.3.5. For an associative symbol @ € ¥, G(4) is the context free
grammar with terminals D(e) = (X — { e }) x P(Q), nonterminals Q, and pro-

duction rules

G(o)={p:=pip2 | p(z1 ®22) <= pi(x1),p2(22) €A}
U{p:=(f.P)|(f,P)eD(e)Ape P}

Let G denote a context free grammar with terminals > and nonterminals Q.
For each state p € Q, we let £,(G) C ¥* denote the language generated from p
using the rules in G. We let # : ¥* — N> denote the function that maps each

string in X* to the vector counting the number of occurrences of each terminal

o1

symbol, and we let S,(G) C N¥. This set is called the Parikh image [129] of p

in G, and is defined as follows:

Sp(G) = {#(w) | w € Ly(G) }.

Our results in this section concern the relationship between the grammar
G(e) and the automaton A. We first show that parse trees in G(e) correspond
to proofs in A/E:

Lemma 3.3.6. For each termt =t e---0t, € T, where o is an associative
symbol, and root(t;) # e fori € [1,n],

profile 4 /¢ ([t1]) . .. profile 4 /¢ ([tn]) € L,(G(0)) = A/E = p(t).

Proof. As the production rules in G(e) come directly from the clauses in A, this

follows by structural induction on the parse tree used to show that

profile 4 /¢ ([t1) ... profile 4 2 ([tn])) € Ly (G()).

In the other direction, we show the following result about G(e):

Lemma 3.3.7. For each associative symbol @ € 3, if A/E & p(t), then there is
atermtye---et, =¢t such that profile 4 /¢ ([t1]) ... profile 4 ¢ ([tn]) € L,(G (o))
and root(t;) # e fori € [1,n].

Proof. This follows by structural induction on the proof used to show A/E +
p(t). O

If @ € X that is associative and not commutative, we can use Lemmas 3.3.6
and 3.3.7 to show the following characterization of £,(G(e)).

Lemma 3.3.8. Foreach termt =tje---ot, € Ts where e € Xy androot(t;) # e
fori e [1,n],

A/E = p(t) <= profile ¢ ([t1]) ... proﬁleA/g([tn]) € L,(G(e)).
Proof. By lemma 3.3.6,
A/E F p(t) — profile 4 /¢ ([t1]) . . . profile 4 /¢ ([tn]) € L,(G(e)).

On the other hand, if A/€ F p(t) then by Lemma 3.3.7, there is a term u; o
- ® uy, =¢ t such that profile 4 ¢ ([u1])...profile 4 /¢ ([um]) € Ly(G(e)) and
root(u;) # e for i € [1,m]. Ast; e---et, =¢ uj ®---eu,, and e only appears

in an associativity equation, it follows that m = n and t; =¢ w; for all ¢ € [1,n].

52

Consequently,

profile 4 ¢ ([t1]) ... profile 4 /¢ ([tn]) € Lp(G(e)).

O

From the previous lemma and the definition of £Lp(G(e)), we can make the

following observation:
Corollary 3.3.9. For each termt = ty e ---ot, € Tx where ¢ € ¥ and

root(t;) # e fori € [1,n],

profile 4 /¢ (t) = (o, P)
<= n > 2Aprofile 4)¢([t1]) ... profile 4 /¢ ([tn]) € Lp(G(0)).
O

On the other hand, given a symbol + that is both associative and commu-
tative, then we can use Lemmas 3.3.6 and 3.3.7 to show the following charac-
terization of S,(G(+)).

Lemma 3.3.10. For each termt =t +--- + t, € T where + € Yac and
root(t;) # + fori € [1,n],

A/EFp(t) <= F#(profile 4 ¢([t1]) ... profile 4 ¢ ([tn])) € Sp(G(+))-

Proof. By lemma 3.3.6,
A/E Fp(t) — profile 4 ¢ ([t1]) . . . profile 4 /¢ ([tn]) € Lp(G(+)).

On the other hand, if A/ F p(t) then by Lemma 3.3.7, there is a term
up + - + Uy =¢ t such that profile 4 ¢ ([u1]) ..., profile 4 /e ([um]) € L,(G(+))
and root(u;) # + for i € [1,m]. Ast; + -+, =¢ up + -+ + up, and
+ € Yac, it follows that m = n and #(profile 4 /¢ ([u1]), . .., profile 4 /¢ ([um])) =
#(profile 4 /¢ ([t1]), . .., profile 4 /¢ ([tn])). Consequently,

#(profile 4 ¢ ([t1]), . ., profile 4 e ([tn])) € Sp(G(+))-

O

From this lemma and the definition of Sp(G(+)), we can make the following

observation:

Corollary 3.3.11. For each term t =t + --- +t, € T where + € Yac and

93

root(t;) # + fori € [1,n],
profile ¢ (t) = (+, P)
<= n > 2 A\f(profile 4 /¢ ([t1]) . .. profile 4 ¢ ([tn])) € Sp(G(+)).

O

For a subset P C @ of nonterminals, we let Lp(G(e)) denote the strings
appearing in the language £,(G(e)) of a state ¢ € Q iff ¢ € P. We similarly
define Sp(G(+)) to denote the vectors appearing in the Parikh image S,(G(+))
of a state ¢ € Q iff ¢ € P. Specifically,

L£p(G(®)) =) £a(G(®) — | Ly(G(s). and

qepP q€(Q—P)
Sp(G(+)) = [S(G(+) = [So(G(+)).
qepP q€(Q—P)

As context-free grammars are not closed under intersection and comple-
mentation, Lp(G(e)) is not in general a context-free language and checking
emptiness of Lp(G(e)) is undecidable. In contrast, Sp(G(+)) is a semi-linear

set [129], and semi-linear sets have a decidable emptiness problem.

3.3.3 Constructing subsets

In our algorithm, we start with Dy = @, and then compute D;;; from D; using
the inference rules described in Figure 3.2. Each step adds a profile in D 4 not in
D;. We let D, denote the set obtained by applying the rules until completion.
This set must exist, because the total number of profiles in F' x P(Q) is finite.

Our goal in the remainder of this section is to show that D, = D 4. We start
by showing the following lemma.

Lemma 3.3.12. Given D; C D4, if D;y1 is obtained by an applying one of the
rules in Figure 3.2, then D11 C D 4.

Proof. To prove this, we consider separately each of the possible rules that may
be used to form D, ;.

We first consider the rule for free symbols:

choose free symbol f € ¥ and (f1,P1),.-., (fn, Pn) € D;
D;y1:=D; W{(f, statess(Pr,...,P,))}

As D; C Dy, for each pair (f;,P;) € D; with j € [1,n], there is an equiv-
alence class [t;] € Tg such that profile 4 ¢ ([t;]) = (f;, P;). By Lemma 3.3.4,
statesy (P, ..., P,) = states 4 /¢ (f(t1,...,tn)). Clearly, root(f(t1,...,tn)) = f,
and thus D;;; C Dy4.

54

We apply the rules below starting from the initial profile set Dy = & to construct
D;11 from D; with the condition that a rule may only be applied if the resulting
set D;y1 is a strict superset of D;. The rules are applied until completion to
obtain the set D,.

choose free symbol f € ¥ and (f1, P1),..., (fn, Pn) € D;
Di—i—l = Dz W { (f, statesf(Pl,. .. 7Pn)}

choose A symbol e € ¥ and P CQ s.t. Dfﬁt, NLp(G(e)) £ &
DiJrl = Dz L‘H{(.,P)}

choose AC symbol + € ¥ and PC Q s.t. NPi-+2T N Sp(G(+)) # @
Diy1:=D;W{(+,P)}

where for an A or AC symbol + € %, D; ., = {(f,P) € D; | f # +}, D?*

(Pl
denotes the strings over over D; _, containing at least two letters, and NPi-+:2+
denotes vectors of natural numbers indexed by D; - whose elements sum up
to at least 2.

Figure 3.2: Inference System for Constructing D,

We next consider the rule for associative symbols:

choose A symbol e € ¥ and P C @ s.t. Dit. NLp(G(e))
Di+1 = Dz H’J{(.,P)}

As D?TNLp(G(e)) # @, there must be astring d; ... d,, € Dj _, such that n > 2
and di ...d, € Lp(G(e)). As D; C D 4, for each profile D; with j € [1, n|, there
is an equivalence class [t;] € Te such that profile 4 ¢ ([t;]) = d;. Moreover, as d;
is in D; o, we know that root([t;]) # e. If we let t =¢1 o --- @ t,, it follows by
Cor. 3.3.9 that proﬁleA/g(t) = (o, P). Consequently, D;11 C D4.

Finally, we consider the rule for AC symbols:

choose AC symbol + € ¥ and PCQ s.t. NPi-+2+ N Sp(G(+)) £ o
Dip1:=D;{(+ P)}

As NP2+ N Sp(G(+)) # @, there must be a string d; ... d, € Dj_, such that
n > 2 and #(dy...d,) € Sp(G(+)). As D; C Dy, for each profile D; with
j € [1,n], there is an equivalence class [t;] € T¢ such that profile 4 ¢([t;]) = d;.
Moreover, as d; is in D; -1, we know that root([t;]) # +. If we let t = t; +
-+ + ty, it follows by Cor. 3.3.11 that profile 4/¢(t) = (+, P). Consequently,
Dit1 C Dy. O

The previous lemma can be used to show that D, is a subset of D 4. We use

the next lemma to show that D 4 is a subset of D,.

Lemma 3.3.13. For each term t € Ty, profile 4 /¢([t]) € D..

95

Proof. We prove this by structural induction on the term t. We consider three
separate cases, depending on whether the root symbol of ¢ is a free symbol, an
associative symbol, or an AC symbol.

We first consider the case where ¢ has the form f(¢1,...,¢,) with f a free
symbol. We let profile 4 ,¢([t;]) = (f;,P;) for each j € [1,n], and note that
(f;, P;) € D, by our induction hypothesis. By Lemma 3.3 .4,

profile 4 /¢ ([f(t1, ..., tn)]) = (f,statess(Pr,..., Py)).

As the rules in Figure 3.2 can no longer be applied to D,, we know that D,
contains (f,statesy(Py, ..., P,)). Thus profile 4 /¢([t]) € D..

We next consider the case where ¢t has the form t; e --- e ¢, where e is
an associative symbol in ¥, n > 2 and root(t;) # e for j € [1,n]. We
know that profile 4,¢([t]) = (e, P) for some set P C Q. By our induction
hypothesis, profile 4 /¢ ([t;]) € D. for j € [1,n], As root([t;]) # e, we know that
profile 4 /¢([t;]) € D, —e for j € [1,n], Finally, by Cor. 3.3.9, we know that

profile 4 ¢ ([t1]) . . . profile 4 /¢ ([t,]) € D*T N Lp(G(e)).

i,me

As the rules in Figure 3.2 can no longer be applied to D,, we know that D,
contains (f, P), and thus profile 4 ¢ ([t]) € D..

Finally, we next consider the case where ¢ has the form ¢; + - -- + t,, where
+ is an AC symbol in ¥ac, n > 2 and root(t;) # + for j € [1,n]. We
know that profile,¢([t]) = (+,P) for some set P C Q. By our induction
hypothesis, profile 4 /¢ ([t;]) € D for j € [1,n], As root([t;]) # +, we know that
profile 4 ¢ ([t;]) € D -4 for j € [1,n], Finally, by Cor. 3.3.11, we know that

#(profile 4 /¢ ([t1]) . . . profile 4 ¢ ([tn])) € NPi~+21 0 Sp(G(+)).

As the rules in Figure 3.2 can no longer be applied to D,, we know that D,
contains (f, P), and thus profile 4 /¢ ([t]) € D.. O

Together Lemmas 3.3.12 and 3.3.13 easily imply that D, = D4, and thus

assure of us the effectiveness of the inference system.

Theorem 3.3.14. Let £ be a theory with only free, A, and AC symbols, and let
A be a reqular £-automaton. The set of profiles D, C FXP(Q) obtained from
the rules in Figure 3.2 is the set of profiles D 4, i.e.,

D, =Dy.

O

When every associative symbol in £ is commutative, the conditions in the
rules are decidable, and thus the previous theorem implies that the propositional

emptiness problem is decidable for AC-theories. The undecidability of regular

96

PTA with associative symbols crops up in testing the emptiness of D?’t. N

Lp(G(e)). The next section discusses a semialgorithm for solving this emptiness

constraint.

3.3.4 Solving language equations for associativity

Since at present the emptiness testing with monotone rules for associative sym-
bols is beyond the goal of our project, we have developed an approach that
is likely to work well in practice for the regular case with associative symbols.
Our approach rests on an interactive semi-algorithm for each associative symbol
+ € ¥ which has access to the mapping D; as it is being generated and per-
forms two actions simultaneously: (1) recursively enumerates pairs (P, f) not
in D; for which D(+)?* N Lp(G(+)) is non-empty; and (2) applies machine
learning techniques to attempt construction of a family { M,, } e of determin-
istic finite automata for which £(M,) = L,(G(+)) for all p € Q. If the first
action succeeds, the semi-algorithm constructs the next D;;1 from D;. If the
second action succeeds, we can decide for each subset of P states, the condition
D(+)** N L(Gy,p,(P)) = @ in the rule (2). We then can either obtain D;; or
prove that the conditional rule for 4+ can no longer be applied.

A naive approach to the first action is quite simple. We recursively enu-
merate the strings in D(+)2" in order of increasing length to form the infinite
sequence w1, ws, . . ., and parse each string w; to get the complete set of states
P={peQ|weL,(GH))}. If (f,P;) & D;, thenlet D,y = {(f, P;) } UD,.
Handling the second action is more complicated. First, observe that we can
enumerate the set of finite automata in order of increasing length. Because
recursively enumerable sets are closed under finite products, we can even enu-
merate finite families of automata { M, },cq. The difficult part then lies in
checking whether £L(M,,) = L,(G(+)) for all p € Q. It is well known that given
a single finite automaton M and a context-free grammar G, it is undecidable
whether L(M) = L(G) [77, Theorem 8.12(3)]. However, this result is just for a
single automaton, and does not imply the undecidability of our problem. Per-
haps somewhat surprisingly, given a context-free grammar G with nonterminals
@ in Chomsky normal form, and a family of automata { M,, },cq, the question
whether L(M,,) = L,(G(+)) for all p € Q is decidable.

The decidability of this problem is a direct consequence of Theorem 2.3 in [5].
Before explaining that result, however, it is necessary to shift our perspective
of context-free grammars from viewing them as collections of production rules

to viewing them as systems of language equations.

Definition 3.3.15. Let G be a context-free grammar with nonterminals QQ and
terminals 3. The system of equations generated by G is the family of equations
{qa = P, }4eq in which for each nonterminal q € Q, Py is the formula P, =
wy | -+ | w, where q := wy,...,q = wy, are the production rules in G whose

left-hand side equals q.

o7

Given a system of equations with nonterminals @) and terminals X, a substi-
tution is a mapping 6 : Q — P(X*) associating each state ¢ € @ to a language
0(q) C X*. A substitution 6 can be applied to a language formula P, yielding a
language PO C ¥* which is defined using the axioms:

{a} if P =a for some a € X,
Py — 0(q) if P = ¢ for some q € Q,
SOUTe it P=(S|T),

{st|seSO NteT} it P=(S.T).

We may assume associativity of | and . in the above definition. Here S.T
denotes the concatenation of S and T. A substitution 6 : @ — P(X*) is a
solution to the system of equations { ¢ = P, }4cq if and only if 0(¢q) = P,0 for
all ¢ € Q. It is known that each system of equations generated by G has a least
solution, namely 0, : ¢ € Q — L4(G). This solution is the least solution as
0.(q) € ¥(q) for all solutions ¥ : Q@ — P(X*) and ¢ € Q. For grammars in
Chomsky normal form, we can use the following theorem to help check whether
an arbitrary solution is the least solution. Note that this is an easy consequence
of Theorem 2.3 in [5].

Theorem 3.3.16. If G is a context-free grammar in Chomsky normal form,
then there is a unique solution 0 to the system of equations generated by G in
which € € 0(q) for any q € Q. O

In this theorem, € denotes the empty string. As # in the previous theorem
is unique, it must be the least solution

Given a context-free grammar in Chomsky normal form G and a family
of finite automata { M, },cq, we can use Theorem 3.3.16 to check whether

L(My) = L4(G) for all g € Q.

Theorem 3.3.17. Let G be a context-free grammar in Chomsky normal form
with nonterminals Q. If L,(G) is reqular for all g € Q, there is a constructable
set of finite automata { Mg }eeq for which LIMy) = L4(G).

Proof. We recursively enumerate the families of finite automata { M, }4eq and
check if L(My) = L4(G) for each ¢ € Q. If we let ¢ : Q — P(X*) be the
substitution ¢ — L£(My), then the problem of checking whether £L(M,) = L,(G)
for all ¢ € @ reduces to deciding whether v is the unique solution satisfying
Theorem 3.3.16. For each equation ¢ = F,, we can construct the automaton
Mp, with L(Mp,) = Py due to the effective closure of regular languages under
union and concatenation. Moreover, one can check whether £L(M,) = L(Mp,)
for each ¢ € @ using the standard approaches for testing the equivalence of
finite automata. So clearly we can check whether 9 is a solution. But it is also
trivial to check whether € ¢ £(M,) for each g € Q. Thus it is decidable whether

58

1 satisfies the conditions in Theorem 3.3.16. If it does, then ¥(¢) must equal
L4(G) for each ¢ € Q. O

The key problem discussed in this section is determining whether the lan-
guage L,(G) is regular for each nonterminal ¢ € . One would expect this
problem to be undecidable. Surprisingly, despite searching several texts, we
could not find a decidability result for this problem. If £,(G) is regular for each
nonterminal ¢ € @, Theorem 3.3.17 shows that we can always show that by gen-
erating an equivalent family of finite automata. The other case is not so clear.
Undecidability results for context-free languages such as Greibach’s theorem [77,
Section 8.7] do not apply, since they concern single context-free languages and
this property concerns every nonterminal in a grammar. Theorem 3.3.17’s re-
sult itself relied heavily upon the assumption that every nonterminal generates
a regular language. The same approach does not work to construct a finite
automata corresponding to a single nonterminal in G due to the undecidability

of the equivalence problem for context-free grammars and regular languages.

3.3.5 Angluin’s algorithm

Though technically sound, if one were to implement the semi-algorithm using
the naive approach outlined in the previous section, the efficiency would be quite
poor. Enumerating finite automata in order of increasing size takes exponential
time relative to the size of the automaton. Each family of finite automata
would need to be checked for equivalence, and this also takes exponential time.
Unfortunately, we don’t see a way to improve the exponential time required to
check equivalence, but by applying techniques from learning theory, we decrease
the number of equivalence queries we make so that if the algorithm eventually
succeeds, we will have only required a polynomial number of queries relative to
the size of the accepting family of automata eventually found.

A well-known algorithm in machine learning is Angluin’s algorithm [3] for
learning regular languages with oracles. For an arbitrary language L, this al-
gorithm attempts to construct a finite automaton M such that £(M) = L by
asking questions to two oracles: a membership oracle that answers whether a
string v € ¥* is in L; an equivalence oracle that answers whether £(M) = L
and if not, provides a countererample string u € 3* in the symmetric difference
of L and L(M), i.e. u € L®L(M) with L&L(M) = (L—LM))U(L(M)-L).
Angluin’s algorithm will terminate only if L is regular. However, given the ap-
propriate oracles, one can attempt to apply it with any language, even languages
not known to be regular. We roughly sketch below how Angluin’s algorithm
works. Readers are recommended to consult [92] for further details.

First we recall the definition of Nerode’s right congruence: given a language
L C ¥*, the equivalence relation ~j, over ¥* is the relation such that for u,v €
>* u ~p v if and only if for all w € ¥*, ww € L <= ovw € L. It is

known that a language L is regular if and only if the number of equivalence

99

classes |2*/~p| is finite. Angluin’s algorithm maintains a data structure that
stores two constructs: (1) a finite set S C X* of strings, each belonging to a
distinct equivalence class in ¥*/~p,, and (2) a finite set D C ¥* of distinguishing
strings which in conjunction with the membership oracle, allows the algorithm
to classify an arbitrary string into one of the known equivalence classes.

Initially, S = { €} and D = @. Using the membership oracle in conjunction
with S and D, the algorithm constructs a deterministic finite automaton M such
that £L(M) = L when S = X*/~ . The algorithm then queries the equivalence
oracle which either succeeds and we are done, or returns a counterexample which
can be analyzed to reveal at least one additional equivalence class representative
in ¥*/~p, that is not in S. If L is regular, eventually the algorithm will learn all
of the equivalence classes in X*/~p. If L is not regular, ¥*/~, must be infinite
and so the algorithm will not terminate.

Given a finite family of regular languages { L, }4cq, Angluin’s algorithm
can be easily generalized to simultaneously learn a finite family of automata
{ Mg }qeq such that £L(M,) = L, for all ¢ € Q. In this version, there must
be a membership oracle for each language L4, and an equivalence oracle which
given a family { M, }4eq, returns true if Ly = £(M,) for all ¢ € Q, or a pair
(g, u) where g € @), and u is a counterexample in L, & £(M,). The generalized
algorithm will terminate when L, is regular for each ¢ € Q.

In the context of this paper, we use Angluin’s algorithm in conjunction with
the grammar G(+) over the terminals D; and nonterminals Q. The algorithm
attempts to construct a family of finite automata M = { M, },eq for which
L(M,) = DT 1 L,(G(+)). If the process succeeds, we can easily determine
whether D?TNLp(G(+)) = @ for each profile d € ¥ x P(Q)\ D; using standard
techniques for finite automata. If we discover that DIt N Lp(G(+)) # 9, we
set D;y1 := D; W{(P,+) } and repeat the process for D; 1.

To apply Angluin’s algorithm, we need to provide the membership and equiv-
alence oracles needed for a context-free grammar G with nonterminals ¢ and
terminals . The membership oracle for each nonterminal ¢ € @ is implemented
by a context-free language parser that parses a string u € ¥* and returns true if
u € L4(G). Given the family { M, },eq, our equivalence oracle forms the map-
ping 6 : ¢ — L£(M,) and checks if it is the solution to the equations generated
by G satisfying Theorem 3.3.16. If # is not the solution, the equivalence oracle
must analyze the mapping to return a counterexample. The algorithm we use
is presented in Figure 3.3. Correctness of the oracle is shown in the following

theorem:

Theorem 3.3.18. Given a context-free grammar G in Chomsky normal form
with nonterminals Q and terminals X, and a family { Mg }seq of finite au-

tomata over X, the algorithm check equiv in Figure 3.3
o returns true if Ly(G) = L(M,,) for all g € Q; and otherwise,

o returns a pair (g, w) such that w € Ly(G) & L(My).

60

PROCEDURE check equiv

INpPUT G : a CFG with terminals ¥ and nonterminals @
{M,}4eq : a family of finite automata over X

OuTpPUT true or (g,u) for some ¢ € Q and u € X*

let 6 be the substitution ¢ — L(M,);
for each g € Q do
if e L(M,) then return (g,e) ;

if £L(M,) # Pgf then
choose u € L(My) ® P,0
if ueL(My)®Ly(G) then return (q,u)
else
for each q:=pp’ € P and u=st do
if s€L(M,)®L,(G) then return (p,s) ;
if teL(My)®Ly(G)then return (p',t)
od;
od;

return true

Figure 3.3: Checking language equivalence

Proof. 1t is easy to verify that the procedure terminates and that the pair re-
turned by each return statement is indeed a counterexample. The non-trivial
part of this theorem is that if the outer loop terminates without returning a pair,
check equiv should return true. This property is obtained by showing that if
L(My) # L4(G) for some g € Q executed by the outer loop, then the body of
the loop is guaranteed to return a pair.

The string v € 3* chosen in the body is in the symmetric difference of
L(M,) and P,0. If u € LM,) & L4(G) (or vice versa), then the body returns
(g, u). Otherwise, if u € L(M,) < u € L,(G), then then u € P8 & L,(G).

Let ¢ be the substitution ¢ — L,(G). Since ¢ is a solution to the equations
generated by G, L,(G) = ¢¥(q) = P,0. So u € P,0 & Pyp. We will show that
the inner for loop must return a value when u € F,0 — P,y — the proof in the
other case when u € Py — P,0 is similar.

If the rules in G whose left-hand-side is ¢ are q := p1p],...,q := ppp),, then
P, is of the form P, = p1p} | --- | pnp),. So u € P,0 implies that u € (p;p;)0 for
some 7. Likewise, as u ¢ Pyt and p;pjip C Py, it easily follows that u & (p;p}).
Since u € (p;p})0, we can partition it into strings s,¢ € £* such that v = st,
s € 0(p;), and t € 0(p). In addition, since u = st and u & (p;p,)y, either
s & (p;) or t & 1p(p;). Thus by the definition of v, there is a rule ¢ := p;p} in
P and strings s,t € ¥* such that u := st and either s € L(M,,) — £,,(G)) or
t € LMy) — L,/(G). A similar argument in this case where u € Pyt — P,0

shows that the inner loop will always return a pair when executed. O

61

When equipped with context-free language parsers as membership oracles
and check equiv as an equivalence oracle, Angluin’s algorithm accomplishes
the same goal as the simple enumeration-based algorithm used to prove The-
orem 3.3.17. However, this approach reduces the complexity from double to
single exponential time. In searching for a solution, the enumeration algorithm
used in Theorem 3.3.17 checks equivalence of every family of finite automata
in order of increasing size. The total number of equivalence checks will be ex-
ponential relative to the size of the final output. Since each equivalence check
itself takes exponential time, the enumeration algorithm takes double exponen-
tial time relative to the size of the final output. In contrast, Angluin’s algorithm
makes a number of oracle queries that is polynomial [3] to the size of the final
output. The equivalence oracle itself takes exponential time, and so the total
time of the new algorithm is a single exponential relative to the size of the final

output.

3.3.6 CETA library

The tree automata techniques developed in this paper are not only for theo-
retical use. The emptiness checking techniques for associative and AC symbols
explained in this section have been implemented in the CETA library [69]. This
library is a complex C++ library with approximately 10 thousand lines of code.
Emptiness checking is performed by the subset construction algorithm extended
with support for associative and commutativity axioms described previously.
The reason that CETA is so large is that the subset construction algorithm re-
lies on quite complex algorithms on context free grammars, semilinear sets, and
finite automata. Although the theoretical worst-case complexity is quite high,
we have found that CETA performs quite well in the sufficient completeness
checker described in Chapter 5. The reason seems to be that most data struc-
tures such as lists, trees, and multisets already have a highly regular structure,
and the number of sets of states constructed by our algorithm does not grow
very large. Most sufficient completeness problems can be verified in seconds.

This software provides the function for emptiness checking with not only
associativity and commutativity axioms, but identity axioms as well. The iden-
tity axiom for a function symbol 4+ with a unit symbol 0 is the equations of the
forms 0+ = x and £ + 0 = z. In CETA, identity axioms in a propositional
tree automaton are converted into the rewrite rules z+0 — x and 0+ 2 — z in
conjunction with a specialized Knuth-Bendix style completion procedure mod-
ulo associativity and commutativity that preserves the set of reachable states
for each term.

Though still a prototype, CETA has additionally been integrated to work
with the reachability analysis tool ACTAS [126], as well as the next generation
sufficient completeness tool for Maude which is described later in Chapter 5.
In a future project, we plan to apply the new ACTAS to tree automata-based

62

verification of infinite state systems, including network protocols.

3.4 AC intersection free propositional emptiness

Having shown that intersection emptiness is undecidable in general for equa-
tional tree automata over a theory £ with AC and ACI symbols earlier in Sec-
tion 3.2, in this section we search for a restricted subclass of equational tree
automata over £ for which not only is intersection emptiness decidable, but so
is the propositional emptiness problem. Our search for this class began by trying
to eliminate the main culprit that led to the undecidability result in Cor. 3.2.2
— the ability of clauses with ACI symbols to simulate the intersection clauses
of an alternating AC-tree automata.

The solution we have found is to subject each ACI symbol o in £ to one of
two constraints: (1) either the clauses in the automaton where o appears must
satisfy certain syntactic restrictions explained below; or (2) the idempotence
equation x oz = z in £ must be treated as a rewrite rule x oz — x as in the tree
automata with normalization framework of [124]. We first define the syntactic

restrictions:

Definition 3.4.1. Let £ be an equational theory in which each symbol is AC,
ACI, or free. A regular E-tree automaton A is AC intersection free iff for each
clause in A with the form p(x1 o x3) < p1(x1), p2(x2) where o € ¥ is an ACI
symbol, it is the case that for all q1,q2 € Q, and AC or ACI symbols + # o,

pi(z1+22) <= q1(21), 2(22) € A = p(x1 +22) <= 1(21), g2(22) € A.

The intuition behind this definition is that if an intersection clause p(z) <
p1(x), p2(z) is entailed by a clause p(x; o x3) < pi(x1),p2(x2) with an ACI
symbol o, then we can disregard it in considering terms whose root symbol is
an AC or ACI symbol + # o. In the next section, see Lemma 3.4.11 to see how
our definition is used technically.

One important observation is that AC intersection free automata are closed
under disjoint unions — that is given two AC intersection free £-tree automata
A and B such that the states have been renamed so that the states in A4 and
B are disjoint, the union £-tree automaton C = A U B is also AC intersection
free. Moreover, £,(A/E) = L,(C/E) for each state p in A, and L,(B/E) =
L4(C/E) for each state ¢ in A. Since we will soon show that the propositional
emptiness problem is decidable for AC intersection free automata, it follows that
the emptiness of an arbitrary Boolean combination of AC intersection free tree
languages is decidable even if the languages are defined in different automata.

This syntactic restriction may be too strong in some applications, and so
we also study a different approach to handling idempotence equations that is

suggested by the tree automata with normalization framework of [124]. A tree

63

automaton with normalization (TAN) A is equipped with a rewrite system R
that is confluent and terminating modulo an equational theory £. A term ¢ is
accepted by TAN A if its normal form [t |/¢] is in the underlying equational
tree language L£(A/E). This framework borrows the fundamental idea in term
rewriting, namely that some of the equations in a theory £ are best handled
by orienting them as rewrite rules in a rewrite system R in a way so that R
is confluent and terminating modulo the remaining equations £ C £'. As R
is terminating and confluent modulo &, the language is closed with respect to
both the equations in £ and the equations obtained from the rules in R.

Our interest in the TAN framework stems from the fact that if Ry is a
rewrite system containing idempotence rules f(x,z) — z for some of the AC
symbols in a theory £ with free, AC, and ACI symbols, then R is confluent and
terminating modulo £. This suggests that as an alternative to the restrictions
in Def. 3.4.1, we can treat some of the idempotence equations as rules, and still
have a class of tree automata closed modulo both the equations in £ and the
underlying equations in R;. By handling the idempotence equations as rules,
we avoid the problem of simulating intersection clauses, because that simulation
relies on applying idempotence in the direction x — x + .

By requiring that each ACI symbol either satisfies the syntactic constraints
in the definition of AC intersection free automata, or treats the idempotence
equation as a rule as in the tree automata with normalization approach, we

describe an algorithm in the next section whose correctness implies the following:

Theorem 3.4.2. Let £ be a theory with free, AC, and ACI symbols, and let Ry
be a set of rewrite rules which may contain an idempotence rule for any of the
AC symbols in E.

For each AC intersection free £-tree automaton A, and propositional formula

¢ over the states in A, the following problem is decidable:

£¢(A/<€) N CaHRI/g = J.

In other words, we can decide whether the language £,(A/E) contains an
Ri1/E&-irreducible equivalence class [t] € Cang, /¢. This theorem simultaneously
settles two open questions:

The first open question is the emptiness problem for tree automata with
normalization over an equational theory Eac with free and AC symbols and
a rewrite system R containing idempotence equations for the AC symbols in
Eac. Specifically, we want to decide whether Cang, /e, N Ly(A/Erc) = @ for
each £pc-tree automaton A and state p in A. The problem was mentioned
in [124], but left unsolved. Theorem 3.4.2 solves this problem, because Eac
contains no ACI symbols and thus every £5¢-tree automaton is AC intersection
free. One observation made in [124] is that the decidability of the emptiness

problem for tree automata with normalization only depends on the left hand

64

sides of the rules in R. It follows that if the emptiness problem is decidable
when R contains idempotence rules x + — =z, it is also decidable when R
contains nilpotence rules = + x — 0.

The second open question settled by Theorem 3.4.2 is the problem of de-
ciding the propositional emptiness of equational tree automata over a theory
Eacr with a single ACI symbol and free symbols. This problem is interesting,
because equational tree automata over Excr are not closed under complemen-
tation [137], and so the propositional emptiness problem is not reducible to the
regular emptiness problem in this theory. Theorem 3.4.2 solves this problem,
because Excr contains only a single ACI symbol, and thus every Eacr-tree au-
tomaton is AC intersection free. Solving the propositional emptiness problem
also shows that both subsumption (£,(A/Eact) C L4(B/Eacr)) and universal-
ity (Lp(A/Eact) = Te,,) are decidable. Both problems appear to be open.
Additionally, since intersection emptiness is undecidable for equational tree au-
tomata over EacUEAcr due to Cor. 3.2.2, it follows that propositional emptiness
over Eac U Eacr is undecidable as well. However, propositional emptiness is de-
cidable for £a¢ [125] and implied to be decidable for Eocr by Theorem 3.4.2.
It follows that propositional emptiness is also a non-modular property for the

combination of disjoint theories.

3.4.1 Profile graphs

In this section, we define an algorithm that solves the decision problem posed
in Theorem 3.4.2. We begin with a discussion of our overall approach, and how
any solution to check the emptiness of a regular equational tree language over
a theory containing idempotence axioms appears to also require being able to
compute the size of a language. We then present results about terms whose
root is a free symbol in Section 3.4.2, and present results abouts terms whose
root is an AC or ACI symbol in Section 3.4.3. In Section 3.4.4, we present our
function for estimating the number of distinct equivalence classes that reach a
particular profile. Finally, in Section 3.4.5, we present the algorithm itself, and
verify its correctness.

For this section, £ = (F, E) denotes a theory in which each symbol is AC,
ACI, or free, Ry denotes a rewrite system where the only axioms are idempotence
rules of the form x+x — x for an AC symbol + € ¥, and A denotes a regular AC
intersection free £-tree automaton with states Q. It is sometimes useful to treat
all of the idempotence equations as rules. We let Eo4c C & denote the theory
containing only the AC equations in £, and we let Ry denote the rewrite system
containing the rules in Ry as well as a rule z+x — x for each equation z+z =
in & Ry is terminating and confluent modulo Eac, so for all Ry/E-irreducible
terms t,u € Ty, t =s wiff t | o, =esc v lp, /e, Forall [t], [u] € Cang, e,
we say that [t] is a flattened subterm of [u], denoted [t] Dgay [u], if either:

o U lf%l/SAczfAC flug,...,u,) with f a free symbol and ¢ lﬁl/sACZEAc u;

65

for some ¢ € [1,n], or

o U lfh/SAcngC uy + -+ + u, with + an AC or ACI symbol, n > 2,
root(u;) # + for all i € [1,n}, and ¢ |5 ¢ =¢,c u; for some j € [1,n].

Our algorithm is similar to the subset construction algorithm in [33] for
determinizing a regular tree automata. For each equivalence class [t] € Tg, the
profile of [t], denoted profile 4,¢([t]), is a pair that contains all the information

about [t] relevant to the algorithm.

Definition 3.4.3. Let profile 4)¢ : Te — X x P(Q) be the function such that:

profile 4 /¢ ([t]) = (root(t |, /¢,), states 4/e ([t])).

where states 4 /¢([t]) = {p € Q| A/EFp(t) }.

Note that root(t |z /¢, ,) is uniquely determined as Exc only contains as-
sociativity and commutativity axioms which do not change the root symbol of
a term. We will later show in Section 3.4.2 (Lemma 3.4.7) and Section 3.4.3
(Lemma 3.4.14) how to compute states4/¢([t]) and profile 4 ¢([t]) when A is
intersection free and £ contains AC, ACI, and free symbols.

Given an automaton B over a theory £ with associative and AC symbols

Y, the subset algorithm in Section 3.3 constructed the set
Dp ={(f,P) e ¥'xP(Q") | (A[t] € Ter) root([t]) = f A statespe ([t]) = P}.

By computing this set, we can decide if £4(B/E") # @ by checking for a profile
(f, P) € det(B) such that P |= ¢ where P |= ¢ is defined inductively:

PEgiAgyiff P=¢y and Pl=¢y PE-¢iff Pt¢ PlpiffpeP

For solving the problem in Theorem 3.4.2, this approach is inadequate for
two reasons: (1) We want to decide whether Cang, /sNLy(A/E) = @ rather than
deciding whether L4(A/€) = @. (2) Both £ and R may contain idempotence
axioms, and idempotence appears to require constructing a structure which in
addition to enable checking if there exists a term with a particular profile, also
enables checking how many distinct terms have that profile. We illustrate this
with an example. Let Eacr be the theory containing an ACI symbol o and

constants a, b, and ¢, and let B be the Exci-tree automaton with the rules:
pi(a) pi(d) pa(z1ox2) <= pi(z1),pi(z2) ps(a1022) < pi(21), p2(z2).
In this automaton, one can observe that
Ly, (B/Eact) = Lp,(B/Eact) = {a], [b], [a o] },
and consequently L, a—p, (B/Eact) = @. Now consider the automaton 5’ con-

66

taining the clauses in B and the additional clause p;(c). One can observe that
Lpsn—ps (B'/Eact) = {{aoboc]}. The language Lp,a—p,(B'/Eact) is not empty,
because there are 3 distinct elements in £, (B'/Eact), whereas L£,, (B/Eacr)
only contains 2 elements. If we generalize this idea, it is not difficult to show
that for any positive integer n € N and tree automaton B over £ with a state p,
we can construct a tree automaton B/, over the theory £’ containing & as well

as a fresh ACI symbol o and a formula ¢,, over the states in B, such that
Ly, (B,/E) # @ <= |L,(B/E)| = n.

Since a language may contain a (countably) infinite number of elements,
for reasoning about the size of the language, it is helpful to extended basic
arithmetic operators to w. Specifically, we extend addition to w so that it is still

commutative, and satisfies the equations
wtw=w, and n+w=uw,

and we extend multiplication to w so that it is still commutative, and satisfies

the equations
wXw=uw, Oxw=0, and nxw=wifn>0.

In this chapter, we construct the directed graph (D 4, < 4), called the profile
graph, where

Da={de ¥ xP(Q)| ([t € Cang,e) profile 4)¢ ([t]) = d },

and <4 contains an edge di <4 dy iff there are [t],[u] € Cang, /¢ such that
profile 4 /¢ ([t]) = di, profile 4 /¢ ([u]) = d2, and [t] Jat [u]. The edge relation <4
is used in counting the number of equivalence classes with a given profile. To

given an example of the directed graph, in the automaton B’ described above:

Dp = { (CL, {p1,p2,p3 })v (b7 {p17p27p3 })7 (Cv {p1:p25p3 })7 (07 {p27p3 })7 (ov {p3 }) }7

and <Jp contains the following edges:

(a,{p1,p2,p3}) <p' (0, {p2,p3}) (a,{p1,p2,p3}) <p (0,{p3})
(b,{p1,p2,p3}) <’ (0, {p2,p3}) (0,{p1,p2,p3 }) < (0,{p3})

(Cv{p17p27p3 }) dp (o’{p27p3 }) (C’{p17p27p3 }) s (o,{p3 })

Our approach is to incrementally construct (D4, <4). We start with the
empty graph (Do, <y) = (&,) and apply inference rules to form increasing
larger subgraphs (D1, <;) C (D2, <3) C -+ C (D4, <4) until saturation. This
process terminates with a unique final graph as the size of D 4 is at most |X| x

2/Ql and the construction process is monotonic. Each profile graph (D,<) C

67

(D4, <4) can be viewed as representing the possibly infinite subset of Cang, /¢
that is already explored:

Definition 3.4.4. For each graph (D, <) C (D, <4), let Canp « denote the
smallest set containing each [t| € Cang, /¢ if profile4,¢([tle) € D and for all
[u] € Cang, /e,

[u] Dfiar [t] = [u] € Canp g A profile 4 ¢([u]) < profile 4 ¢ ([t]).

Furthermore, for each d € D, we let proﬁlealﬂ (d) denote the elements in
Canp with profile d, i.e., proﬁlegg (d) = {[t] € Canp,« | profile 4 /¢ ([t]) = d }.

For the automaton B’ described previously, if we let (D, <) denote the com-

plete subgraph of (Dg:, dp/) containing the nodes

D = {(a,{p1,p2.p3}), (0, {p1,p2,p3}), (0, {p2,p3}), (. {p3}) },

then Canp < = {[a],[b],[a 0 b] }. The graph (D4, <) can be viewed as the

graph where every Ry/E-irreducible term has been explored.

Lemma 3.4.5. For all (D, <) C (D4, <4),

(D,ﬂ) = (DA, ﬁA) <— Canp,g = CanRI/g.

Proof. Under the assumption (D, <) = (D 4, <4), we first show that Canp 4 =
Cang, je. As R1 is confluent and terminating modulo Eac, it is sufficient to
show that for each R; /Eac-irreducible term ¢t € Ty, [t] € Canp , < ,. We prove
this by structural induction on ¢. By definition, profile 4 /¢([t]) € D4, and so we
only need to prove that for all Ry/Exc-irreducible terms u € Ty, if [u] Dgat [t],
then [u] € Canp 4 and profile 4 /¢([u]) < profile 4 /¢([t]). There are two cases

to consider:

o If t = f(ty,...,t,) where f is a free symbol. In this case, if u € Ty is a
Ry /Eac-irreducible term such that [u] g, [t] then there is an i € [1,n)]
such that u =g, t;. Since t; is a subterm of ¢, by induction we know that

[ti] € Canp , <, and [t;] Dgay [t] by definition. Therefore, [t] € Canp , <.

e Otherwise t = t; + -+ - + t,, for some AC or ACI symbol + where n > 2,
root(t;) # + for alli € [1,7n]. In this case, if u € Tk is a R1/Eac-irreducible
term such that [u] <gu¢ [t], then there is an ¢ € [1,n] such that u =¢,, t;.
As ¢; is a subterm of ¢, by induction we know that [t;] € Canp, <, and
by definition [t;] gat [t]. Therefore, [t] € Canp , < ,-

On the other hand, if Canp 4 = Cang, /¢, then for each [t] € Cang, g,
we know that profile 4 /¢([t]) € D and thus D = D,4. Additionally, for all

68

[t], [u] € Cang, e, if [t] Jpat [u], then we know profile 4 ¢ ([t]) < profile 4 ¢ ([u]).
Consequently, < = < 4.
O

3.4.2 Free symbols

For each free symbol f € X, we define a function states; which computes the

states of a term f(t1,...,t,) when the states for each term ¢; are already known:

Definition 3.4.6. Given a free symbol f € ¥ with arity n, we define the func-
tion statesy : P(Q)" — P(Q) such that for sets of states Pr,...,P, C Q,
statesy(P1, ..., P,) C Q is the smallest set containing a state p € Q if either:

e A contains the clause p(f(x1,...,2,)) < p1(x1),...,pn(Tn) with p; € P;
forie[1,n],

e or A contains p(x1 0 x2) < p1(x1), p2(x2) with o an ACI-symbol in £ and
p1,p2 € statesy(Pr, ..., Py).

Let f(t1,...,t,) be a term whose root symbol f is free. In the definition
above, the two cases mimic the two possible forms that a term u =¢ f(t1,...,tn)
may have. As f is free, u must either have the form: (1) u = f(uy,...,u,) with
u; =g t; for all i € [1,n]; or (2) u = uy oug with u; =¢ us and o an ACI symbol.

Just as in Lemma 3.3.4, we can relate states 4/¢ and statesy for theories with
ACIT symbols as follows:

Lemma 3.4.7. For each term t = f(t1,...,t,) € T, with f free in £,

states 4/¢ ([t]) = statesy(states 4/ ([t1]), . . ., states 4/ ([tn])).

Proof. For all states p € @, we know by Theorem 3.1.1 that p € states 4/¢([t])
iff there is a term u € [t] such that A+ p(u). Since u is equivalent modulo € to
a term whose root symbol is the free symbol f, u may only have two possible

forms:

1. u= f(u,...,uy) with u; =¢ t; for ¢ € [1,n]. In this case, A must contain
a clause p(f(z1,...,2,)) < p1(21),...,pn(xy,) such that A F p;(u;) for
i € [1,n]. It follows that p; € states 4,¢([t]) for each i € [1,n].

2. u = uj oug with o is an ACI symbol u; =g us. In this case, as A+ p(u), A
must contain a clause p(x10x3) <= p1 (1), p2(22) such that A F py(uy) and
A F pa(ug). Furthermore, both u; and ug are smaller terms equivalent

modulo £ to u and t, so p1,p2 € states 4/¢([t]).

For i € [1,n], let P; = states 4/¢([t;]). These two cases mirror the two rules
used in the definition of statess, and so it can be shown that for all u =¢ ¢, A

p(u) implies p € states¢(Pi, ..., P,) by structural induction on the proof A -

69

p(u). It is also straightforward to show that p € statess(Py,...,P,) = A/EF
p(t) by induction on the inference steps used to construct statess(Pi, ..., Pp).
U

Given a graph (D, <) C (D4, <4), the following lemma is useful for de-
termining the number of distinct equivalence classes in Canp 4 with profile
(f, P) € D4 where f is a free symbol.

Lemma 3.4.8. For each graph (D,<) C (Da,<4), and profile (f,P) € D

where [is a free symbol,

|p1r0ﬁle]571§1(f7 P)| = Z H |proﬁ1e5’1§](fi,Pi)‘ . (3.2)
(f1,P1),...,(fn,Pn) €D i=1
(vie[1,n]) (fi,Pi) D (f,P)
states¢(P1,...,Pp) =P

Proof. For each equivalence class [t] € proﬁleBqu(f, P), we may assume without
loss of generality that ¢ is 7@1 / EAC—irreducible._ It follows that ¢ has the form
f(t, ..., t,) with [t;] € Canp g for i € [1,n]. Let P; = states/g([ts]) for

€ [1,n]. As [t] is in Canp <, we know that P; < (f, P). By Lemma 3.4.7, we
know that states 4/¢([f(t1,...,tn)]) = P if and only if states;(Py,...,P,) = P.
For each tuple (d1,...,d,) € D", we define the set Cany(dy,...,d,) C Canp <

as follows:
Cany(dy,. .. dy) =
{[f(t1,...,tn)] € Canp < | proﬁleA/g([ti]) =d; fori e [l,n]}.

For distinct tuples di,d; € D™, it is not difficult to observe that the sets
Cany(d;) and Cang(dz) are disjoint. From these observations, we can conclude
that:

|CanD,ﬂ(f’ P)l = Z |Canf((f17P1)>'"a(fnvpn))| . (3?’)

(f1,P1),-,(fn,Pn) € D
(Vie[1,n]) (fi,P:) S(f,P)
states¢(P1,...,Pn) =P

Moreover, for each tuple (dy,...,d,) € D™, it is not difficult to show that
|Cang(dy,...,dn)| = ’proﬁlegg (dy)| x -+ X ’proﬁlez,ylﬁ(dnﬂ . (3.4)

Equation (3.2) follows immediately from (3.3) and (3.4). O

3.4.3 AC and ACI symbols

Our results for AC and ACI symbols in this section are very similar to our

results for A and AC symbols in Section 3.3. Many of the results involve the

70

grammar G(+) given in Def. 3.3.5. We reprint this definition below in order to

make this section more self contained.

Definition 3.4.9. For an associative symbol + € ¥, G(+) is the context free
grammar with terminals D(+) = (F — {+}) x P(Q), nonterminals Q, and

production rules

G(+)={p:=pp2 | p(x1 + x2) <= p1(x1),p2(x2) € A}
U{p=(fP)|(f,P)eD(+)Ape P}

For each nonterminal p € @, the Parikh image S,(G(+)) defined in Sec-
tion 3.3.2 is definable by an existential Presburger formula ¢ g4y ,(Z) with free
variables T = {4 }aep(+) Whose models M (Yg(4)p) = Sp(G(+)) [139]. We
first show that parse trees in G(4) corresponds to proofs in A/&:

Lemma 3.4.10. For each term t = t1 +--- + t, € Tx, where + is an AC or
ACT symbol, and root(t; leI/EAc) # 4+ fori€[1,n],

#(profile 4 /¢ ([t1]), . . ., profile 4 /¢ ([tn])) € M (Vg (1)) = A/EF p(t).

Proof. We show this statement by induction on n > 1. There are two cases to

consider:

e If n =1, G(+) must contain the rule p := profile 4 /¢([t1]). This implies
p € states 4/¢([t1]), and thus A/E = p(ty).

e Otherwise n > 2, and G(+) contains a rule p := p;p2 which can be viewed

as partitioning ¢1,...,%, into two sequences:

1. a sequence uq,...,u,, with 1 < m < n and
#(profile 4 /¢ ([u1]), ..., profile 4 /¢ ([um])) € M (Ya(4)p,), and
2. a sequence vi,...,Un_m,m With

#(proﬁleA/g([vl]), . ,proﬁleA/g([vn_m])) € M(Ya(+),ps)-

Let u=1u; + -+ um, and let v =v; +--- + v, . As + is associative in
&, we know that ¢t =¢ u + v. As both m and n — m are less than n, by
induction we know that A/E F p1(u) and A/E F pa(v). By the definition
of G(+), we know that A contains the clause p(x1 + z2) < p1(21), p2(x2),
and consequently A/E F p(t).

71

Due to the possibility of idempotence equations in £, it is more complex
to show how a proof that A/E + p(t) corresponds to a parse tree using the
production rules in G(+4). We first show the following lemma, which relies on

our assumption that A is AC intersection free.

Lemma 3.4.11. For each AC or ACI symbol + € X, if A/E - p(t), then there
is a term ty + -+ +t, =¢ t such that #(profile 4 ¢ ([t1]), ..., profile 4 ¢([tn])) €
M(¢(4),p) and root(t;) # + fori € [1,n].

Proof. The term t, + --- +t, =¢ t can be inductively constructed from the
proof used to show A/E F p(t). Equivalence steps in that proof are trivial as
the inductive hypothesis immediately implies a suitable term can be constructed.

For membership steps, there are three cases to consider:

o We first consider the case where root(t |z, /¢,) # +. By Theorem 3.1.1,

there is a term u =¢ ¢ such that A b p(u). We know that u |z ¢ =e,c
t lfzx/ﬁAc’ and thus root(u leI/EAc) # +. Consequently, G(+) contains
the rule p := profile 4 /¢ ([u]), and so #(profile 4 ¢ ([u])) € M (Yc(+),p)- The

term w |5 Jeac—E T is exactly the term we are looking for.

e We next consider the case where root(t) = +, and we let ¢t = u + v. The

membership must have the form:

A/E T+ py(u) A/E T+ pa(v)
A/EF plu+v) '

By our induction hypothesis, there are terms uy + -+ + u,, =¢ u and
v1 + -+ + v, =¢ v satisfying the conditions in the lemma. Let w,v €
NF*P(Q) be the vectors:

u =4f(profile 4 ¢ ([u1]), .. ., profile 4 ¢ ([um]))
v =#(profile 4 /¢ ([v1]), - .., profile 4 /¢ ([vn]))-

We know A contains the clause p(x1 + z2) < p1 (1), p2(22), and so G(+)
contains the rule p := p1py. By induction, we know that @ € M (v¢(4),p,)
and T € M(Yg(4),p,), and so U+ € M(Yg(4),p). It follows that the term
(ugp + -+ +um)+ (v1 + - +v,) € [1]¢ satisfies the required conditions.

e Otherwise, we know that root(t |z ¢,) = + while root(t) # +. It
follows that ¢ must have the form ¢ = u o v for some ACI symbol o, and

the membership must have the form:

A/E T+ py(u) A/E = pa(v)
A/EFp(ucw)

where u =g v =¢ t. We construct uj + - - + u,, € [u]g by induction. We
know that n > 2, as uy + - - - + u,, =¢ ¢ implies root(us + - - + u, leI/SAc
)=+. Let u = #(profile 4 /¢ ([u1]), . .., profile 4 /¢ ([un])). By induction we

72

know that @ € M(Y¢(1)p
p1 = q1q2 as n > 2. It follows that A contains the rule pi(x1 + z2) <

), and thus G(+) contains a rule of the form

q1(21),g2(x2). As A is AC intersection free, it must also contain must
contain the rule p(z1 + z2) < q1(x1),¢2(x2). Thus G(+) contains the
P = q1q2, and if we swap this rule in for the rule p; := ¢1¢2 used to show
U € M(a(4),p,), it follows that @ € M(vg(4)). It follows that the term

uy + -+ -+ uy € [t]¢ satisfies the required conditions.

O

For each AC symbol 4, we can show:

Lemma 3.4.12. For each ﬁI/EAC-irreducible termt=1t1+---+t, € T, where
+ is an AC symbol and root(t;) # + fori € [1,n],

AJEFp(t) <= #(profile g ¢([t1]), ..., profile 4 /¢ ([tn])) € M (Y1) p)-

Proof. Lemma 3.4.10 shows that

#(profile 4 e ([t1]), . .. profile 4 ¢ ([tn])) € M(Ya(1)p) = A/EF p(t).

On the other hand, if A/E F p(t) then by Lemma 3.4.11, there is a term u; +

“++ 4 Uy, =¢ t such that #(profile 4 /¢ ([u1]), ..., profile 4 /¢ ([um])) € M (Ya(1),p)
and root(u;) # + for i € [1,m]. Ast;+---+t, =¢ uy + -+ + U, and + only
appears in associativity and commutativity equations, it follows that m = n

and

#(profile 4 /¢ ([u1]), ..., profile 4 ¢ ([um])) =
#(profile 4 /¢ ([t1]), . . ., profile 4 /¢ ([tn]))-

Consequently,

#(profile 4 /¢ ([t1]), . . ., profile 4)¢ ([tn])) € M (Y (1),p)-

For each ACI symbol o, we can show:

Lemma 3.4.13. For each ﬁI/EAC—irreducible termt=+t;0---0t, € Ts where
o is an ACI symbol and root(t;) # o fori € [1,n],

AJEF plt)
#(profile 4 /¢ ([t1]), . .., profile 4 /¢ ([tn])) € M((FY) TLY A Yc(0) p(T))

where T C 7 is the formula /\ Ta < Ya A ((ya > 0) = (xq > 0)).
deD(o)

73

Proof. We let T = #(profile 4 /¢ ([t1]), . .., profile 4 /¢ ([tn])) We first show that if
there is a 7 € NF*P(Q) guch that 7 C 7 and Y (0),p(T) holds, then A/E = p(t).
Since T C g, we know that for each d € D(o), if yq > x4, then x4 > 0.
Consequently, there is a term ¢4 € T such that t; = t; for some i € [1,n]. We
let u € T, denote the term v = toujo- - -ou,, where for each d € D with y4 > x4,
there are exactly yq4 — x4 distinct indices d(1),...,d(ya — xq) € [1,m] such that
uq(;) = tq. It is not difficult to show that u =¢ t as o is ACI, and moreover
T+ #(proﬁleA/g(ul), cee proﬁleA/g(um)) =7. It follows by Lemma 3.4.10 that
A/E + p(u), and thus A/E + p(t).

We now show that if A/ F p(t), then there is a vector 7 € NP(®) such that

#(profile 4 /¢ ([t1]), . .., profile 4 /¢([tn])) T ¥ and ¥ € M(Yg(o),p)- In this case,
by Lemma 3.4.11, there is a term uj o - - - 0 u,, =¢ t such that

#(profile 4 /¢ ([u1]), . . ., profile 4 /¢ ([um])) € M (Ya(o).p)-

and root(u; g, /g, ,) # © for i € [L,m]. As tis R1/Eac-irreducible, there must
be a surjective function h : [1,m] — [1,n] such that u; =¢ 5 for i € [1,m)].
Let § = #(profile 4 ¢ ([u1]), . . ., profile 4 /¢ ([un])). For each d € D, the existence
of h implies x4 < y4 and the surjectivity of h implies that y4 >0 = x4 > 0.

O

We use ¥g(4),, to define the formula ¢4 p which identifies terms whose
profile is (4, P). For each AC symbol 4+ € ¥ and each symbol o € ¥ idempotent
in€ or R,

Yy p(T)= /\ Ya(+),p(T) A /\ e 1),p(T) A Z Tq>2

peEP pEQ\P T4 €ET
Yo p@)= \ GNTETA Ve, @A N\ “CNTETA Ve @) A Y wa>2.
peEP pEQ\P TJET

The following lemma describes precisely how the models in M (¢4 p) corre-

spond to Ri /Eac-irreducible terms with a particular profile.

Lemma 3.4.14. For ecach ﬁI/EAC-irreducible termt=1t1+---+t, € T where
+ € X is an AC or ACI symbol and root(t;) # + fori € [1,n],

profile 4 ¢ ([t]) = (+, P) <=
#(profile 4 /¢ ([t1]), . . ., profile 4 /¢ ([tn])) € M (Y4 p).

Proof. Since t is Ri/Eac irreducible, we know that profile 4, ([t]) = (+,P)
iff n > 2 and A/E F p(t) <= p € P for all states p € Q. Let T =

#(profile 4 /¢ (t1), . .., profile 4 /¢ (tn))-

e If + is an AC symbol, then by Lemma 3.4.12, A/ F p(t) —

Sl
m

74

M (a(4),p)- It follows that p € P <= € M(1¢(+)p), and consequently

profile 4 ¢ ([t]) = (+, P) <= T € M(¢4.p).

e Otherwise 4 is an ACI symbol, and by Lemma 3.4.13, A/E F p(¢) iff there
is a 7 € NP(+) such that ZCg and 7 € M (Y +y,p(H)). It follows that
pEP <= T M(IY)TEYAYa4),p()), and consequently

profile 4 ¢ ([1]) = (+, P) <= T € M(v4,p).

O

We now turn our attention to the problem of counting the number of distinct
elements in Canp g with profile (+, P) € D 4 where + is an AC or ACI symbol.
For doing this, the classical choose function C: (NU{w })xN — NU {w } which

has been partially extended to w becomes quite useful.
C(n,k) =n!/(k!(n—k)!), C(w,0)=1, and C(w,k)=wifk>0.

For a symbol o € ¥ that is ACI in £ or AC in £ and R contains the rule
rox — x appears in R, each equivalence class [t; o ---ot,] € Cang, ¢ can
be viewed as a set { [t1],...,[tn] } € Cang, /. For these symbols, the following

classical result about C becomes quite useful:

Proposition 3.4.15. Given a finite or countably infinite set A and natural

number k < |A|, the total number of distinct subsets of A with size k equals
C(IA], k).

Proof. If k = 0, then there the empty set is the only set with size 0, and clearly
C(J]A|,0) = 0. When A is a countably infinite set and k > 0, then there are an
infinite number of subsets with size k. If A is finite with size n > 0, then there
are two cases to consider. If & = n, then there is only one subset of A, namely
A itself. This leaves us with the final case 0 < k < |A|. In this case, for each
element ag € A, by induction on n we know that there are C(n — 1, k) subsets
of A with size k not containing ag, and C(n — 1,k — 1) subsets of A with size k

containing ag. It is straightforward to show that
Cln,k)=C(n—1,k)+C(n—1,k—1).

O

For an AC symbols + € ¥ where R does not contain an idempotence rule,
each equivalence class [t; + --- 4 t,] € Cang, /¢ can be viewed as a multiset
{[t],---,[ta] } € NO=i/e For these symbols, the following classical result

about C becomes quite useful:

(0]

Proposition 3.4.16. Given a non-empty finite or countably infinite set A and
natural number k € N, the total number of distinct multisets of A is given by
the formula C(|A| +k — 1, k).

Proof. If k =0, then the empty multiset is the only set with size 0, and clearly
C(JA| —1,0) = 0. When A is a countably infinite set and k& > 0, then there
are an infinite number of distinct multisets with size k. Finally if £ > 0 and
A is finite with size n > 0, then for each element ay € A, by induction there
are C(n + k — 2,k — 1) multisets with size k containing at least one ag and
C(n+ k — 2, k) multisets with size k not containing ag. It is straightforward to
show that

Cln+k—1,k)=Cn+k—2k—1)+Cn+k—2,k).

O

For a symbol o is idempotent in £ or R, we need the following result about

the size of proﬁleg}ﬂ(o, P):

Lemma 3.4.17. For each profile graph (D, <) C (D4, <4), and profile (o, P) €

D where o is a symbol that is idempotent in € or Ry,

|profile ' (o, P)| = Z H C(|profilep;'4(d)] , uq) (3.5)
TE M(tho,p.Canp, o) d(0,P)

where Yo p,.Canp < (@) = Yo,p(T) A /\ rq < |pr0ﬁle,5}§(d)| A /\ rq = 0.
d<(o,P) d 4 (o,P)

Proof. For each 5 € NP(©) et proﬁlez,’lﬂyo(ﬂ) C Canp, 4 denote the set

proﬁleg}ﬁ’o(ﬁ) ={{[t1],...,[tn]} CCanp « | (Vi,j € [I,n])i#]j = t;#ct;
A #(profile 4 /¢ ([t1]), . .., profile 4 /¢ ([tn])) =V }.

For each Ry/Exc-irreducible term ¢ € T, such that [t]e € proﬁleB}ﬂ (o, P), we
know that ¢ must have the form t =t o---ot, where n > 2. Moreover, we can
assume that each term ¢; is distinct with root(¢;) # o and [t;]¢ € Canp « for
i € [1,n]. Let T = #(profile 4 /¢([t1]), ..., profile 4)¢ ([tn])). By Lemma 3.4.14,
we know that ¢ € M(¢o p). As [t;] € Canp g for ¢ € [1,n], we know that
zq < ’proﬁleg}ﬁ (d)| for d € D. It follows that T € M (t,,p). For distinct vectors
%, € NP©) | we know that proﬁleg}ﬂyo(ﬂ) and proﬁleg}ﬂ’o(i) are disjoint sets,

and consequently,

profile;' (o, P)| =) |profile;' , (@)] - (3.6)

EEM(WO,P,CanDﬁg)

Moreover, if we partition equivalence classes in each set in proﬁlegﬁlﬁ’o(ﬂ) by

76

their profile, it can be observed that:

|proﬁle571§]7o(ﬂ)| = H {PC proﬁlel_llﬂ(d) | |P| =uq}| - (3.7
d<(o,P)

Finally, by Prop. 3.4.15, it follows that for each k < |proﬁleB’1§ (d)|,

[{ P C profile,' o (d) | |[P| = k }| = C(|profile;' 4 (d)

k). (3.8)

Equation (3.5) follows immediately from (3.6), (3.7), and (3.8). O

For an AC symbol + is not idempotent in R, we need the following result
about the size of proﬁleg?g(—i—, P):

Lemma 3.4.18. For each graph (D, <) C (D4, <4), and profile (+,P) € D
where + is an AC symbol in & that is not idempotent in Ry,

proﬁleg}ﬁ(—k7 P)| = Z H C(|proﬁleB’1§ (d)] + uq — 1,uq)
BEM (Y+,p,canp 4) d<(+,P)
B |proﬁle£ylS (d)‘>0

(3.9)
where Yy p.canp o (T) = Py p(T) A /\ zq=0 /\ xq =0.
d<(+,P) dA(+,P)
|proﬁlc5?ﬁ (d)l:O
Proof. For each 7 € NP() | let proﬁleggﬁ(@) C Canp, 4 denote the set
{{ta].- [ta]} € N2 | B (profile s ([1a]), - -, profile g s ([ta])) =7}

For each [tle € proﬁleBg(—k,P), we can assume that ¢ is Ry/Eac-irreducible
and t = t1+- - - +1¢, where n > 2, root(¢;) # +, and [t;]¢ € Canp < for i € [1,n].
Let t = #(profile 4 ¢([t1]), ..., profile 4 /¢([ts])). By Lemma 3.4.14, we know
that ¢ € M (¢4 p). By the definition of Canp 4 we know that for i € [1,n],
profile 4 /¢([ti]) < (+,P). For i € [1,n], if ¢; has a profile d, then we know
that ¢; € proﬁleB’lﬂ +(d) and consequently |pr0ﬁ1e]5’1§]7 +(d)‘ > 0. It follows that
T € M(3 p). For distinct vectors @,7 € NP(+) | we know that proﬁle]_j}q (u) and
proﬁlez,}g (v) are disjoint sets. By putting the last two observations t_ogether,

we can conclude that:

’proﬁleg}ﬁ (+,P)| = Z ’proﬁleg}ﬁ (@) ’ . (3.10)

EGM(’LZJ+,P,CanDYS)

Moreover, if we partition the elements of each multiset in proﬁlez),lq (@) by their
profile d, it is not difficult to show that

profilep’s(@| = [[{meN=mo=@ p=u|. (1)
d<(+,P)

Finally, by Prop. 3.4.16, it follows that for each ¥ € N and d € D where

7

proﬁleBg (d) is non-empty, |
{7 e NPoflen @ | |z7) = & }‘ — C(|profilepo(d)| + k= 1,k). (3.12)

Equation (3.9) follows immediately from (3.10), (3.11), and (3.12). O

3.4.4 Computing the size of a language

We next introduce a function cntp < : D — NU{w} which for each graph
(D,<) C (Da,<4) and profile d € D, returns an estimate of the number of
elements in Cang, /¢ with the profile d. We show below that for each d € D,

’proﬁleg}ﬂ (d)‘ <cntp,«(d) < ’proﬁlegi’ﬁA (d)]. (3.13)

For correctness purposes, any value in the range is sufficient. The proof that
our procedure always shows emptiness only requires that cntp <(d) is at most
the total number of elements in Canp , <, with a profile d, while the proof that
our procedure always shows non-emptiness only requires that cntp <(d) is at
least the number of explored elements in Canp < with a profile d.

Before showing (3.13), we first must define cntp 4. In the definition, we use
the choose function C:(NU{w}) x N — NU{w} which is partially extended

to w, i.e,
C(n, k) =nl/kl(n—k)!, C(w,00=1, and C(w,k)=wifk>0.

Definition 3.4.19. For each (D, <) C (D4, <4), let cntp <: D —NU{w} be
the function such that cutp <(d) =w if d<Td and otherwise

e For each constant c € ¥, cntp «(c, P) = 1.
o For each free symbol f € 3 with arity n > 0,
Cntp)ﬂ(f, P) = Z H Cntpyﬂ(fi,P».
(f1,P1),....(fn,Pn) €D i=1

(Vie[l,n]) (fi,Pi) < (f,P)
statesy(P1,...,Pn) =P

e For an AC symbol o € ¥ that is idempotent in £ or R, cntp «(o, P) = w
if |M(¢o,p1)| = w, and otherwise,

cntp (o, P) = Z H C(entp,<(d), uq)

€ M(tpo,p,1) d<(o,P)

where Yo p1(T) = Yo p(T) A /\xd <ecntp «(d) A /\xd =0.
d<(o,P) d 4 (o,P)

o For an AC symbol + € X that is not idempotent in & or R, we let

78

cntp «(+, P) = w if |[M (¢4 pac)| = w, and otherwise,

CntD,g]("‘, P) = Z H C(Cl’ltpyﬁ(d) +uqg—1, ud)

we My, pac) dd(+,P)
cntp «(d)>0

where Yy pac(T) =11 p(T) A /\ Tg=0A /\ zq =0.

dd(+,P) dA(+,P)
CHtDﬁg(d):O

For proving the computability and correctness of cnt p «, we define the binary

relation ¢ C < as follows:
di <dy < dy ddy A ﬁ(dg Sﬁ_ dg)

The relation <™ is irreflexive. Every irreflexive and transitive relation over a

finite set is well-founded, and so it follows that <1 is well-founded as well.
Lemma 3.4.20. The function cntp < s computable.

Proof. To show this, observe that if in evaluating cntp «(d), we recursively call
cntp <(d’) for some d’' € D, then d’ < d. Since < is well-founded, it follows that
the chain of recursive calls is finite. Most of the other operations are straight-
forward to implement. For representing elements of NU {w }, an abstract data
type should be used that can represent any natural number as well as the con-
stant w. Each of the formulas 1 appearing an expression M (1) are formulas in
Presburger arithmetic, and thus M (%)) is effectively a semilinear set [62]. It fol-
lows that one can easily decide whether |M (1))| = w and enumerate the vectors
if M (v)) is finite.

O

Before we can prove the claim made in equation (3.13), we need to show how
the edge relation <4 can be used to detect when Cang, /¢ contains an infinite
number of equivalence classes with a given profile. To show this, we first define
the size of a term ¢ € Ty, denoted size(t) to be the number of symbols in t.
Since the associativity and commutativity equations in Ep¢ preserve the size of

a term, one can observe that if t =¢, ., u, then size(t) = size(u).

Lemma 3.4.21. If d; <7 dy for di,dy € Dy, then for all [t,] € Cang, /¢ such
that profile 4 /¢ ([t1]e) = d1, there J[to] € Cang, e such that profile 4 /¢ ([t2]e) =

d2 and SiZe(tQ ‘L’/QI/EAC) > SiZe(tl l'7@,1/81&0)'

Proof. We prove this by induction on the length of the chain of inferences used
to show d; ﬂ; ds.

The inductive case is easier, and so we prove it first. In this case, we know
there is a profile d € D4 such that d; ﬁj d ﬂj ds. By our first induction
hypothesis we know that there is an equivalence class [t'] € Cang, Jexc Such that

profile 4 /¢([t']e) = d and size(t1) < size(t'). Our second induction hypothesis

79

then implies the existence of [tz] € Cang /¢, such that profile 4 ¢([tz]e) = d2
and size(t1) < size(t') < size(tz).

In the base case, we know that dy <4 ds. By the definition of <4, there
must be equivalence classes [u],[v] € Cang, s such that profile 4 ¢ ([u]) = di,
profile 4 ;¢ ([v]) = d2, and [u] Jfat [v]. Assuming profile 4 ,¢([t1]) = di, we con-

struct to by analyzing why [u] Jgat [v]. There are two cases to consider:
o Ifvlp e, o=eac f(V1,-..,vn) where f is a free symbol and u =g, v; for
some 7 € [1,n], then we let

t2 = f(vla cee 7vi717tlvvi+1a s 7’Un)~

Clearly, [ti] Dfat [t2]. We know that statesq/e([t1]) = statesq/g([u]),
and consequently states 4/¢([t2]) = states/¢([v]) by Lemma 3.4.7. As
profile 4 ¢ ([v]) = d2 = (f,states 4/ ([v]), it follows that profile 4 /¢ ([t2]) =
ds. Finally,

size(ts | g, /g,0) =1+ Z size(v;) + size(t1 lz /e,.),
jelLn\{z}

and thus size(t2 e, .) > size(t Lz, /e, .)-

v1 + -+ + v, with + an AC or ACI symbol,
n > 2, root(v;) # + for all ¢ € [1,n], and u =¢,, v; for some i € [1,n]. If

e Otherwise, v leI/SAcngC

t1 1, /eno=¢ac Uj for some j € [1,n], then we let t; = u and it trivially
follows that profile 4 ¢ ([t2]) = d2 and size(t2 |z, /e, .) > size(ty Lz, /e,)-

Otherwise, we let
ty=wvi+-Fvicn it lg e, TV + o+ On

We know that #; 17@1/51\0 #eac U; for all i € [1,n], and thus ts is 7%/1/5AC'
irreducible. It follows that size(tz |z ,¢,.,) > size(ti g ¢,). Since
n > 2, root(u) = +, and thus profile 4 /¢([u]) = di = (+, P) for some
P C Q. It follows by Lemma 3.4.14 that

#(profile g e ([ua]), ..., profile 4 ([ua])) € M (1 p).

As profile 4 /¢ ([t1]) = profile 4 /¢ ([u1]), it follows profile 4 ¢ ([t2]) = da.

We can use the previous lemma to make the following observation:
Corollary 3.4.22. For alld € Dy, if d Slj‘ d, then |proﬁleB}4)ﬂA (d)| =w.

Proof. For all d € D4, there is a [t] € Cang, /e such that profile /¢ ([t]) = d.
If d glj d, then we can use Lemma 3.4.21 to construct an infinite sequence

[t1],[t2],--- € Cang, e of equivalence classes each with profile d and where

80

size(ti lp,e.o) < size(ty g, /e,,) for i < j. It follows that for all distinct
1,7 € N t; lfh/&c Feao by leI/SAc’ and thus are also distinct modulo £. Conse-
quently, Cang, /¢ contains an infinite number of equivalence classes with profile
d. O

We are now ready to prove our previous claim in equation (3.13).

Lemma 3.4.23. For all profile graphs (D, <) C (D4,<4) and d € D,

‘proﬁlef)’lSj (d)| < entp,a(d) < ’proﬁlez,;éu(d)‘ . (3.13)

Proof. We prove (3.13) for all d € D by induction on d with respect to the well-

founded relation <. In our inductive proof, there are four cases to consider:

e If d <" d, then cntp «(d) = w, and thus |pr0ﬁleB71§(d)| < cntp <(d).
On the other hand, as < is a subset of <4, we know that d ﬁj‘ d. By
Cor. 3.4.22, it follows that |proﬁleBiy§A (d)’ =w.

e If d = (¢, P) with ¢ a constant, then because D C D 4, we know there
is an equivalence class [t] € Cang,/e such that root(t |z /EAc) = c and
states 4/¢([t]) = P. However, root(t |z e,) = ¢ implies that ¢ =¢
c. As there is only one equivalence class containing ¢, it follows that
|pr0ﬁle571§ (d)] =1 and |proﬁleBi‘7§A(d)’ =1

o If d = (f,P) with f a free symbol with arity n > 0, then by using
Lemma 3.4.8 with both (D, <) and (D4, <4), we can reduce (3.13) for
d to the problem of showing (3.13) for all d’ < d. However, this follows
trivially by our induction hypothesis as d #+d and d’ < d implies d’ < d.

o If d = (o, P) with o € ¥ idempotent in £ or R, then we first note that for
alld € D, d' <d = d'<id as d 47d. It follows that we may assume that
equation (3.13) holds for each d’ <d. This implies that M(’lﬁo,p7canD)§]) C
M(o,p1) C M(wo,p,canDAé,A), and consequently by using Lemma 3.4.17,
we can reduce the problem of showing (3.13) for all d € D to two problems:

(1) for all d’ Qd and k < |profile,'o(d")|,
C(|profilep,'5(d")] , k) < C(entp a(d), k),
and (2) for all for all &’ <d and k < cntp «(d’),

C(entp «(d'), k) < C(|pr0ﬁ1e5}4’ﬂA(d’)

k).

Both of these problems follow easily from our induction hypothesis and
the definition of C.

81

Starting with the empty graph (Dg, <o) = (&, &), we freely apply either of the
rules below to construct (D;41, <;41) from (D;, <;) subject to the condition that
a rule may only be applied if the resulting graph (D;41, <;4+1) is distinct from
(D;, <;). The rules are applied until completion to obtain the graph (D, <,).

choose free symbol f € ¥ and (f1,P1),..., (fn, Pn) € D;
D1 :=D; U{(f,statess(Pi,...,Pp))}
S‘i+1 = ﬁl U { ((fjvpj), (f,StateSf(Pla .. 7Pn))) | j € [Ln]}

choose AC or ACI symbol + €3 and PCQ s.t. (3%) ¥4 pp, <, (T)

Diy1:=D;U{(f,P)}
i1 =L U{(d,(f,P)) | d€ D; A (3T) Y4.p,D,,2,(T) N xg >0}

where for each AC symbol o € ¥ that is idempotent in £ or R and each AC
symbol + € ¥ that is not idempotent in £ or R, we let

wo,P,Di,gli(f) = ’(/Joyp(f) A /\ g =0A /\ zqg < CIlchﬂi(d)

d € D(o)\D; de D(o)ND;
Yipp,a, @ =vip@A J\ za=0n J\ za=0
de D(+)\D; de D(+)ND;

CntDivﬂi(d) =0

Figure 3.4: Inference System for Constructing (D, <.)

e Otherwise d = (+, P) with + € ¥ an AC symbol that is not idempo-
tent in R. We first note that for all &’ < d, d <d as d Atd. It
follows that we may assume (3.13) for each d’ < d. This implies that
M4 pcanp o) € M(¥4,pac) © MYy pcanp, <,), and consequently
by using Lemma 3.4.18, we can reduce the problem of showing (3.13)
for all d € D to two problems: (1) for all d < d and k € N where
|pr0ﬁlez)71§] (d)] >0,

Clentp «(d') +k—1,k) < C(‘proﬁlegiyﬁA(d/H +k—1,k),
and (2) for all ’ <d and k € N where cntp <(d’) > 0,
Clentp,o(d) + k — 1,k) < C(|profile,’, o (d)| +k —1,k).

Both of these problems follow easily from our induction hypothesis and

the definition of the choose function C.

3.4.5 Constructing the profile graph

The algorithm for constructing the profile graph (D,, <,) is given Figure 3.4.
We show that (D, <,) = (D4, <4) in two steps. First, we show that (D,, <,) C
(D4, <4) by showing that if (D;, <;) C (D4, <4), then any graph (D;1, <;y1)

82

obtained by applying one of the inference rules in Figure 3.4 is a subgraph of
(Da,<4). Since the initial graph (Dg, <) = (&,9) C (D4, <4), this implies
that (D, <) € (D4, <a). Second, we prove that Canp, 4, = Cang, /¢, which
by Lemma 3.4.5 implies that (D, <) = (D, <4).

The following lemma is essential to showing that (D,, <.) C (D, <4):

Lemma 3.4.24. For all (D;,<;) € (D, <4), if (Diy1,<iy1) is obtained from

(D;, <;) by an inference step using the rules in Figure 3.4, then (D;11, <i41) C
(Da,<a).

Proof. We consider three different cases separately:

e In the first case, suppose (D;11, <;41) is obtained by applying the first rule
after choosing the free symbol f € ¥ and profiles (f1, P1),...,(fn, Pn) €
D,. Let P = statesy(Py,...,P,). We must show that (f,P) € Dy,
and (f;, P;) <a (f,P) for all j € [1,n]. As D; C D4, we know that
for each j € [1,n], there is an equivalence class [t;] € Cang, /¢ such
that profile 4 ¢([t;]) = (f;, Pj). Let t = f(t1,...,tn). As f is free, we
know that [t] € Cang, e, and therefore profile 4 /¢([t]) € Da Observe
that profile 4 ¢ ([t]) = (f, P) by Lemma 3.4.7, and thus (f, P) € D. For
J € [1,n], observe that [t;] Jgas [t], and thus (f;, P;) <4 (f, P).

e In the second case, suppose (D;;1,<;11) is obtained by applying the sec-
ond rule after choosing the symbol o € ¥ that is idempotent in £ or R
and choosing a set P C Q. It is sufficient to show that (o, P) € D4,
and for each T € M (¢o,p,p, «,), if zg > 0, then d <4 (o, P). We know
that there is at least one T € M (o p,p, «,). For each d € D(o) N D;, we
know that 4 < entp, «,(d). By Lemma 3.4.23, it follows that there are at
least x4 distinct equivalence classes [tgy)], ..., [ta(z,)] € proﬁleBi’S,A(D).
Without loss of generality, we may assume that each term t4(;y is Ri/Eac-
irreducible. Let ¢t = t;0---ot, be a term where each term ¢; corresponds to
a unique term ¢4 for some d € D; and k € [1,24]. The term ¢ is 7@1/€Ac—
irreducible, and #(profile 4 ¢ ([t1]), ..., profile 4 /¢([tn])) = Z. It follows
that profile 4 /¢([t]) = (o, P) by Lemma 3.4.14, and so (o, P) € D . For
each d € D(o), if x4 > 0, then [ty(1)] Jaas [t], and consequently d<14 (o, P).

e In the third case, suppose (D;41, <;+1) is obtained by applying the second
rule after choosing the symbol + € 3 that is AC in £ and not idempotent
in R and choosing a set P C Q. It is enough to show that (+, P) € D4,
and for each T € M (Y+ pp, <), if xg > 0, then d <4 (+, P). We know
that there is at least one T € M (¢4 p p, ;). Foreach d € D(+), if z4 > 0,
then we know d € D; and cntp, «,(d) > 0. It follows by Lemma 3.4.23
that there is an equivalence class [t4] € Canp, <, with profile d. With-
out loss of generality, we may assume that t; is 7%1 /Eac-irreducible. Let
t =t + -+, be a term in which for each d € D(+), there are ex-

actly x4 distinct indices d(1),...,d(zq) € [1,n] such that t,;) = ta.

83

It follows that #(profile /¢ ([t1]),...,profile 4,¢([tn])) = T, and conse-
quently profile 4¢([t]) = (+, P) by Lemma 3.4.14, and so (+,P). For
each d € D(+) if z4 > 0, then [t4] Daat [t], and thus d <4 (4, P).

O

The previous lemma implies that (D,,, <,,) C (D4, <4) for all n € N. Since

(Ds, <y) = (Dy,, <) for some n € N, it follows that (D, <x) C (D4, <4).

Corollary 3.4.25.
(Di; <) € (D, <)

We now show that (D, <) has explored all the elements in Cang,/¢.

Lemma 3.4.26.

Canp, . = Cang, e.

Proof. As R1 is confluent and terminating, it is enough to show by structural
induction that for each R;/Eac-irreducible term ¢, the equivalence class [t]s €

Canp, <, There are three cases to consider:

e In the first case, suppose t = f(t1,...,t,) with f a free symbol. By in-
duction ¢; € Canp, 4, for i € [1,n], and consequently profile 4 /¢ (t;) € D..
Let profile 4 ¢ (t:) = (fi, Pi), and let states 4/ ([t]) = P. By Lemma 3.4.7,
we know that statesy(Pi,...,P,) = P. According to the the first rule
in Figure 3.4, we know that profile 4,¢([t]) € D, and for all i € [1,n],
profile 4 ¢ ([t:]) <. profile 4 ¢ ([t]). Consequently, [t] € Canp, 4,.

e In the second case, suppose t = t; o --- ot, where o an symbol that is
idempotent in £ or R and root(t;) # o for ¢ € [1,n]. By induction we
know that t; € Canp, «, for i € [I,n]. Let P = states/¢([t]) and let
T = ##(profile 4 /¢ ([t1]), ..., profile 4 /¢ ([ts])). By Lemma 3.4.14 we know
that T € M(¢o,p). As all of the subterms t4,...,t, are distinct and also
in Canp, «,, we know by Lemma 3.4.23 that 4 < cntp, «,(d). It follows
that T € M (vs p.p, «,), and by the second rule in Figure 3.4, we know that
profile 4 /¢([t]) € D, and for all i € [1,n], profile 4 ¢ ([t:]) < profile 4 ¢ ([t]).
Consequently, [t] € Canp, «,.

e In the final case, suppose t = t; + --- + ¢, with + an AC symbol in &
that is not idempotent in R and root(t;) # + for ¢ € [1,n]. By induction
we know that ¢; € Canp, 4, for i € [1,n]. Let P = states 4/¢([t]) and let
T = #(profile 4 /¢([t1]), . .., profile 4 /¢ ([tn])). By Lemma 3.4.14 we know
that T € M (¢4 p). As all of the subterms t1,...,t, are in Canp, 4,, we
know by Lemma 3.4.23 that if 24 > 0, then cntp, <,(d) > 0. It follows
that T € M (¢4 pp, <,), and according to the second rule in Figure 3.4,

84

we know that profile 4 /¢ ([t]) € D« and for all i € [1,n], profile 4 ([t:]) <
profile 4 /¢ ([t]). Consequently, [t] € Canp, ..

We are now able to prove the main result of this section.
Theorem 3.4.27. The graph (D, <) is effectively constructable.

Proof. We know by Lemma 3.4.26 that Canp, «, = Cang,/s. As (D,,<,) is a
subgraph of (D 4, <4) by Cor. 3.4.25, it follows by Lemma 3.4.5 that (D., <,) =
(D4, <4). However, (D,, <) can be constructed by applying each inference rule
in Figure 3.4 a finite number of times. It is decidable whether an inference rule
can be applied, because each choice ranges over a finite set, the function cntp 4
is computable by Lemma 3.4.20 and each formula s p p, <, is expressible in
Presburger arithmetic after the value for cntp, <, (d) has been replaced with its
computed value.

O

Theorem 3.4.2 can be obtained as a corollary of Theorem 3.4.27.

Theorem 3.4.2. Let £ be a theory with free, AC, and ACI symbols, and let Ry
be a set of rewrite rules which may contain an idempotence rule for any of the
AC symbols in .

Given an AC intersection free E-tree automaton A, and propositional for-
mula ¢ over the states in A, the question of whether Ly(A/E) N Cang, s = O

is decidable.

Proof. By structural induction on ¢, it is easy to show that

Ly(A/E) ={[t] € Te | statesa/e([t]) = ¢ }-

It follows that

Cang, /e NLy(A/E) # @ <= (J[t] € Cang, ¢ states 4/¢([t]) = ¢
< (A(f,P)€Da) P ¢.

Since D 4 is finite and effectively constructable by Theorem 3.4.27, it follows
that the question of whether Cang, /e N Lg(A/E) = @ is decidable. O

3.5 Related work and conclusions

Our main contributions in this chapter are: (1) We have shown that each al-
ternating equational tree language can be expressed as the intersection of two
regular equational tree languages by adding a fresh ACI symbol to the theory.

This implies that intersection emptiness is undecidable for regular equational

85

tree automata over a theory with both AC and ACI symbols. (2) We studied
modularity in equational tree automata and have shown that both intersec-
tion emptiness and propositional emptiness are non-modular properties even
for disjoint theories. (3) We presented a practical semi-algorithm for checking
propositional emptiness of theories with A and AC symbols that has been im-
plemented in the CETA tree automaton library. (4) We presented a subclass of
regular equational tree automata over theories with AC and ACI symbols and
have shown that propositional emptiness is decidable for that subclass.

One of our goals was to obtain decidability results over non-linear theo-
ries. In this direction there are numerous papers on extending tree automata
techniques to better handle non-linearity in adding constraints to the automata
rules [33, Chapter 4] as well as extending that idea to handle some equational
theories [80, 106]. The problem of deciding whether a non-equational tree lan-
guage accepts an irreducible term for any set of linear or non-linear rules was
shown in [32], however the approach used here is quite different. The technique
of counting the number of distinct terms was influenced by similar issues in
deciding the emptiness of multitree automata [105], and our realization that
Presburger arithmetic is useful in the ACI case was inspired by the generaliza-
tion of Parikh’s theorem to arbitrary Kleene algebras in [78].

Although we have solved two open problems, our work suggests additional
questions that are worth exploring. One interesting direction would be to inves-
tigate imposing stronger conditions on the theories such as linearity or collapse-
freeness to attempt finding a positive modularity result. A second direction
would be to combine the semi-decision procedure for the associative case in Sec-
tion 3.3 with the algorithm for AC-intersection free automata to handle a large
class of automata over theories with any combination of associativity, commu-

tativity, and idempotence.

86

Chapter 4

Order-sorted equational
unification

This chapter introduces an approach to performing order-sorted equational uni-
fication — a fundamental operation used in many different applications. The
main idea behind unification is to generate a set of solutions which represent
all the solutions to a system of equations. In the context of unification, the
solutions are substitutions called unifiers and the system of equations is called
a unification problem. In this section, we focus on unification problems in the
context of order-sorted theories £ = (F, E).

The main application that we have been using unification for is to solve
reachability problems using narrowing. In narrowing, unification is a fundamen-
tal operation that is called many times to unify terms representing reachable
states against the left-hand sides of rewrite rules. This process is computation-
ally expensive and often generates a large number of different terms — many of
which may represent states that do not correspond to legal states. In order to
avoid this problem tools such as the Maude-NRL protocol analyzer [48, 49] use
order-sorted algebras and rely on the sorts to only consider well-formed terms.

In this chapter, we present an algorithm which can use a procedure for
unsorted E-unification to perform order-sorted E-unification under conditions
general enough to cover many practical applications. This algorithm solves a
key challenge faced by the Maude-NRL protocol analyzer — most existing uni-
fication tools only support unsorted unification and ignore the sort information.
Since equational unification procedures are often quite complex, it requires sig-
nificantly less work to use an existing unification tool rather that writing an
order-sorted equational unification procedure from scratch.

The order-sorted unification algorithm we present in this work can be natu-
rally described by a terminating and confluent set of rewrite rules which compute
order-sorted unifiers 61, . ..,6,, for each unsorted unifier returned by the un-
sorted unification procedure. The algorithm is implemented in Maude, and uses
CiME [36] to perform unsorted equational unification. Our experimental results
so far have shown that, although technically there may be many order-sorted
unifiers for each unsorted unifier, this is rarely the case in practice. In practice,
there are usually fewer order-sorted unifiers than unsorted unifiers, and the use
of order-sorted unification is essential for both the correctness and performance

of the Maude-NRL protocol analyzer.

87

The results in this chapter first appeared in [71]. The basic idea however did
not originate in that paper, and appeared in [112] and more recently without
a proof of correctness in [49]. However, after implementing these ideas in the
Maude-NRL protocol analyzer, we decided to study the topic in more detail for

several reasons:

e Our experience with the Maude-NRL protocol analyzer so far has sug-
gested that for theories with AC operators, the use of sort information
is essential for practical protocol verification tools based on narrowing.
However, most existing unification procedures only perform unsorted &-
unification and do not support sorts and subsorts. By using the techniques
described in this work, one can obtain an order-sorted £-unification pro-
cedure from an unsorted one with very little effort for many equational

theories.

e The algorithm in [112] was buried in a function’s definition appearing in
the proof of Theorem 34 in [112]. In this chapter, we present a simple rule-
based algorithm which is almost directly implementable in Maude. The
algorithm only consists of three confluent and terminating rewrite rules,
and it should be easily possible to compose these rules with inference steps

in a modular way in other reasoning tools using unification.

e Perhaps most important from a technical perspective, the correctness re-
sults in [112] imposed unnecessarily strong technical conditions which ex-
cluded the majority of £-unification problems when £ contains collapsing
equations like idempotence = + x = x and identity z + 0 = z. As identity
was important for the Maude-NRL protocol analyzer and idempotence is a
common axiom in many £-unification algorithms, in this chapter we prove
the correctness results under weaker assumptions about the equational
theory and some technical assumptions about the unification engine. The
assumptions about the unification engine should be satisfied in practice.
Additionally, we show specifically how the algorithm can be used in Maude
for equational theories with any combination of free, commutative, AC,
and ACU symbols.

This chapter is organized as follows. In Section 4.1, we review basic defini-
tions of order-sorted unification and present our algorithm to compute order-
sorted unifiers from unsorted unifiers. In Section 4.2, we illustrate how it can
be used for AC and ACU order-sorted unification in Maude and, in Section 4.3
we prove its correctness. Finally, in Section 4.4, we discuss related work and

suggest directions for future research.

88

4.1 General order-sorted equational unification

Our main goal in this chapter is to develop a clear rule-based algorithm for
solving order-sorted £-unification problems using an unsorted E-unification pro-
cedure. In order to show that the rule-based algorithm returns a complete set
of most-general unifiers, there are some technical requirements placed on the
order-sorted theory £ as well as on the most-general unifiers U returned by the
unsorted E-unification procedure. The basic techniques behind our algorithm
were described in [112]. However the correctness shown in [112] imposed condi-
tions that are too strong when the theory £ contains collapsing equations like
identity or idempotence axioms.

Our approach to find suitable requirements is then to relax the requirements
on £ while making requirements on the unsorted unification procedure in rela-
tion to the theory £. At first this appears to be less general than the approach
in [112], since that paper did not make assumptions about the unsorted unifica-
tion procedure. However, as we will discuss later, the theories we are interested
in are such that every practical unification procedure will satisfy the require-
ments. Most importantly for our purposes, this includes theories with identity
axioms.

We let rvars(6) denote the variables occurring in terms in the codomain of
0, i.e., rvars() = (J,cy vars(zf). Given substitutions 6,6, : Y — Tx(X), we
write 0, =¢ 05 if 201 =¢ x05 for all x € Y, and we write 0; >¢ 0 if there is a
substitution 1 : rvars(6;) — Tx(X) such that 619 =¢ 5.

For a fixed order-sorted theory £ over a signature ¥ = (.9, F), <) , we define an
order-sorted unification problem to be a finite conjunctive set I' of X-equations
t = u where t and u are terms in Tx(X) whose sorts belong to the same con-
nected component in (S, <). An E-unifier for T' is an order-sorted substitution
0 : vars(I') — Tx(X) such that t6 =¢ uf for each equation t = v € I. We
denote the set of E-unifiers for I' by Ung(T'), and we let Uny(I") denote the
syntactic unifiers for I', i.e., Ung(T') = Ung(T"). A set S C Ung(T") of E-unifiers
of T is complete if for all unifiers 1» € Ung(T'), there is a unifier § € S such
that 0 >¢ 1. A set of E-unifiers S is most-general if for distinct substitutions
01,0 € S, 01 #¢ 05. A given theory & has a finitary unification problem if there
is a complete finite set of £-unifiers S for each unification problem TI'.

In this section, we assume the following conditions on an order-sorted theory

£ over a signature ¥ and the unsorted unification procedure for £.

(i) X is preregular [64], that is for each well-sorted term ¢ € Tx(X) there is a
least sort 1s(t) € S such that t € Tx(X)is+) and for all sorts s € S,

teTn(X)s = Is(t) <s.

(i) & is sort-independent (see Def. 2.4.1) which means that for all order-sorted

89

terms t,u € Txn(X),
t=gu=1t=¢ u.

(iii) For each unification problem I', the unsorted unification procedure gen-
erates a complete finite set of most-general unifiers U which is sort pre-
serving. This means that each order-sorted unifier ¢ € Ung(T") can be
decomposed into an unsorted unifier § € U and an unsorted substitution
¢ : rvars(f) — Tx(X) such that: (1) 1) =z 0¢, and (2) ¢ is an order-sorted

substitution.

These three requirements are rather technical, and we will later show in Sec-
tion 4.2 how these three properties are satisfied for theories used by the Maude-
NRL protocol analyzer. Before doing that, we prefer to focus on how these
requirements can be used to simplify order-sorted unification problems.

If the equational theory £ and unsorted £-unification procedure satisfy the

previous requirements, as we show below, the unsorted £-unification procedure
can be used to solve order-sorted &-unmification problems. We can split the
process of solving an order-sorted unification problem I' = ¢ =¢ uy A---At, =¢
Uy into two phases: an unsorted unification phase and a sort propagation phase.
Unsorted Unification. First, we call the unsorted £-unification procedure on
the unsorted E-unification problem T' = t; =z uy A --+ A t, =z u, to obtain a
finite complete set of most-general sort-preserving unifiers U for T.
Sort Propagation. In the second phase, for each unsorted unifier § € U, we
use the membership propagation algorithm described below to generate a set of
variable renamings. In this context, a variable renaming is an injective function
p : rvars(f) — X. For each variable renaming p generated for an unsorted
unifier # € U, our procedure returns fp as one element in the complete set of
most-general unifiers.

The membership propagation algorithm is described by a set of rules that
maintain a disjunctive set D of membership constraints. Each membership con-
straint M € D is a conjunctive formula of the form M =1t : sy A+ Aty : S,
and D is a finite set D = { My,..., M, } of membership constraints. A mem-
bership constraint M captures the sort constraints for each assignment 0(z;) to
be a well-sorted term with sort s.

For each unsorted unifier § € U, we initially generate a singleton set D(f) re-
flecting the sort constraints on the variables appearing in the original unification
problem T'.

D) ={ /\ 2505},
24 Evars(T)

We then apply the three rewrite rules in Figure 4.1 to D(6) until termination.
The Intersection rule exploits the preregularity assumption to simplify multi-

ple membership constraints ¢ : s; and ¢ : s3 on the same term ¢t. The Propa-

90

Given an initial set of membership constraints D, we freely apply the rules below
to obtain a final set of constraints D*.

Intersection {t:sl/\t:SQ/\M}—>U{t:s/\M}

s € glby;(s1,82)

Propagation { f(t1,...,tn) :SAM}— U {t1:s1 A ANtp:sp, A M}

s1...sp€ars(f,s,n)

Subsumption {My, My} —{M} if My > M,
where glby,(s1,52) = sup<({s€9|s<s1As<s2})),
ars(f,s,n) = supn({weS"|(3s€S)feF,sNs <s})and

M, > My <= (Vt:s€ M;)(3s' < s)s.t. t:s € M.

Figure 4.1: Sort Propagation Algorithm

gation rule simplifies constraints on terms f(¢1,...,t,) : s to the smaller terms
t1,...,tn. Finally, the Subsumption rule is used to eliminate membership con-
straints that are subsumed by other more-general membership constraints. We
let D* denote the unique normal form obtained by rewriting D until completion.

Upon termination of the rules, each membership constraint M € D* will
have the form x; : s1 A+ Axy @ s, With o; # x; for ¢ # j. We call membership
constraints with this form reduced. A reduced membership constraint can be

viewed as a function sort,s : rvars(f) — S that maps each variable z; € rvars(f)

to the sort s; € S. Furthermore, for each reduced membership constraint M,

we let pys @ rvars(d) — X be a variable renaming which maps each variable
x € rvars(f) to a fresh variable xpy; with sort sorty ().

For the set of unsorted sort-preserving unifiers U C Ung(T'), we define the
set

OS(U) ={0pn | 0€U AMeD(O)*}.

As an example, consider the unification problem = y,net = YNat + ZNat OVEr
an order-sorted theory & = (F,FE) where + contains the following operator

declarations:
+: Nat Nat — Nat +: Nat NzNat — NzNat + : NzNat Nat — NzNat

where the declaration f:s; s; — s means that f € Fj 5, . In this case, the

unsorted unification engine can return a single unifier

0= {xNzNat — YNat + ZNat> YNat 7> YNats ZNat 7> ZNat }

However, 6 is not an order-sorted unifier, because that would require that

(X NzNat) = YNat + ZNat t0 be in Ts(X)nanat, and in order for that to be

the case either yyq: or 2y would have to have sort NzNat.

91

To obtain variables with the appropriate sort constraints, we pass 6 to the
sort propagation algorithm, which generates the initial set of membership con-
straints

D) ={y+z:NzNat ANy : Nat A z : Nat }.

For this simple example, a single application of Propagation yields the mem-

bership constraints:

D) ={(y: Nat A z: NzNat ANy : Nat A z : Nat),
(y: NzNat A z: Nat Ay : Nat Az : Nat) }.

From D(6)’, we only need to apply Intersection several times to yield the final

set of membership constraints:

D(#)* ={(y: Nat A z : NzNat), (y : NzNat A z : Nat) }.

From D(#)*, we can extract two variables renamings. When applied to the initial

unsorted unifier 6, this yields the final complete set of order-sorted unifiers:

OS(ﬁ) = {{'T — UNat T UNzNat; Y — UNat; 2 — UNzNat }7

{& — unzNat + UNat, Y > UNzNat, 2 > UNat } }-

In Section 4.3, we prove the following result to show that our algorithm is

correct.

Theorem 4.3.9. Let £ denote a preregular and sort-independent order-sorted
Y -theory.

Given a unification problem T with a complete set of most-general sort-
preserving unsorted unifiers U, OS(U) is a complete set of most-general order-

sorted unifiers for T.

4.2 Order-sorted AC - ACU unification

As the requirements on £ and U seem rather technical, to give the reader a
more intuitive feel for them, we show how the requirements are satisfied by
many order-sorted equational theories specified as Maude modules having free,
commutative, AC, and ACU symbols. Essentially, each such Maude module can

be viewed as an order-sorted theory £ over a signature ¥ = (S, F, <) such that:

(a) Each equivalence class [s] € S/ =< contains a maximal element &, called the
kind of s where =< denotes the equivalence relation generated by <. More-

over, for each operator declaration f € Fy, s s, there is also a declaration
f € stl ksn ks

92

(b) E contains axioms of the following forms:

f(f(x,y),Z)Zf(x,f(y,z)) f(x7y):f(y7x) f(C7.T>:£L'

associativity commutativity unit

where the sorts of x,y, z are maximal sorts, that is, sorts of the form k, for
some s € 5, and for each binary symbol f € F, either f does not appear
in E, or E contains commutativity (C), associativity and commutativity

(AC), or associativity, commutativity, and unit (ACU) axioms for f.
(¢) ¥ is preregular.

(d) Each axiom [= r € E is sort-preserving, that is for each variable mapping
p: X — X, Is(lp) =1s(rp).

The assumptions (a)—(d) are quite reasonable for order-sorted Maude spec-
ifications with free, commutative, AC, and ACU operators. Maude will auto-
matically introduce additional top-most sorts ks, and requires that associativity,
commutativity, and unit axioms satisfy the requirements in (b). Maude does al-
low associative symbols that are not commutative, however unification for such
theories may be infinitary [130] and is not considered here. The preregularity
requirement is checked automatically by Maude when the module is entered.
The sort-preservation requirement (d) is essential as the sort-propagation al-
gorithm described in the previous section operates syntactically on terms, and
disregards the possibility that applying an equation may change the sort of a

term. It is guaranteed by a three-pronged approach:

e For each associativity axiom f(f(z,y),2) = f(x, f(y,2)), Maude checks

that it is sort-preserving by considering possible variable mappings.

e For each commutativity axiom f(z,y) = f(y,z) and each operator decla-
ration f :s; s3 — s, Maude completes the theory by adding the declara-

tion f:s9 851 — S.

e For each pair of identity axioms f(z,c) = x and f(¢,z) = x, our unification
procedure completes the theory by introducing a fresh sort s. together
with: (1) an operator declaration ¢ : — s., (2) a subsort declaration s, <
Is(c), and (3) for each sort s =< ls(c), operator declarations f : s s. — s

and f:s.s— s.

We now focus on the relationship between the assumptions (a)—(d) and the
earlier requirements (i)—(iii). The first preregularity requirement follows from
the preregularity assumption. The sort-independence requirements follows form

the assumptions (a) and (b).

Theorem 4.2.1. If £ is an order-sorted X-theory satisfying assumptions (a)
and (b) above, then £ is sort-independent.

93

Proof. Showing that £ is sort-independent requires showing that for all well-
sorted terms t,u € Tx(X), t =z w implies t =¢ u.

We first partition FE into disjoint sets ¥ = R W A, where A, contains
the associativity and commutativity equations in E and the identity equations
f(c,x) = z in E are interpreted as rules f(c,x) — = in R. It is not difficult to
see that the rules R modulo A, are terminating and confluent, and therefore
t=zuiff t lE/Zz:ZI U lﬁ/KI'

As A, only contains associativity and commutativity axioms, if t € Tsx(X)x,

for some maximal sort ks and t =3 v, then it easily follows that v € T (X)),

and t =4, v by the requirement (a). It also easily follows that if ¢ —% z, U

then v € T5(X)k, and t =%, v. From this, we can conclude that
tlg/a,=a, ulg/a, = tlr/a.,=a, wlrsa, -

It easily follows that ¢ =¢ u, and thus £ is sort-independent. O

In general, the requirement that the unification procedure is sort-preserving
does not follow from the assumptions given above. For an example, consider the
theory £ with two unrelated top-most sorts Nat and Cns where Nat contains
the ACU symbol + with the identity element 0, and Cns contains the constant
a. Given the unification problem zc,s = a, it would be permissible for the

unsorted unification procedure to return the unifiers
U={{z—a+0}}.

This is a complete set of unsorted unifiers due to the identity axiom, but un-
suitable for our sort propagation algorithm as a + 0 is not a legal term. This
counterexample illustrates why the earlier work [112] imposed significant re-
strictions on theories with collapsing equations like identity.

These stronger restrictions appear unnecessary in practice — in our expe-
rience, the procedure will not introduce extra symbols, and in this case return
the simpler unifier — a. The reason that unsorted AC and ACU unification
procedures satisfy this assumption is that the unifiers are computed from the
terms appearing in equations [= r € I'. When those subterms are well-typed
with the same top-most sort k, substitutions generated by the unsorted unifi-
cation procedure should be well-typed as well. Provided that the sorts of fresh
variables in the right hand side of a variable are given the appropriate top sort

k, due to our assumption (a), we have found it is safe to assume the following:

(e) For each unifier § in the set of unifiers U returned by the unsorted unification
procedure for the order-sorted unification problem I', and for each variable
xs € vars(T), 250 € Ts(X)k, -

To validate these ideas and test this assumption, we have extended an alpha

version of Maude so that it may communicate with CIME [35, 36] by passing un-

94

sorted unification problems as strings, and parsing the unsorted unifiers returned
from CiME back into Maude terms. As an additional safeguard, the parsing pro-
cess checks the substitutions returned by CiME to verify that assumption (e)
is satisfied. These checks have always been satisfied in our experience using
the procedure so far. We then apply the sort propagation algorithm described
in the previous section to generate order-sorted E-unifiers. The order-sorted
unification procedure is used to analyze cryptographic protocols with algebraic
properties of associativity and commutativity using the Maude-NRL protocol

analyzer [49].

4.3 Correctness

The goal of this section is to show the correctness of our approach to order-sorted
equational unification. Before we can show this, we need several intermediate

lemmas. The first lemma shows how preregularity is used.

Lemma 4.3.1. If ¥ = (S, F, <) is preregular, then for all sorts s1,s2 € S and

terms t € Ty(X),
teTs(X)s, NTs(X)s, <= (3s € glbsy(s1,82)) t € Tx(X)s

where glby(s1,52) =sup<({s€ S |s<s1As<s2}).

Proof. If there is a sort s € glb(sy, s2) such that t € T (X)s, thent € Tx(X)s, N
T5(X)s, as s < 51 and s < s. We still must show that ¢t € T5(X)s, N Tx(X)s,
implies that there is a sort s € glb(sy, s2) such that ¢ € Tx(X),. However, this
follows immediately as ¢ must have a least sort s’ € S. It must be the case that
s’ < s1 and 8’ < sy. Therefore, there is an s € glb(sy, s2) such that s’ < s. As
T5(X)s C T5(X)s, it follows that ¢t € Tx(X)s. O

Lemma 4.3.2. For all terms f(t1,...,t,) € T5(X) and sorts s € S,

f(tl,...,tn> S TE(X)S
< (3s1...sp €ars(f,s,n))t1 €T(X)s, A Atp €T(X)s,

where ars(f,s,n) =supcn({w € ™ | (Is' €) f € Fyyp o N5" < 5}).

Proof. If there are sorts s;...s, € arn(f, s,n) such that ¢; € Tx(X),, for i €
[1,n], then there must be a sort s’ < s such that f € F,, , . It follows that
ft1,.. . tn) € Tn(X)s, and thus f(t1,...,t,) € Ts(X)s.

On the other hand, if f(t1,...,t,) € Tn(X)s, then there is some s’ < s
such that f € Fy o o and t; € TE(X)s; for i € [1,n]. It follows that there
are sorts s1...s, € ars(f,s,n) such that s, < s; for i € [1,n]. Consequently,
t; € Ts(X)s, for i € [1,n]. O

95

For a membership constraint M, we define the wunifiers for M, denoted
Uns(M) to be the set of unsorted substitutions 6 : X — T&(X) such that
for each membership t: s € M, t0 € Tx(X)s.

Lemma 4.3.3. For each order-sorted signature ¥ = (S, F, <) and pair of mem-

bership constraints My and M,

My > M, = Unz(Ml) D) UDZ(MQ).

Proof. To show that Ung (M) 2 Ung (M), we must show for each substitution
0 € Uny(Ms) and membership ¢t : s € My, we have t0 € Tx(X)s. However,
since M > My, for each t : s € My, there is a membership t : s’ € M5 such that
s' < s. By definition t0 € T (X)s, and therefore t6 € T (X)s,. O

When the membership constraints M; and M, are reduced, the previous

implication holds in the other direction.

Lemma 4.3.4. For each order-sorted signature ¥ = (S, F,<) and pair of re-
duced membership constraints My and My such that vars(M;) = vars(Ms),

Unz(Ml) D UHE(MQ) — M1 > M2

Proof. Since both M; and M are reduced and vars(M;) = vars(Ms), to show
that My > My, it is sufficient to show that for each x € vars(My), sortay, (z) >
sortys, (z). Since My is reduced, there is a substitution pps, : vars(Mz) —
Ts(X) which maps each variable x € vars(M3) to the a fresh variable =’ with
sort sortas,(xz) € S. Clearly py, € Ung(Ms), and so py, € Uns(M7) by
assumption. since zpyy, is a variable with sort sortay, () and zpar, € Ung(Ma),

it follows that sorty, () > sortay, () for each x € vars(Ma). O

For a disjunctive set of membership constraints D, we let Uns(D) denote the
set of unsorted substitutions that are unifiers for a set of membership constraints
M e D,ie.,

Ung(D) = | Ung(M).

The key correctness property of the inference rules in Figure 4.1 is captured by
the following lemma.

Lemma 4.3.5. For a preregular order-sorted signature %, if D1 —* Dg using
the inference rules in Figure 4.1, then Uny(D1) = Unx(D2).

Proof. To show this it is enough to show the single step case that D; — Do
implies Uny (D7) = Uny(D32). The full lemma follows easily by induction on the
number of rules used to show Dy —* Ds. To show the single step case, we must

consider three separate cases, one for each of the inference rules in Figure 4.1:

1. If Intersection is used, then this lemma follows from Lemma 4.3.1.

96

2. If Propagation is used, then this follows from Lemma 4.3.2.
3. If Subsumption is used, then this follows from 4.3.3.
O

In order to preserve the set of substitutions, we also need to show that the

inference rules do not discard variables or introduce new ones:

Lemma 4.3.6. If D1 —* Dy using the inference rules in Figure 4.1 and each
set of membership constraints My € D1 has the same variables vars(M;) = X,
then for all My € Do, vars(Ms) = X.

Proof. This is a straightforward induction over the number of rewrites used to

show D; —* D5 and considering each rule separately. O

The following lemma is useful to show that the inference rules terminate

with a unique set of membership constraints.

Lemma 4.3.7. If D1 and Dy are both disjunctive sets of membership con-
straints that are irreducible by the inference rules in Figure 4.1, then Uny(Dq) =
Uny(D3) implies D1 = Ds.

Proof. We show this by showing that D; # Dy implies Un(D;) # Un(Ds).
If D1 # D, then there must be a conjunction of membership constraints M
which is in Dy \ Dy or Dy \ D;. We assume that the M; is in D; as the
other case is symmetric. Since the rules in Figure 4.1 cannot be applied to
Dy, the membership constraints M; must be reduced, and hence has the form
My =1 51N+~ ANxy & 8y With x; # x; for each @ # j. Let pps, denote the
substitution mapping each variable z € vars(M;) to a fresh variable xpps, with
sort sortpy, () € S. By definition pps, € Ung (M) and therefore pps, € Un(Dy).
If prr, € Un(D3), then Un(D;) # Un(Ds), and consequently we are done.
Otherwise, ppr, is in Un(Ds), and so there must be a membership My € Un(D3)
such that for each membership x : s € My there is a membership z : s’ € M,
with s’ < s. It follows that My > M;. Since D; is fully reduced by the rules
in Figure 4.1, it follows that the substitution pas, is not in Ung(D;), since this
would imply that there is a mapping M > M > M; in D;. This is impossible
since D1 has been fully reduced by the rules in Figure 4.1. O

Using the previous lemmas, it is not difficult to show the following Termi-
nation Theorem which shows that the inference rules terminate with a unique

set of membership constraints.

Theorem 4.3.8 (Termination Theorem). For each disjunctive set of member-
ship constraints D, there is a unique set of membership constraints D* such that

D —' D* using the inference rules in Figure 4.1.

97

Proof. Showing this requires proving that: (1) the rules in Figure 4.1 are ter-
minating and (2) if D —'D; and D —'D,, then D; = D,. The rules in Fig-
ure 4.1 are terminating, because each rewrite either reduces the size of a term
in a membership, or preserves the terms while reducing the total number of
memberships. To show (2), observe that if D —' D; and D —' D, then
Uny(D;1) = Uny(D) = Ung(D2) by Lemma 4.3.5. Therefore, D; = Ds by
Lemma 4.3.7. U

We now conclude with a proof of the main theorem of this chapter.

Theorem 4.3.9. Let £ denote a preregular and sort-independent order-sorted
Y-theory.

Given a unification problem I' with a complete set of most-general sort-
preserving unsorted unifiers U, OS(U) is a complete set of most-general order-

sorted unifiers for T.

Proof. Proving the above theorem requires showing three things: (1) each ele-

ment of OS(U) is an order-sorted unifier for T'; (2) the set of unifiers OS(U) is
complete; (3) the set of unifiers OS(U) is most-general. We show each of these

facts separately.

e For each element # € OS(U), there is an unsorted unifier # € U and re-
duced membership constraints M € D(#)* such that § = 0py;. We first
show that x40 € Tx(X), for each variable x5 € vars(I'). To see this, ob-

serve that by definition pp; € Uny(D(6)*), and so by Lemma 4.3.5, pys €
Ung(D(f)). Furthermore, by Lemma 4.3.6, we know that vars(M) =
vars(D(f)) = vars(I'). It follows by definition that for each variable
x5 € vars(T'), 20 = x0pys is in Tx(X)s. For each equation ¢t = u in T
both ¢t and u are well-sorted terms belonging to the same component. It
follows that tf) and u6 are well-sorted terms as well. By definition 0 =z u#,

and as & is sort-independent it follows that t0 =¢ u#.

e To show that OS(U) is complete, we must show for each order-sorted uni-
fier 1 € Ung(T), there is a unifier § € OS(U) and order-sorted substitution
¢ : rvars() — Tx(X) such that zip =¢ 20¢ for each x € vars(T"). Let ¢
be a unifier in Ung(T"). As U is a complete set of sort-preserving unifiers,
there is an unifier § € U such that) == 0¢ for some unsorted substitution
¢ Y — Ts(X) with Y = rvars(). Moreover, since x4 € Ts(X), for
each variable x; € vars(T), we can assume that x0¢ € T (X)s since U is

sort-preserving.

It follows that ¢ € Uny(D(f)). By Lemma 4.3.5 and Theorem 4.3.8, there

must be a reduced set of membership constraints M € D(6)* such that

(Vl‘ € Y) xa S TE (X)sortM(m)- (41)

98

Since M is reduced, there is a variable renaming p,; with maps each
variable € Y to a fresh variable z’ with sort sortss(z). Let p&l denote
the inverse of that renaming. By using (4.1), it should be clear that p,;'; ¢
is an order-sorted substitution. Moreover, as pp; € Uny (M) and therefore
in Unx(D(#)) by Lemma 4.3.5, 6; ppr must be an order-sorted substitution.
Since 0; par € OS(U) and ¢ = (0; pas); (pa); @), it follows that OS(U) is a
complete set of unifiers.

e To show that OS(U) is a most-general set of unifiers, we must show for all
distinct substitutions 0,60, € OS(U), we have §; # 6. We prove this by
contradiction. Assume that there are substitutions 0,6, € OS(U) and a
substitution ¢ : ¥ — T5(X) such that 8; = 65;1, where Y denotes the
variables in the right-hand side of 5. Since both 6; and 6y are in OS(U),
they must have the form 6; = 6;; P, and Oy = 0: P, with 0,0, € U,
M, € D(6,)*, and My € D(f2)*. Our assumption 6; = f,; implies that
01 = 02; (pas3 05 pyf)- Since U is most-general, this can only be the case
if 6, = . As we assumed that 0; = y;1, it is not difficult to show that
P = pX/é pur, - For each variable x € Y, the sort of the variable xpﬁz PM,
is sort g, (xpg/é), and sortyy, (a:p;é) < sortay, (xpl_/é) since 1) is an order-
sorted substitution. It follows that My > M; which is impossible since
both My, My € D(f;)* and D(6;)* have been fully normalized using the

inference rules in Figure 4.1.

4.4 Related work and conclusions

There is a considerable amount of research already in unification in theories
with sorts and subsorts (e.g., [16, 54, 93, 112, 141, 142]) due to the improved
expressiveness of order-sorted algebras and ability to simplify automated rea-
soning. The use of rule-based algorithms in describing unification has a long
history as well with the most well-known example being Martelli and Monta-
nari’s algorithm for syntactic unification [107]. Our use of a rule-based approach
to order-sorted unification is not particularly novel; however the relaxed con-
ditions of our soundness proof are necessary to ensure the correctness of the
algorithm when used by the Maude-NRL protocol analyzer.

Due to our experience with the order-sorted unification in the Maude-NRL
analyzer, an order-sorted unification engine is planned to be included in the next
Maude release. This unification engine will make similar assumptions to our own
ones about the supported theories, however it should have better performance
as it will no longer need to parse unsorted unifiers back as strings, and can more
tightly integrate the order-sorted constraints into the core unification routines.
In fact, a prototype BDD-based approach to solving the sort constraints is
currently being developed by Steven Eker. This BDD-based approach has the

99

advantage that the subsumption checks can be handled automatically by the
BDD generation-algorithms.

Our aim in this chapter is more general than the Maude-based applications
of our algorithm. Our aim is one of modularity, so that different formal tool
building efforts needing equational order-sorted unification procedures may be
able to modularly decompose such a procedure into its unsorted part where
several existing tools may be used and the rule-based sort propagation algorithm
that we have presented and proved correct. Furthermore, our algorithm may be
useful for Maude applications even after the built-in implementation of order-
sorted unification for theories with C and AC symbols. This is because our
algorithm can perform order-sorted unification for theories other than C or AC

provided an unsorted unification procedure is available.

100

Chapter 5

Sufficient completeness

The symbols in a signature are often used in two different ways: they can be
viewed as constructors that create data, or as defined operations that compute
functions of interest. One property that is easy to overlook, but nevertheless
crucial for correctness, is the sufficient completeness property. A specification
is sufficiently complete if each function returns a well-defined value when called
on all relevant inputs.

Sufficient completeness is an important property to check, both to debug
and formally reason about specifications and equational programs. For exam-
ple, many inductive theorem proving techniques are based on the constructors
building up the data and crucially depend on the specification being sufficiently
complete. Failure to be sufficiently complete is a common error in specifications.
The problem is that each operation typically requires several equations — each
matching terms with a different topmost constructor. It is easy to forget one of
the equations when defining a function, or to forget to add additional equations
for all defined functions when adding a new constructor symbol.

Sufficient completeness was first defined in Guttag’s thesis [66] (but see [67]
for a more accessible treatment). An unsorted theory &£ over a signature ¥ is
said to be sufficiently complete relative to a constructor subsignature 2 C X iff
for all ground terms t € T, there is a ground constructor term u € T such
that ¢ =¢ u. For a given choice of constructors €2, the terms in T are said to
be constructor terms.

Sufficient completeness is in general undecidable, even for unconditional
specifications [66, 67]. Approaches to check sufficient completeness are obtained
by treating the equations as oriented rules, and casting sufficient completeness
as a ground reducibility problem. An early algorithm for handling uncondi-
tional linear specifications is due to Nipkow and Weikum [120]. For a good
review of the literature up to the late 80s, as well as some important decid-
ability /undecidability and complexity results, see [89, 90]. A more recent de-
velopment is the casting of sufficient completeness as a tree automata (TA)
decision problem: see Chapter 4 of [33] and references there. In particular,
tree automata techniques were used to show that for the unsorted and uncondi-
tional case, sufficient completeness for a terminating and confluent specification

is EXPTIME-complete [32]. Tools for checking sufficient completeness include

101

Spike [11], the RRL [88] theorem prover, and two new tools which we introduce
in this chapter.

In practice, there is a need to have expressive equational specification for-
malisms that match the needs of real applications and a corresponding need to
extend sufficient completeness methods to handle such formalisms. This chapter
presents new contributions extending sufficient completeness methods in several
useful directions, namely: (1) to handle partiality; (2) to handle operator over-
loading; (3) to allow conditional specifications; and (4) to support equational
reasoning modulo axioms. These extensions are needed in practice because: (1)
functions defined on data types are often partial; (2) overloading is an essen-
tial feature of sorted logics like order-sorted and membership equational logic;
(3) many languages support conditional specifications; and (4) functions often
assume algebraic properties of their underlying data. For example, functions
on sets or multisets are much more simply specified using the fact that set and
multiset union are associative and commutative.

Of course, there is tension between expressiveness of specifications and decid-
ability of sufficient completeness. Furthermore, when the specification is given
in a logic with operator overloading and partiality such as MEL, the definition
of sufficient completeness must be generalized to take two additional factors
into account: (1) partial functions may intentionally not be defined for all in-
puts, but only on a particular subset of inputs; (2) the same symbol may be a
constructor on a small domain, but is a defined operation on another domain.
For example, successor is a constructor when applied to natural numbers, and
a defined function on negative integers.

Sufficient completeness of MEL specifications was first studied in [19]. The
definition and methods presented in this chapter substantially extend and gen-
eralize those in [73], which in turn had generalized those in [19], allowing a much
wider class of MEL specifications to be checked. For checking sufficient com-
pleteness, our work can be seen as a generalization of two different approaches
to the membership equation logic case: techniques based on the incremental
constructor-based narrowing of patterns; (2) techniques that cast sufficient com-
pleteness as decision problem for tree automata.

In our view, the best way to deal with this tension is not to give up on the
expressive specifications that are often needed in practice and for which suffi-
cient completeness is undecidable. We advocate a two-pronged approach. First,
the sufficient completeness problem should be studied for increasingly more ex-
pressive formalisms, and the set of decidable specifications should likewise be
expanded as much as possible. Second, sufficient completeness checking algo-
rithms should be coupled with inductive theorem proving techniques that can
discharge proof obligations generated when the input specification falls outside
of the decidable classes. We refer the reader to [73, 83] for ideas on coupling
sufficient completeness and inductive theorem proving.

In this chapter, we focus on advancing the first prong in several ways. Our

102

first contribution is to characterize sufficient completeness in a more general
setting to support the extensions mentioned above. For this purpose, we use
membership equational logic (MEL) to allow conditional specification of partial
functions (see [111] for a survey of partial specification formalisms and the use
of MEL in this context). In MEL atomic sentences are either equations t = ¢/,
or memberships ¢ : s stating that a term ¢ has a sort s, where t having a sort is
equivalent to t being defined.

The key idea is that a partial function’s domain is axiomatized by conditional
membership axioms. We precisely define the sufficient completeness property
for conditional MEL specifications which can have extra variables in their condi-
tions and can be defined modulo a set A of unconditional equations. We define
sufficient completeness for both MEL theories of this kind and their correspond-
ing conditional rewrite theories when the equations are used as rewrite rules.
We also characterize specifications for which both notions coincide. Finally for
a large class of specifications, we give conditions equivalent to sufficient com-
pleteness which can be the basis of a checking algorithm. These theoretical
developments directly apply to the analysis of functional modules in the Maude
language [28], which are MEL specifications supporting deduction modulo ax-
ioms such as associativity, commutativity, and identity.

Our second contribution is to present two new tools for checking sufficient
completeness: (1) a constructor-narrowing based tool for conditional MEL spec-
ifications which operates by generating proof obligations for showing sufficient
completeness which may be discharged by an inductive theorem prover, and
(2) a tree automata based checker which casts sufficient completeness for left-
linear, unconditional, order-sorted specifications with rewriting modulo axioms
as a propositional emptiness problem for equational tree automata. Although
sufficient completeness as a tree automata decision problem has been studied
before in the unsorted free case, this has not been done before in studying
sufficient completeness with rewriting modulo axioms. This decision problem
may still not be decidable. However, we can use the decidability and semi-
decidability results presented in Chapter 3 to attack the problem. In particular,
the semi-decision procedure in Section 3.3 forms the basis of a new sufficient
completeness checker [75] for order-sorted Maude specifications.

This chapter is organized as follows. We begin in Section 5.1 with our
definition of sufficient completeness in MEL, and discuss its relationship with
sufficient completeness for simpler logics. In Section 5.2, we generalize the rela-
tionship between sufficient completeness and ground reducibility to membership
equational logic. This relationship is the basis for all approaches to checking suf-
ficient completeness that we are aware of, and its generalization to membership
equational logic turns out to be rather subtle. In Section 5.3, we present our
narrowing-based sufficient completeness checker, and in Section 5.4, we present
our equational tree automata-based sufficient completeness checker. Finally, in

Section 5.5, we conclude with a summary of our results and suggest directions

103

for future research.

5.1 Defining sufficient completeness in MEL

In MEL, the signature declares operator symbols, but it is left to the member-
ships to indicate when a term is “well-defined.” By partitioning the memberships
into constructor and defined sets, we can obtain a definition of sufficient com-
pleteness that is more faithful to MEL’s notion of what it means for a term to

be well-formed in a specification.

Definition 5.1.1. Let £ = EUM be a MEL specification where E contains the
(conditional) equations and M contains the (conditional) memberships.

Given a subset of memberships Mq C M, called constructor memberships,
we define the constructor subspecification to be Eg = EUMq. Furthermore, we

say that £ is sufficiently complete relative to Mq iff Te and T, are isomorphic.

Since the only difference between £ and £q involves the memberships Ma =
& —&q, it is not difficult to show that the above definition of sufficient complete-
ness is equivalent to the property that for all ground terms ¢t € T and sorts
s€S,
Ebt:s < Eqbkt:s.

As shown below, this definition of sufficient completeness for MEL specifications

easily generalizes the definition for unsorted specifications.

Theorem 5.1.2. Given an unsorted theory € over a signature X that is equipped
with constructor subsignature Q C X, there is a MEL theory & = EU Mq U Ma
over a MEL signature ¥ such that & is sufficiently-complete relative to Q0 iff £

1s sufficiently-complete relative to Mgq.

Proof. Let ¥ be the specification containing a single kind k, single sort s, and
for each f € X, a function symbol f with n inputs each with kind & and output
kind k. Additionally, let

Mo ={f(z1,...,zn):sifx1 :sA...zpn:s| fEQ}
Ma ={f(x1,...,zn):sifx1 :sA . xp:s| fEX, —Q}

where ¥Y,, denotes the symbols with arity n in X.
It is easy to see that for £ and &, = EF' U Mg, and all t € Ty, we have:

EFt:s <= (ueTls)t=gu and Eqkt:s < (JueTy)t=¢zu

Thus £ is sufficiently complete relative to 2 iff £ is sufficiently complete relative
to Mgq. O

To illustrate how the new definition of sufficient completeness is useful, we
refer to the definition in Maude of unnested powerlists [113] which appeared

104

earlier in Figure 2.5. We reprint the definition here and some of the discussion to
make this chapter more self-contained. Recall that unnested powerlists are non-
empty lists of length 2" for some n € N. Powerlists with the same length may be
concatenated together with an operator |, called the tie operator. Additionally,
powerlists with the same length may be interleaved together with an operator
x, called the zip operator. The concatenation or interleaving of powerlists
with different lengths is not defined. For example, both (1 | 2) | (3 | 4) and
(1]12)x@314)=(11]3)]|(2]4) are well-formed powerlists, but (4 | 3) x (1)
and (1]2) | (3) are not.

fmod POWERLIST is protecting NAT .
sort Pow .
op [_] : Nat -> Pow [ctor]
op _I_ : [Pow] [Pow] -> [Pow]

vars M N : Nat .
vars P Q R S : Pow .

op len : Pow -> Nat .
eq len(P tie Q) = len(P) + len(Q)
eq len([N]) =1 .

cmb (P | Q) : Pow if len(P) = len(Q)

op _x_ : [Pow] [Pow] -> [Pow]

cmb (P x Q) : Pow if len(P) = len(Q) [metadata "dfn"].
eq Pl x®RIS)=C=xR | @x8) .

eq Ml x [N] = [M] | [N]

endfm

The module POWERLIST imports the predefined module NAT, which declares
the natural numbers and the expected arithmetic operations and relations. The
sort Pow is introduced, which we use to represent well-formed powerlists; Maude
automatically introduces also the kind [Pow] to denote the kind of the sort Pow.
We also introduce four operators: [_] for representing the operation that forms

for representing the powerlist tie operation; _x_ for

powerlist elements;
representing the powerlist zip operation; and len for representing the operation
that computes the length of a powerlist. Since not all terms constructed with

and _x_ represent powerlists, those operators are declared at

the operators
the kind level. For example, ([2] | [3]) x [4] is not a powerlist. This is represented
in POWERLIST by the fact that the term ([2] | [3]) x [4] has kind [Pow],
but it does not belong to the sort Pow. On the other hand, since we want to use
the [_] operator to construct powerlists (specifically, powerlists with only one
element), we declare this operator at the sort level and with the ctor attribute.
Finally, since we expect that the len operator applied to a powerlist will always

evaluate to a natural number, we declare this operator at the sort level, but

105

without the ctor attribute.

In the variable declaration section, we associate to the variables I and J the
sort Nat, and to the variables P, Q, R, and S the sort Pow. By doing this, we are
in fact declaring: (i) that I and J are variables of the kind [Nat], and P, Q, R,
and S of the kind [Pow], and (ii) that in all memberships and equations in which
those variables appear, there is an implicit extra condition stating that those
variables only range over the set of terms belonging to their associated sort.
Finally, in the membership declaration section, we declare that both the tie and
the zip of two powerlists are powerlists if they have equal length; however, since
we do not want to use the _x_ operator as a constructor for powerlists, but
rather as a defined function, we declare the membership for the _x_ operator
with the dfn attribute.

The module POWERLIST illustrates one reason why the constructor subspec-
ification £q omits the defined memberships, but has the same signature as .
Observe that the constructor membership (P | Q) : Pow if len(P) = len(Q)
references the symbol len, but len does not appear in the left-hand side of a con-
structor membership. If the constructor specification did not include len in its
signature, the membership axiom for the tie operator | would not be expressible
in the constructor subspecification’s signature. That is, in MEL specifications,
unlike unsorted or many-sorted specifications, the constructor subspecification
may have to include the defined functions that appear in the conditions of mem-

berships.

5.2 Ground reducibility for CERM systems

Existing approaches to checking sufficient completeness exploit the relationship
between an equational theory £ and its associated TRS R. However, we have
not defined what it means for R/A to be sufficient complete. In our definition of
sufficient completeness for MEL theories, sufficient completeness was expressed
as an equivalence between the initial algebra Tg and Tg,. This property can be
equivalently expressed as the property that £ and £g have equivalent deductive

power on ground atomic formulas, i.e., for all ground atomic formulas «,
EFra < EqtF a.

Our definition of sufficient completeness for rewrite systems is the same, but
instead of atomic formulas that are equations ¢ = u or memberships ¢ : s, we
consider ground join conditions t | u and ground memberships ¢ : s deduced by

rewriting.

Definition 5.2.1. Given a CERM system R/A where R = RUM has rewrite
rules R and memberships M, and a set of memberships Mo C M, let Rq =
RU Mgq.

106

We say that R/A is sufficiently complete with respect to Mg when for all

ground terms t,u € Tx, and sorts s € S,

R/AFt]|u < Rqo/AFt|u and R/AFt:s < Rq/AkFt:s.

It is worth pointing out that with this definition if both R/A and Rq/A
are ground weakly-normalizing and confluent so that the canonical term alge-
bras Cang,4 and Cang,/4 are well-defined, then the definition of sufficient
completeness for CERM systems has a model theoretic definition just as the
definition for MEL theories possesses. Specifically, R/A is sufficiently complete
relative to Mgq iff Cang /4 is isomorphic to Cangg,/a-

The relationship between sufficient completeness for MEL theories and the

associated CERM systems is captured in the following theorem:

Theorem 5.2.2 (Suff. Comp. Equivalence). Given a CERM system R/A
where R = RU M has rewrite rules R and memberships M, and a set of mem-
berships Mo C M, let Rqg = RU Mg,.

o If R/A is ground pattern-based, confluent, sort-preserving and sufficiently
complete with respect to Mg, then € = RU A is sufficiently complete with
respect to Mg.

o If Ra/A is ground pattern-based, confluent and sort-preserving, and € =
RU A is sufficiently complete with respect to Mg, then R/A 1is sufficiently
complete with respect to Rq/A.

Proof. Let Eq be the MEL theory £ = Rq U A. From Definition 5.2.1 since
Rq is a subset of R, it is clear that R/A is sufficiently complete with respect
to Mg iff for every t,u € Ty and s € S:

R/AFt| uw = Rqo/AFt|lu and R/AFt:s = Rq/AFt:s

Furthermore, in Definition 5.1.1, the algebras T and Tg,, are isomorphic iff for

every t,u € Ty, and s € S:
Ebt=u = EqFtt=u and Erbt:s = Eqkt:s

To prove the first part of this theorem, we can use Theorem 2.6.4 with R/A to
show that

Erbt=u <= R/AFt|u <= Ro/AFtlu=EFt=u
EFt:s <= RJ/AFt:s <= Rq/AFt:s =& Ft:s

107

To prove the second part, we can use Theorem 2.6.4 with R /A to show that

R/AFtlu=EFt=u <= &Ft=u <= Rqo/At+t]u
RbEt:s= EFtis < Eqkt:s < Ro/AlFt:s

O

These two results show conditions under which sufficient completeness of
R/A is necessary for sufficient completeness of £, and different conditions un-
der which it is sufficient for sufficient completeness of £. In total, there are
many conditions, but in practice those conditions are often satisfied, and they
are even checkable mechanically using tools available in Maude. We can show
that a rewrite system is weakly-normalizing by showing that it terminates in
general or terminates under context-sensitive rewriting, and the Maude termi-
nation tool [44] can be used to show both termination and context-sensitive
termination. The Maude confluence checker [29] is capable of checking both
confluence and sort-preservation. There is currently no tool explicitly designed
to check that a specification is pattern-based, however for most specifications
this can be shown by checking: (1) that the syntactic restrictions on variables
hold, and (2) use the Maude narrowing procedure that is part of Maude-NRL
Protocol Analyzer [48] to show that the right-hand side of each oriented con-
dition can not be narrowed.

Now that we have defined what sufficient completeness means both equation-
ally and operationally, we turn our attention to checking sufficient completeness.
Ideally, we would like an algorithm capable of deciding if a specification is suf-
ficiently complete, and give guidance on how to fix the specification if it is
not. Unfortunately, this ideal is impossible to achieve in its full generality as
the problem is undecidable even for unsorted specifications with confluent and
terminating rewrite systems [89].

The undecidability result in [89] stems from the fact that, in general, con-
structor terms may be rewritten into terms with defined symbols. If the rewrite
system is such that constructor terms may only be rewritten into other construc-
tor terms, the rewrite system is said to be constructor-preserving, and sufficient
completeness is decidable when an unsorted rewrite system is additionally nor-
malizing and confluent [89]. Sufficient completeness is also decidable for many-
sorted specifications that are normalizing, confluent, and terminating.

These approaches for checking sufficient completeness use the fact that a
normalizing, confluent, and constructor-preserving unsorted rewrite systems is
sufficiently complete iff every irreducible term is a constructor term. Due to the
possibility that irreducible terms may not be well-defined constructors, and the
fact that a defined operation may be a constructor on part of its domain, this
property does not hold for MEL specifications. However in [74], we describe a
similar property which plays the same role, but generalized to the context of

MEL specifications. In that work, we did not name this property, but here we

108

call it defined reducibility.

Definition 5.2.3. Given a CERM system R /A over a signature 3 that contains
a set of memberships Ma C R, let Rq denote the rules R — M.

The CERM system R /A is defined reducible relative to a set of memberships
M iff for

e cach membership (VY)t :sif ag A+ - ANy, in Ma and
e cach ground substitution 0 : Y — T such that Ra/AtF a0 fori € [1,n],
either t0 is R/A-reducible, or Ro/AF 10 : s.

Essentially, a CERM system is defined reducible when every irreducible
ground term matching a defined membership with sort s is equivalent mod-
ulo the axioms to a well-defined term with sort s in the constructor subsystem.
The tools for checking sufficient completeness below are actually tools for check-
ing defined reducibility. However, as we will show below, sufficient completeness
and defined reducibility are equivalent for a large class of CERM systems.

Techniques for checking sufficient completeness of unconditional specifica-
tions typically require that the specification is weakly-normalizing, i.e., that
every term t rewrites to an irreducible term u. In the context of conditional
rewriting, this condition is not strong enough. We need to develop a stronger
notion of weak normalization in the context of CERM systems. A reduction or-
der < on Ty is a strict partial order that is Noetherian and closed with respect
to context and substitution, and a strict subsort ordering > is a strict partial

ordering over the sorts S.

Definition 5.2.4. Given a CERM system R/A over a signature ¥ = (K, F, S),
a rewrite proof using the inference system in Figure 2.6 is reductive relative
to a reduction order < on Ty and subsort order < on S when every use of

Replacement and Membership inferences:

t=aClO) N\ wb— 06\ wib:s;

i€[1,m] j€[1,n]
t — C[ro)
t=a10 Nigpmwitl =" vl Njepnwif:s;
t:s

satisfies that [C[r6]] < [t], [u0] < [t] for each u;, and [w;0] < [t] or w; =4 [t]
and s; < s for each wj.

We say that R/A is ground weakly-reductive when:

1. R/A is ground weakly-normalizing, i.e., for each term t € Tx, there is a
R /A-irreducible term u € T, such that R/AF t —* u.

2. There is a reductive order <g,4 and subsort ordering <g,a where for
every ground X-atomic formula « derivable from R/A, i.e. R/AF «a,
there is a proof of a that is reductive relative to <g 4 and <g,a.

109

The subsort ordering <z, is analogous to the subterm ordering in order-
sorted specifications. The subsort ordering in the previous definition is typically
obtained by letting s < s’ if R contains a rule of the form x : ¢’ if x : s. This
essentially recovers the subsort ordering from order-sorted logic, as member-
ship equational logic generalizes order-sorted logic by adding a membership
x: s if x : s for distinct sorts s < s’ in an order-sorted signature ¥ = (.5, F, <),
It is not difficult to show that if R/A is operationally terminating [44], then
R/A is weakly-reductive. The reductive ordering <z,4 can then be inferred
from a termination proof by the Maude Termination Tool [29].

If R/A is ground weakly-reductive, then we can define the following Noethe-
rian strict ordering <4 over atomic formulas to prove equivalence of sufficient

completeness and defined reducibility.

Definition 5.2.5. Let R/A be a CERM system that is ground weakly reductive,
and let < 4 and <g, 4 be the reduction and subsort orderings respectively used
to show R/A is weakly normalizing. The Noetherian strict <g,a over ground

atomic formulas can be defined as follows:

t—u<Lgav—w if [t] <rja [V]VE=avA[u] <g/a [w]
t—u<gav:s if [t] <pya V]Vt =avA[u] <g/a [v]
t:s<pav—w ift <pja v
t:s<<pjav:s if [t] <rja [V]VEt=avAs<gsas.

with t,u,v,w € T, and 5,8’ € S

An important observation is noted in the following lemma, whose proof is

quite simple:

Lemma 5.2.6. Let R/A be a CERM that is ground weakly reductive, and let
<R/A be the reductive order used to show R/A is weakly normalizing. If R/AF
t =" u with t,u € T, then u < a t iff u #at.

Proof. By induction on proof trees that are reductive with respect to <z /4

using the Noetherian order <z /4. O

Theorem 5.2.7. Let R/A be a ground weakly reductive and ground sort-pre-
serving CERM system over a signature ¥ = (K, F,S) with rules R and mem-
berships M .

Given a set of memberships Mg C M, let Ro = RU Mg, and let Ma =
M — Mgq. The CERM system R/A is sufficiently complete with respect to Mg
iff R/A is defined reducible relative to Ma.

Proof. First observe that, for each membership (VY) ¢ : s if a3 A -+ A ay, in
Ma and substitution 6 : Y — T satisfying the requirements in the definition
of defined reducibility, R/AF t6 : s.

110

If R/A is sufficiently complete with respect to Mg, then R/A is defined
reducible relative to Ma, as due to sufficient completeness, R/A F ¢6 : s implies
Ra/AF 6.

To show the other direction, we assume that R /A is defined reducible relative

to Ma, and prove that for each pair of ground terms ¢,u € Tx, and sort s € .5,

R/AFt—=*u = Rq/AFt—"u, and

(5.1)
R/AFt:s = Rqo/AFt:s

If this is true, then R/A is sufficiently complete relative to Rq/A.

As R/A is weakly normalizing, each atomic formula « entailed by R/A can
be shown with a proof that is reductive relative to <z, and <r, 4. Let <,
be the order of atomic formulas formed from <z ,4. We show (5.1) by induction

over < /4 on reductive proofs. If the top of the proof is an Equivalence rule,

t=au

t—*u

then clearly Ro/A Ft —* u. If the top of the proof tree is a Transitivity rule,

the left antecedent must be a Rewrite rule.

t=a ClOl Njepmuil = 0i0 Njep Wil = s;
t — C[ro) Clro] —* t'

t 4)* t/

As the proof is reductive relative to <z /4, we have that:
o Clr] —t' <gat—1t,
o ui) — v) Kgsat—t for each i € [1,m], and
o wif:s5; Kgpsat—t for each j € [1,n].

By induction, each antecedent is provable in R /A, and thus Ro/AFt —* t'.

We next consider the case where the top of the proof is Subject Reduction.

t—u u:s
t:s
In this case, the proof that ¢ — u must be a Rewrite rule, and consequently
[u] < [t]. A similar argument to the previous one allows us to conclude that
Rq/A =t — u, and since [u] < [t], it follows by induction on <, that
Ra/AF u:s. Consequently Ro/AF1t:s.
Finally, we consider the case where the proof is a Membership rule:

t=al0 Niepm it = vib Njepn Wit s;
t:s

By induction, Rqo/A F u;0 —* v;0 for each i € [1,m], and Ro /At w;0 : s; for
each j € [1,n]. If the membership used to prove R/A b ¢ : s is in Mg, then we

111

immediately have that Rq/A F t : s. Otherwise, the membership must be in
Ma. If t is R/A-irreducible, then Ro /At : s as R/A is defined reducible.
On the other hand, assume that ¢ is R/A-reducible. As R/A is weakly-
normalizing, there is a R /A-irreducible term t | € T, such that R/A -t —* ¢ |.
Moreover, R/A F t |: s as R/A is sort-preserving. As ¢ is R/A-reducible
and t | is R/A-irreducible, it follows that ¢t #4 ¢ |, and therefore t | <g 4 t
by Lemma 5.2.6. Ast —t |<gsat:sandt |:s <gsat: s, it follows that
Ra/AFt—*t] and Rqg/AF t |: s by our induction hypothesis. Consequently,
Ra/AFt:s. O

We have not yet developed a general purpose tool for checking whether an
arbitrary CERM system is defined reducing. This seems quite difficult due to
the need to consider both conditional rules and rewriting modulo axioms. How-
ever, we have developed two different sufficient completeness checkers capable
of checking important subcases that fall outside the domain supported by other

sufficient completeness checkers:

e The checker of [73], which can check conditional specifications, but cannot
check specification with rewriting modulo axioms. The checker can suc-
ceed in automatically checking sufficient completeness in some restricted
cases, but in general, generates proof-obligations which imply defined re-
ducibility for conditional MEL specifications if they can be shown true
in the initial model of a specification. These proof obligations are passed
directly to the Maude Inductive Theorem Prover (ITP) for discharging by

the user.

e The equational tree automata-based checker of [75], which is capable of
checking sufficient completeness for unconditional left-linear specifications
with rewriting modulo axioms by casting sufficient completeness as an

equational tree automata decision problem.

5.3 Checking sufficient completeness with
Maude ITP

Our first sufficient completeness checker, the Maude ITP Sufficient Complete-
ness Checker (ITP-SCC) is capable of checking Maude specifications with condi-
tional rules such as the powerlist specification seen earlier. It does not support
rewriting modulo axioms, so in this section the set of axioms A = @&. We

additionally assume that the memberships in £ satisfy the following property:

Definition 5.3.1. An MEL theory £ is properly sorted over a signature ¥ =
(K, F,S) iff there is an ordering < over S such that for each memberships

t:sifa i &:

112

e if t is a variable x € X, and @ contains the membership formula z : &,

then s’ < s; and

o for each variable x € vars(t) U vars(@), there is a membership with the

formz:sea.

Neither of these two assumption are very severe — the first is required by
Maude theories to obtain termination, while the second can be obtained from
an arbitrary theory by introducing a fresh maximal sort s, for each kind k,
adding memberships so that every term ¢ € T% ;. has sort sy, and introducing
memberships assumptions x : s in memberships where needed.

The checker is itself written in Maude using reflection. The soundness of the
tool is based on Theorem 5.2.7. There are two major components to the tool:
a sufficient completeness analyzer, which generates proof obligations for suffi-
cient completeness problems, and the Maude Inductive Theorem Prover (ITP),
extended with additional commands to try to automatically prove those proof
obligations. The tool has been run on a variety of different MEL specifications,
and is available for download with source, documentation, and examples (in-
cluding MEL specifications of ordered lists with sorting functions, stacks, and

binary trees) from the tool’s webpage:

http://maude.cs.uiuc.edu/tools/scc/

5.3.1 The sufficient completeness analyzer

The sufficient completeness analyzer follows the incremental constructor-based
narrowing of patterns approach, but generalized to handle conditional specifica-
tions. The algorithm is similar to the algorithm for coverset induction described
in Chapter 7. Given a MEL specification £ written in Maude, annotated to indi-
cate a constructor memberships Mg, the Maude sufficient completeness analyzer
generates, in a two phase process, a set of proof obligations which if discharged,
ensures the sufficient completeness of £ relative to Mg. The sufficient complete-
ness analyzer assumes that the CERM system R associated to £ satisfies the
conditions in Theorem 5.2.7.

Narrowing procedure

In its first phase, the analyzer returns a finite set A containing tuples (¢, s, @)
where ¢ is a term in 7% (X)), for some k € K, s € S, and @ is a finite conjunction
of atomic formulas @ = a; A ...a,. The set A returned by the procedure has
the property that if ¢ € T is a counterexample for sufficient completeness, then
there exists a triple (£, s,@) € A and a substitution 6 : vars(t) — T such that
t' = 60t and Tg, F @f. The set A is generated from the initial set

Ao ={(t,s,a)|t:sif a € Mn}.

113

We then apply the rule (5.2) below until completion. This rule (5.2) uses the
expandability relation <« and the expand function exp which are defined as fol-

lows:

Definition 5.3.2. Let t,t’ be terms in T (X) such that vars(t) Nvars(t') = 0,
and x € vars(t). Then, t 4, t’iff t and t' are unifiable and in the most general

unifier § = mgu(t,t'), 8(x) is not a variable.

Definition 5.3.3. Lett € Tx(Y), s € Sk, @ a conjunction of atomic formulas
with variables in Y, x € X with x : s, € @, and M a set of memberships whose

variables have all been renamed to be disjoint from Y. Then,
exp(t,s,a,x, M) = { (t{z/u],s,alx/u) NQ) |u:s, ifa’ € M}

Finally, we define the inference rule that generates the set A. Note that
this rule will only be applied a finite number of times, because of the condition
t <4, t' on the rule.

A-rule For each term ' in the left-hand side of an equation in &,

A"U{(t s, @)}
A’ Uexp(t, s, @, x, Mq)

if x € vars(t) and ¢ <, t’ (5.2)

The number of applications of this rule must terminate, because our assump-
tions that the MEL theory & is properly sorted. The termination argument can
use the fact that each variable x used in the rule is replaced by a non-variable
term ¢ or the sort constraint x : s in @ is replaced with a lower sort constraint

x:s with s’ < 8.

Proof obligation generator

In its second phase, the SCC produces, from the set A, a set of proof obligations
which if discharged, guarantees that £ is sufficiently complete with respect to
Mg under the assumptions in Theorems 5.2.2 and 5.2.7. Since a triple (¢, s, @) €
A represents a set of potential counterexamples, the proof obligation generator
produces a sentence which if proven inductively in &g, implies that for every

substitution 6 : vars(t) — T% at least one of the following holds:
a) Ea l# ab
b) t0 is reducible

¢) There exists a membership v : s if @ in Mg with s’ < s and a substitution
7:Y — T such that t6 = ur and &, = a'r.

If the proofs are discharged, then by Theorem 5.2.7, R is sufficiently complete
with respect to Mq. For each (¢,s,@) € A, the proof obligation generator

114

constructs the sentence:

(Yvars(t)) |a = \V/ @0 v \/ @ (5.3)
I=r if &’ €€, I:s’ if @’ €Mq s.t. s'<s,
0 s.t. Cllo]=t 0 s.t. 0=t

The first phase’s algorithm is quite similar to previous algorithms in sufficient
completeness checking for unsorted theories. The difference is that we specialize
using constructor memberships rather than constructor symbols. Due to the
conditions in the rules and memberships in the specification, our first phase is
not a decision procedure. Instead, in the second phase of our algorithm, the
patterns from the first phase are matched against the left-hand side of each rule
in the specification. If the pattern matches an unconditional rule, we discard
it. Otherwise, we generate a proof obligation for the pattern which is sufficient
to show that instances of the pattern are reducible or constructor terms. These
statements the second phase generated are then directly passed to the Maude
Inductive Theorem Prover (ITP) to be discharged.

5.3.2 Maude ITP

The Maude ITP [27] is an experimental interactive tool for proving properties
of the initial algebra Te of MEL specifications in Maude. It is described in more
detail in Chapter 7, but we will introduce some of the design decisions here to
keep this chapter more self contained.

The ITP tool has been written entirely in Maude, and is in fact an ezecutable
specification in MEL of the formal inference system that it implements. The ITP
inference system treats MEL specifications as data — for example, one inference
may add to the specification an induction hypothesis as a new equational axiom.
This reflective design, in which Maude equational specifications become data at
the metalevel, is ideally suited for implementing the I'TP. Using reflection to
implement the ITP tool has one important additional advantage, namely, the
ease to rapidly extend it by integrating other tools implemented in Maude using
reflection, as it is the case of the SCC.

In the ITP, the user introduces commands which are interpreted as actions
that may change the state of the proof, specifically the set of goals that remain
to be proved, with each goal consisting of a formula to be proved and the MEL
specification in which the formula must be proved. After executing the action
requested by the user, the tool reports the resulting state of the proof. The
main module implementing the ITP is the ITP-TOOL module. In this module,
states of proofs, sets of goals, goals and formulas are represented by terms of
different sorts, and the actions interpreting the ITP commands are represented
as different, equationally defined functions over those terms.

The SCC has been integrated with an older version of the ITP by adding two

two new commands, scc and sccx, to the ITP; the scc* command is an exten-

115

sion of scc that takes into account the information obtained by this command
at run-time. We begin with the scc command. This command is implemented
by extending the module ITP-TOOL with a new, equationally defined function

that, given an equational specification £, does the following:

o first, it calls on £ the function checkCompleteness, which implements the

sufficient completeness analyzer described in Section 5.3.1;

e then, it converts the resulting proof obligations into a set of ITP goals,

which are all associated with Eq;

e finally, it eliminates from the state of the proof those goals that can be

proved automatically using the ITP auto* command.!

5.3.3 Example

We illustrate the algorithm with the powerlist example from Section 5.1. In the

powerlist specification, the relevant defined memberships M are:

cmb (P zip Q) : Pow if len(P) = len(Q) [metadata "dfn"].
mb len(P): Nat [metadata "dfn"].

Our initial patterns with conditions are then just

P x Q : Pow if len(P) =len(Q) A P : Pow A Q : Pow
len(P) : Nat if P : Pow

We have written each pattern as a conditional membership, because it has the
information as a membership: a term for the pattern, a sort for the sort we
know this term has in the overall theory £, and a condition on the variables in
the term. Since the first pattern can unify with, but does not match, the left
hand side of the equation [I] zip [J] = [I] tie [J], our algorithm expands
P using the constructor memberships Mq with sort Pow. We then replace the

first pattern with two new patterns:

[I] x Q : Pow if len([I]) = len(Q) A I : Nat A Q : Pow
(P1 | P2) X Q : Pow if
len(Py | P2) =len(Q) Alen(P;) =len(P2) A Py : Pow A Py : Pow A @ : Pow

IThe implementation of the auto* command in the ITP-SCC integrates its rewriting-
based simplification strategy with a decision procedure for linear arithmetic with uninterpreted
function symbols; this theory includes many of the formulas that one tends to encounter in
proof obligations generated by the SCC tool.

116

This process is repeated with different patterns until terminating with the fol-

lowing patterns:
[I] x [J] : Pow if len([I]) = len([J]) A I : Nat A J : Nat (5.4)

[I] x (Q1 | Q2) : Pow if len([I]) = len(Q1 | Q2) (5.5)
Alen(Q1) =len(Q2) AT : Nat A Q1 : Pow A Q2 : Pow

(Py | Py) x [J] : Pow if len(P; | P2) = len([J]) (5.6)
Alen(Py) =len(Py) A Py : Pow A Py : Pow A J : Nat

(Pl | PQ) X (Ql | QQ) : Pow if len(P1 | PQ) = len(Q1 | QQ) (57)
Alen(Py) = len(Py) Alen(Q1) =len(Q2) A Py : Pow A Py : Pow
A Q1 : Pow A Qs : Pow

len([I]) : Nat if I : Nat (5.8)

len(Py | Py) : Nat if len(Py) = len(P2) A Py : Pow A Py : Pow (5.9)

We can immediately discard patterns (5.4), and (5.7)—(5.9): they match the
left-hand sides of unconditional equations in the powerlist specification, and
thus all the ground instances of these patterns are reducible. Moreover, as the
patterns (5.8) and (5.9) are the only patterns for the len membership and len
does not recursively depend on the other defined membership, we can discharge
the length membership and add it to the specification before discharging the
remaining obligations.

Neither of the remaining patterns (5.5) and (5.6) can match an equation,
but each pattern has conditions which we would like to show are unsatisfiable.
These patterns are passed to the proof obligation generator which returns the

following two proof obligations.

len([1]) = len(Q; | Q2) Alen(Q1) =len(Q2) A I : Nat A Q1 : Pow A Q2 : Pow
= [I] x (@1 | Q2) : Pow
len(P; | Py) = len([J]) Alen(Py) = len(Ps) A Py : Pow A Py : Pow A J : Nat

:>(P1|P2)X[J}IPOW

Both of these proof obligations can be discharged by the ITP automatically. By

rewriting on the first proof obligation, we are able to reduce it to:

1 =1len(Q1) +len(Q2) Alen(Q) =len(Q2) A I : Nat A Q1 : Pow A Q2 : Pow
= [I} X (Ql | Qg) : Pow

Next, the I'TP’s linear arithmetic decision procedure can be used to show that
the antecedents 1 = len(Q1) + len(Q2) Alen(@Q1) = len(Q2) in the goal is un-

117

satisfiable, and therefore we can discharge the first obligation. The same two
steps of rewriting and linear arithmetic are able to discharge the second obliga-
tion as well, and thus the powerlist specification in Section 5.1 is proved to be

sufficiently complete.

5.4 'Tree automata-based checking

The sufficient completeness checker in the previous section deals well with con-
ditional rules, but has difficulty with specifications using the other important
extension of CERM systems — rewriting modulo axioms. This section presents
a second sufficient completeness checker based on equational tree automata tech-
niques that is capable of checking specifications with rewriting modulo axioms.
Due to the arbitrary conditions that may appear in memberships, it appears
quite difficult to apply tree automata techniques to arbitrary MEL specifica-
tions. However, our tool is supports order-sorted, left-linear and unconditional
specifications with rewriting modulo any combination of associativity, commu-
tativity, and identity axioms. This class appears quite small relative to the
much more general class of arbitrary MEL specifications, but it contains many
interesting specifications that existing tools have not been able to check.

As an example, our tree automata-based checker is capable of handling the

NAT-LIST example from Section 2.4 which we reproduce below:

fmod NAT-LIST is protecting NAT .
sort NeList List .

subsorts Nat < NeList < List .

op nil : -> List [ctor].

op __ : NeList NeList -> NeList [ctor assoc id: nil].
op __ : List List -> List [assoc id: nil].
var N : Nat . var L : List .

op head : NeList -> Nat .
eq head(N L) = N .
op end : NeList -> Nat .
eq end(L N) = N .

op reverse : List -> List .

eq reverse(N L) = reverse(L) N .

eq reverse(nil) = nil .

endfm

In this specification, the operator nil is a constructor, while the operator __ is
overloaded: it is defined on all lists, but only a constructor on non-empty lists.
The operations head and end are partial operations which are only defined on

non-empty lists while reverse is defined on all lists.

118

The previous sufficient completeness checker described in Section 5.3 is not
able to show the sufficient completeness of NAT-LIST. That checker would spe-
cialize the associative append symbol to construct terms that are wider, such
as head(ly(I2l3)), that still would not match any equations. For this approach
to work, one must be able to bound the width of the terms we consider. For
unsorted and many-sorted left-linear specifications with rewriting modulo AC,
this is possible as shown by Jouannaud and Kounalis [82]. However, it appears
quite difficult to extend their results to the order-sorted case.

To deal with the order-sorted case, we cast the sufficient completeness prob-
lem with rewriting modulo axioms as a decision problem for equational tree
automata [123]. Equational tree automata extend regular tree automata to
allow some of the symbols to have equational properties such as associativity
and commutativity. The automaton then recognizes languages that are closed
modulo those equational properties. This is important, because when rewrit-
ing modulo, the set of reducible terms contains not only the set of terms that
syntactically match a rule, but also terms equivalent modulo the axioms to
syntactically matching terms.

The idea of using tree automata in checking sufficient completeness is not
a new one. Tree automata techniques were used to yield a sufficient complete-
ness checking algorithm that was optimal from the complexity theory point of
view. It was shown in [90] that sufficient completeness was EXPTIME-hard,
but an exponential time algorithm for checking it was unknown. This problem
remained open for several years, until [32] described an exponential time algo-
rithm for checking sufficient completeness that worked by casting the problem
as a decision problem for reduction tree automata [24].

The results in [32] depend on the fact that reduction tree automata are capa-
ble of recognizing the reducible terms of a rewrite system. For rewriting modulo
axioms A, this set of terms must be closed modulo A. In casting sufficient com-
pleteness of a specification as an equational tree automata with equations A,
we lose the support for non-linear constraints of reduction tree automata, but
gain the ability to recognize equationally closed sets of terms.

The class of CERM systems which our tool can handle correspond to the
order-sorted subset that are ground weakly-normalizing, ground sort-preserving

and have left-linear rules. This class is defined precisely below:
Definition 5.4.1. A CERM system R/A is TA checkable when
(a) R/A is ground weakly reductive and ground sort-preserving.

(b) Every aziom in R has the form aif x1 : 81 A+ Axy : 8, where x1,...,2,
are distinct, vars(a) C {x1,...,x, } and each variable appears at most once
in the left-hand-side of a.

The details for how to convert the sufficient completeness property for rewrit-

ing modulo into a propositional emptiness problem were originally presented

119

in [74]. Our presentation here is slightly different, but captures the same basic
idea. The key idea is to construct an automaton Asc with two different types of
states: (1) for each sort s € S, Asc contains states ¢s and dy: ¢s recognizes terms
with sort s using only the memberships in Mg, and d, recognizes terms with a
defined root operator and constructors underneath; (2) Asc contains states for
recognizing intermediate subterms in the left-hand side of rules in R as well as a
state r which recognizes R /A-reducible terms. We then define the propositional
formula ¢ = —r A\ g ds A —cs.

If we recall from Section 2.3 that A denotes the underlying unsorted equa-
tional theory obtained from the axioms A, then it is not difficult to show the

following theorem relating sufficient completeness and L, (Asc/A).

Theorem 5.4.2. Let R/A be a TA checkable CERM system with rules R,
memberships M, and a signature ¥ = (K, F,S) Given a set of memberships
Mqo C M, let Rog = RU M.

There effectively exists a equational tree automata Asc and propositional

formula ¢ such that R/A is sufficiently complete relative to constructor mem-
berships Mo iff Ly(Asc/A) = 2.

Proof. We observe that since the memberships in a TA checkable specification
do not have equations in the conditions, if ¢ is R/A-irreducible and R/A ¢ : s
or respectively Ro/AFt: s, then M/AF t: s or respectively Mo /AFt: s.
Every TA checkable CERM system R/A is ground weakly reductive and
ground sort-preserving, consequently we can reduce checking the sufficiently
completeness of R/A relative to Mg to checking defined reducibility of R/A
relative to Ma = M — Mgq. We check this by defining a language £, (Asc/A)
which contains an equivalence class [t] € T iff there exists an R/A-irreducible

ground term t € Ty, for which there exists
e a membership (VZ:35)1: s in Ma and
e a ground substitution 6 : T — T

such that Mq/A F 0(x) : s, for all variables z € T, t =4 10, and Mo /A /¢ : s.
Since the equations in A are kind independent (see Def. 2.6.1), we have that
Ly(Asc/A) = @ iff R/A is sufficiently complete relative to M.

In order to define £4(Asc/A), we define the set of Ir which denotes the
non-variable strict subterms appearing in the left-hand side of clauses in R.
The elements in I are further annotated with the sorts bound to each variable

in a clause. Specifically,
Ir={tz:3]| (VT :3) ain RAC[t] €lhs(a) Nt € X NC #£0O}.
The states @@ of the automaton Agc is the set
Q={r"qryU{ds,cs|s€S}tU{cygs |u[T:5] €lr}.

120

To simplify later notation for each variable z appearing the left-hand side of a
rule (VT :)« in R, we identify ¢,z with c,, where s, is the variable associated
toxinx:s.

We define the clauses in Ag; as follows.

e For each term f(¢1,...,t,)[T : 3] € Ig, Asc contains
Cf(t1ye.. tn)[T:5] (f(w1,...,2p)) = Ct, [z:3) (71),..., Ct, [z:3] (zn)
e For each constructor membership (VZ : 3) f(t1,...,tn) : s in Mg, Asc
contains
cs(f(x1, .. xn)) <= ez (1), ez (Tn)

e For each constructor membership (VZ : 3) x : s in Mg, Asc contains
cs(x) < ¢, ().
e For each defined membership (VT : 3) f(t1,...,t,) : s in Ma, Asc contains
ds(f(21,...,20)) < et z5(21), - - -, o @3] (Tn)
e For each defined membership (VZ :3) x : s in Ma, Agc contains
ds(z) < ds, ().
e For each operator f:ky...k, — kin F', Agc contains
ar(f(x1, . 2n) < qr(21), - - g1 (TH0)-
e For each rule (VZ :35) f(t1,...,tn) — u in R, Agc contains
r(f(x1,.. ., 10)) < s (®1), -5 Gy zs) (Tn)-
e For each rule (VZ :35) y — win R, Asc contains
r(z) < Cs,, (£) and r(z) < ds, -

e Finally, for each operator f € F with arity n and index @ € [1,n], Asc

contains

r(f(x1,...,x0)) < qr(1), (X)), qr(Th).

121

By induction on t € T5;, we have

te L. (Asc) &= Mqhrt:s, and
t€ Leypr(Asc) <= (3t =ud A (Vo €T) Mo - 0(x) : s.

We can use these results and the fact that £, (Asc) = T, to show that t €
L, (Asc) iff there is a ¢ is R-reducible, and to show that the terms in £y, (Asc)
are those whose root has a sort using a defined membership and whose subterms
are constructors.

To reduce sufficient completeness to a propositional emptiness problem for

equational tree automata, we define the formula

(b:ﬂr/\\/ds/\ﬂcs.

ses

This formula defies a language accepting irreducible terms that accepted by the
language Lq, (Asc/A) for some sort s € s that are not constructor terms with
sort s. By the restrictions on A in the Definition 2.6.1 of CERM systems, it fol-
lows from Theorem 3.1.1 that £4(Asc/A) contains exactly the counterexamples
to defined reducibility. Thus R/A is sufficiently complete iff £4(Asc/A) = @ by
Theorem 5.2.7. 0

The decidability of the above emptiness problem depends on the particular
axioms A. It is decidable when the axioms in the specification are any com-
bination of associativity, commutativity, and identity, except when a symbol is
associative but not commutative. For the case of commutativity alone, this was
shown in [123]. For symbols that are both associative and commutative, this
was shown in [125]. Identity equations can be transformed into identity rewrite
rules using a specialized completion procedure along the lines of coherence com-
pletion in [140], and then we can extend the emptiness test to only recognize
terms that are in normal form with respect to identity rewrite rules.

For symbols that are associative and not commutative, the problem is unde-
cidable. However, for these associative symbols, we can use the semi-algorithm
presented in Chapter 3. The semi-algorithm presented in that work is capable
of always showing non-emptiness if a language is non-empty, and capable of
showing emptiness if the language is empty and certain regularity conditions
are satisfied. What this means for sufficient completeness checking is that we
can always find counterexamples to sufficient completeness if they exist, and can
show sufficient completeness in most practical specifications, where the sorts in
a specification are used to model regular data structures like lists or non-empty
lists.

The implementation of the tree automata based SCC has two major compo-
nents: an analyzer written in Maude that generates the tree automaton empti-
ness problem from a Maude specification; and a C++ library called CETA that

122

performs the emptiness check.

Analyzer. The analyzer accepts commands from the user, generates a propo-
sitional emptiness problem from a Maude specification, forwards the problem
to CETA, and presents the user with the results. If the specification is not
sufficiently complete, the tool shows the user a counterexample illustrating the
error. The analyzer consists of approximately 900 lines of Maude code, and
exploits Maude’s support for reflection. The specifications it checks are also
written in Maude.

If the user asks the tool to check the sufficient completeness of a specification

that is not left-linear and unconditional, the tool transforms the specification
by renaming variables and dropping conditions into a checkable order-sorted
left-linear specification. Even if the tool is able to verify the sufficient complete-
ness of the transformed specification, it warns the user that it cannot show the
sufficient completeness of the original specification. However, any counterex-
amples found in the transformed specification are also counterexamples in the
original specification. We have found this feature quite useful to identify er-
rors in Maude specifications falling outside the decidable class — including the
sufficient completeness checker itself.
CETA. The propositional tree automaton generated by the analyzer is for-
warded to the CETA tree automata library which we have developed. CETA is
a complex C++ library with approximately 10 thousand lines of code. Empti-
ness checking is performed by a subset construction algorithm extended with
support for associative and commutativity axioms as described in Chapter 3.
The reason that CETA is so large is that the subset construction algorithm
relies on quite complex algorithms on context free grammars, semilinear sets,
and finite automata.

We have found that CETA performs quite well for our purposes. Most exam-
ples can be verified in seconds. A table with a few of the checked specifications
from the Maude prelude, Maude primer [108] and Maude book [28] is shown in
Figure 5.1. All successfully checked modules are sufficiently complete, however
modules are in italics if the sufficient completeness checker identified errors in
early versions. The column labeled |£]| indicates the total number of sorts, oper-
ators, and equations in the theory £, while the column labeled |ETA| indicates
the total number of states, operators, and rules in the corresponding automa-
ton. The current version of the checker is not fast enough to verify itself in less
than our time limit of 30 minutes, but has been able to successfully identity real
sufficient completeness errors in early versions of the checker.

As an example, in Figure 5.2, we present a tool session in which we check two
specifications: NAT-LIST from the previous section; and NAT-LIST-ERROR which
updates NAT-LIST to change the operator declaration of head from op head :
NeList -> Nat to op head : List -> Nat. Since the NAT-LIST specification
contained an associative symbol, it fell outside the class known to be decidable.

However, the CETA library is still able to show the automaton given by the

123

Module |€] |[ETA| Time Module |€] |ETA| Time
TRUTH-VALUE 3 22 0.33s META-LEVEL 610 2011 2.52s
TRUTH 6 22 0.35s COUNTER 56 206 0.44s
BOOL 19 60 0.38s LOOP-MODE 116 439 0.69s
EXT-BOOL 25 74 0.38s CONFIGURATION 18 105 0.35s
NAT 55 204 0.47s NAT-CONS 33 135 0.37s
INT 96 262 0.55s MY-NAT-LIST 30 109 0.36s
RAT 197 397 1.20s NAT-LIST-FIX 33 114 0.45s
FLOAT 56 206 0.42s BLACKBOARD 60 217 0.50s
STRING 74 288 0.57s CHESS-COVER 80 308 0.53s
CONVERSION 262 677 1.35s DIE-HARD 62 238 0.53s
RANDOM 56 208 0.45s JOSEPHUS 63 245 0.51s
NAT-LIST 90 291 0.65s JOSEPHUS-GEN 64 251 0.51s
QID-LIST 113 401 0.70s KHUN-PHAN 66 258 0.46s
QID-SET 128 431 0.74s CHIPS 70 273 0.45s
META-TERM 143 447 0.69s RABBIT-HOP 68 254 0.54s
META-MODULE 499 1538 1.89s CC-LOOP 1381 3837 >30m

Figure 5.1: SCC benchmarks

sufficient completeness analyzer was empty, and therefore the specification was
sufficiently complete. The checker also finds the correct counterexample for
NAT-LIST-ERROR.

5.5 Conclusions and future work

In this chapter, we have presented several contributions advancing methods for
proving sufficient completeness to handle conditional specifications involving
partial functions and where deduction is performed modulo axioms. Our main

contributions include:

e We have studied the sufficient completeness of such specifications and their
associated rewriting systems in greater generality than previous work, and

arrived at a novel definition of sufficient completeness.

e We have extended the Maude Inductive Theorem Prover with a sufficient
completeness checker for conditional specifications. This checker is not
a decision procedure, but nevertheless we have been able to discharge
sufficient completeness automatically for nontrivial examples by using the
heuristics built into the ITP.

e Finally, we presented a sufficient completeness checker based on equational
tree automata techniques that supports sufficient completeness checking
with rewriting modulo any combination of associativity, commutativity,

and identity.

Our work in developing sufficient completeness checkers for more complex
equational specifications has already led to two complementary approaches, each

able to handle specifications outside classes that could be handled by previous

124

Maude> in natlist.maude

fmod NAT-LIST

fmod NAT-LIST-ERROR

Maude> load scc.maude

Maude> loop init-scc .

Starting the Maude Sufficient Completeness Checker.

Maude> (scc NAT-LIST .)

Checking sufficient completeness of NAT-LIST ...

Success: NAT-LIST is sufficiently complete under the assumption that
it is weakly-normalizing, ground confluent, and sort-preserving.

Maude> (scc NAT-LIST-ERROR .)

Checking sufficient completeness of NAT-LIST-ERROR ...

Failure: The term head(nil) is a counterexample as it is an
irreducible term with sort Nat in NAT-LIST-ERROR that does not
have sort Nat in the constructor subsignature.

Figure 5.2: Example SCC session

approaches. Although significant progress has been made, there is a great deal
of opportunity both to develop new techniques and to improve the performance
of existing techniques.

A number of further extensions of this work seem worth investigating. A first
extension is to continue to push our characterization to consider checking specifi-
cations with context-sensitive rewriting (see the next chapter) and parametrized
specifications. A second important topic is the generation of counterexamples
to show lack of sufficient completeness: ground term counterexamples are prac-
tical and easy to generate, but investigating ways of symbolically describing sets
of counterexamples may be quite useful for other purposes, such as generating
induction schemes for theorem provers.

A third topic worth investigating is what we called the “second prong” in
the introduction, namely, integrating sufficient completeness checking and in-
ductive theorem proving in order to handle specifications outside the decidable
subclasses. One recent approach [18] attempts to combine the tree automata
and narrowing approaches with integration to a theorem prover to handle con-
ditional, constrained rewrite specifications. This work is able to check the suf-
ficient completeness of many-sorted rewrite specifications for which there may
be conditional rules involving defined symbols and constrained rules involving
constructor symbols. It accomplishes this by first constructing a constrained
tree grammar to recognize irreducible constructor terms, and using the tree
grammar during narrowing. Like the work in [73], this work targets the case of
syntactic rewriting, but does not address specifications with rewriting modulo
axioms.

A fourth topic that is important for scalability purposes is that of modularity

techniques so that the sufficient completeness of a large equational specification

125

is not checked as a single monolithic module, but is ensured by checking a col-
lection of submodules in which the specification is decomposed. This is quite
natural in Maude, since large specifications are almost always obtained by com-
posing many different modules together, and sufficient completeness techniques
should be extended to exploit this additional composition information.
Further advances in these four areas should provide both foundations and
algorithms in which to build a next-generation TA-based sufficient completeness
tool for MEL specifications modulo axioms. This would make sufficient com-
pleteness checking available for a very wide class of specifications in Maude and
other equational languages for specification and programming with advanced

features.

126

Chapter 6

Completeness in
context-sensitive rewriting

In previous chapters, we have discussed partiality and rewriting modulo axioms
as important extensions that increase the expressitivity of rewrite specifications.
Another important extension is that of user-programmable evaluation strategies
based on context-sensitive (CS) rewriting (see, for example [101, 103, 145]).
They allow very fine-grained control at the level of each individual function
symbol on how the rewriting evaluation is performed. Their value and practical
importance has been recognized in many equational languages. OBJ2 [52] was
the first such language supporting them; and they are supported in all languages
in the OBJ family, including CafeOBJ [51] and Maude [28]. In practice, CS

rewriting can be used for two somewhat different purposes:

1. to increase the efficiency of a standard equational program without chang-
ing its meaning: for example, by restricting the evaluation of an if-then-
else symbol to its first, Boolean argument to avoid wasteful or even non-

terminating computations; and

2. as a way to compute with infinite data structures such as the infinite
stream of all prime numbers, in a lazy way; in this second case, CS rewrit-

ing provides an elegant, finitary way of computing with infinite objects.

Expressiveness is substantially increased in both of these ways, since the user can
both control the efficiency of program execution and support new applications
involving infinite data structures.

This is all very well. However, there are a number of open research ques-
tions about how to reason formally about equational programs supporting CS
rewriting for verification purposes. Two areas where important progress has
been made are in methods for proving termination, e.g., [60, 102, 145] and con-
fluence [103] of CS equational programs. But other important questions remain
unexplored.

Imagine that you want to use an inductive theorem prover to verify some
property about a CS equational program. No inductive theorem prover that we
are aware of allows reasoning about CS programs. Is it ok to ignore the CS
information and just reason about the underlying equational theory? We think

that, in general, the answer is: definitely not! Why not? Because the model

127

on which the inductive reasoning principles are sound and the model of a CS
program may be quite different.

What models are we talking about? Well, that is, one of the interesting re-
search questions. For an inductive theorem prover, the model of interest is the
initial algebra Tg of a specification £. In fact, this initial algebra semantics is
the standard mathematical semantics of equational programs in languages such
as OBJ, CafeOBJ, and Maude. Furthermore, provided that the equational pro-
gram is weakly normalizing and ground confluent, the initial algebra semantics
fully agrees with the operational semantics, in the precise, mathematical sense
that the initial algebra T¢ and the canonical term algebra Cang 4 of the rewrite
system R /A associated to £ are isomorphic. For CS rewriting the matter is less
obvious, since we only have an operational semantics provided by the CS rewrit-
ing relation, but no mathematical models in the form of algebras have been put
forward prior to our work. Therefore, the first contribution in this chapter is to
put forward such an algebra, namely, the algebra Can‘;z /A of p-canonical forms,
for u the replacement map of the given CS program. We do so not just for
vanilla-flavored, untyped CS programs, but for the more general and expressive
CS programs with other features such as order-sorting and rewriting modulo
axioms that one encounters in actual equational programming languages.

The importance of the algebra Can% /A is that it makes possible articulating
and providing proof methods for three important CS completeness problems,

namely:

1. p-canonical completeness, which means satisfying the set-theoretic equal-

ity Can%/A s = Canp 4 ¢ for each sort s in the specification;

2. p-semantic completeness, which model-theoretically corresponds to the
case where the surjective ¥-homomorphism ¢ : Cany /a — Te, which we
show always exists under minimal assumptions, is an isomorphism. Proof-
theoretically this means that the sound way of proving ground E-equalities
by CS rewriting is also complete, and that the Maude ITP is a suitable

tool for reasoning about the context-sensitive specification;

3. p-sufficient completeness, which is a new notion generalizing to the CS
case the usual sufficient completeness of equational function definitions
with respect to a signature of constructors. The subtlety here is that in
general it would be too strong to require that constructors appear in all
positions of a term ¢ in p-canonical form: we only make such a requirement

for replacing positions in t.

We not only articulate these notions, but we also provide proof methods
for them in the form of decision procedures under mild assumptions about the
given CS program. Given that the CS programs we consider perform rewrit-
ing modulo axioms and are order-sorted, our methods are also based on equa-

tional tree automata described in Chapter 3 that can take into account both

128

sort information and reasoning modulo axioms. These decision procedures have
been implemented in an extension of the tree automata-based Maude Sufficient
Completeness Checker (SCC) discussed in Section 5.4, and we have used sev-
eral Maude programs to illustrate both the basic ideas and the use of SCC in
verifying CS completeness properties.

The chapter is organized as follows. In Section 6.1, we introduce the precise
class of CS term rewrite systems we are considering. In Section 6.2, we define
the canonical term algebra for a CS specification. In Section 6.3, we define the
three notions of CS completeness, and in Section 6.4 we show how one can use
equational tree automata techniques to check these completeness notions under
appropriate assumptions. Finally, we discuss related work and suggest future
avenues of research in Section 6.5. Much of this work has appeared previously
in [70].

6.1 CS order-sorted term rewrite systems

We are interested in studying and analyzing context-sensitive rewriting for
order-sorted term rewrite systems. In CS rewriting, there is a function pu : F' —
P(N), called the replacement map, which maps each function symbol f € F' to
a set of replacing positions u(f) C {1,...,arity(f)}. The replacement map p is
used for restricting rewriting so that in rewriting a term f(t1,...,t,) € Tx(X),
the subterm ¢; can only be rewritten if i € u(f). A CS term rewrite system is
a pair (R/A, 1) where 1 is a replacement map for the signature of R/A.

Given a replacement map p, the set of positions that may be rewritten are

called the p-replacing positions and denoted by pos*(t). Formally, we have:

post(x) = {e} and pos”(f(t1,...,tn)) = {e} U U {iw | w € pos*(¢;)}.
iep(f)

A context C'is p-replacing when the hole appears in a p-replacing position.

We write t — S U if ¢ rewrites to u using the rules in R /A and replacement
map (i in a single rewrite step, i.e., there isarule [— r in R such that t =4 C[l6]
and u =4 CIrf] for some p-replacing context C' and substitution 6 : X —
Tx(X). We let H%/A,u denote the transitive closure of —g , . and write
t H;Z/A,u u iff ¢ _);;/A,u uwort =4 u We write ¢ l%/A w if t and v can be
rewritten to the same term, i.e., there is a term v € Tx;(X) such that ¢ _);Q/A,u v
and u _ﬁ%/A,u .

A term ¢t € Tx(X) is (R/A, p)-reducible iff there is a u € Tx(X) such
that ¢t —z , , u, and (R/A, u)-irreducible otherwise. We also say that a u-
irreducible term ¢ € Tx(X) is in p-canonical form. We write ¢ —>!R/A’# w if
t =%/, wand wis (R/A, p)-irreducible. R/A is p-weakly normalizing when
for each term t € T (X) there is a term u € Tx(X) such that ¢ —>IR/A7M u. R/A

is p-terminating if the relation —R/Ap IS Noetherian. R/A is u-confluent if for

129

all t,u,v € Tw(X), t —>;‘3/A7# u and ¢ _);Q/A,u v implies u i%/A v. R/A is p-
sort-preserving if for all terms ¢ € Ts(X)s and u € Te(X)k,, t =% /4, v implies
that there is a term v € Tx(X); such that u —R/a, V- When R/A is p-weakly
normalizing, pu-confluent, or u-sort-preserving on ground terms, we say that it is
ground p-weakly normalizing, ground p-confluent, or ground p-sort-preserving,
respectively.

When the replacement map p allows rewriting at every subterm position,
context sensitive rewriting specializes to rewriting in the ordinary sense. Let
pT be the replacement map f +— {1,..., arity(f)}. It should be clear that
b —pp U iff ¢ H%/A%LT u, and ¢ H;‘Q/A u iff ¢ H%/AJJT u. Additionally
R/A is weakly normalizing iff it is ut-weakly normalizing. More generally, this
convention extends to many other properties. For example, R/A is confluent iff

it is pr-confluent.

6.2 CS canonical term algebras

When the X-rewrite system R/A is ground p-weakly normalizing and ground
p-confluent, for each term t € T, there is a (R/A, p)-irreducible term, denoted
by ¢ l%/A such that ¢ _)!R/A,u t l%/A , which is unique up to A. When R/A
is additionally sort-preserving, we can then define a X-algebra of (R/A, u)-

canonical forms as follows:

Definition 6.2.1. Let R/A be an order-sorted TRS with ¥ = (S, F, <) that is
ground p-weakly normalizing, ground p-confluent and ground p-sort-preserving.

The canonical term algebra for (R/A, 1) is the X-algebra Can;%/A such that:
e for each sort s € S, Can;é/A s=1tla€Tas |t is (R/A, p)-irreducible };

o for each f € Fy, Cang/AJ:w_)s([tﬂ,...,[tn]) = [f(u1,...,un) l;é/A]
where u; € [t;]| NTx, s, fori € [1,n].

The algebra Can% /A has a strong computational meaning: it is exactly the
algebra of values (u-normal forms) that a user interacting with a system that

I Therefore, it provides the perfect

evaluates (R/A, 1) obtains by u-reduction.
algebra for the operational semantics of (R/A, 1). This model is in a sense situ-
ated between the term algebra T, and the model for the mathematical semantics
of R/A as an equational theory, namely, the initial algebra Te for the theory
€& = RUA. On the one hand, by initiality we have a unique homomorphism
Can#a/A Ty — Can%/A which, as shown below, may not be surjective. On the
other hand, Can#3 /A is more concrete than Tg, and therefore a sound, but not
necessarily complete, model for equational computation with R/A. That is, we

have:

f (R/A, 1) is p-terminating, this is exactly true; if it is only u-weakly normalizing, this
requires either a p-normalizing strategy, or the use of breadth-first search.

130

Proposition 6.2.2. Given a TRS R/A over a signature ¥ = (S, F, <), let £
denote the theory € =R U A.
If R/A is ground p-weakly normalizing, ground u-confluent, and ground p-

sort-preserving, then the family of functions {¢s : Can%/A s = Te stses with
gs : [t]a = [tle

defines a surjective X-homomorphism q : Can%/A — T

Proof. The mapping ¢ is a ¥-homomorphism, because for each f € Fy, . s and
[t1]a € Can%/A)sl,..., [tn]a € Can

for i € [1,n], and then we have,

H .)
RJA,s, We can choose terms u; € [t;]aNTy s,

Trua,r(q([ti]a), ..., q([tn]a))
— [fls s un)le = a(Cants (1) [ta))

as Cang , (([t1]a, ..., [ta]a) € [f(u1,...,un)]e by the soundness of —% , .
O

One typically constructs ground terminating and confluent specifications in
order to reason about the equivalence of two terms algebraically, and it is impor-
tant to be able to reduce the equality problem ¢ =¢ u for the theory £ = RU A
to the convergence problem t l% /4 U- When considering ordinary (not context-
sensitive) rewriting, we have t =¢ w iff t |4 w iff t |g/a=4 u | R a for terms
t,u € Ty, when R is ground weakly normalizing, ground confluent, and ground
sort-preserving. In this case, we are guaranteed that Cang,, = Can“RT/ 4 18
isomorphic to TRy, thus obtaining a perfect agreement between the opera-
tional semantics of R/A and the mathematical, initial algebra semantics. In
general, as we show below, this is not the case for CS rewriting, even if R/A is
ground p-terminating, ground p-confluent, and ground p-sort-preserving. That
is Can%/A is sound, since t 17%/,4 u implies t =¢ u, but in general is not complete,
ie., t=¢ u#tl;‘z/A u.

Consider the TRS R/A with single sort s, symbols a: — s, b: — s, and
f:s— s, and replacement map p where u(f) = @ with the rules: a — f(a)
and b — f(a). This specification is clearly p-weakly normalizing, p-confluent,
and p-sort-preserving. However, Trua,s = { [alrua} whereas Can% JALs is the
infinite set {{£(a)}, {£(0)}. {F(F@)}AFFO)}, -)

The algebra Canj, /A differs from Cang,4 in several other properties as

well. In general, it is not the case that Can%/A(t) =t l%/A . In the spec-

ification above, Canﬁ/A(f(a)) = f(Cang,(a)) l%/A = f(f(a)), whereas

n
R/A

Can% /A is neither surjective nor idempotent. For example, there is no term
t € Ty, such that Can;é/A({t}) = {f(b)}, while Can%/A({a}) = {f(a)} and
Cang , ({f(a)}) = {f(f(a))}.

fla) 1% =1 (a). Additionally, the unique homomorphism Can :Ta —

131

6.3 Completeness in context-sensitive rewriting

We have now shown that the usual requirements of p-termination, p-confluence,
and p-sort-preservation are insufficient to guarantee that the operational se-
mantics of CS term rewriting corresponds to the mathematical semantics of the
equational specification. One of the goals of this section is to investigate which
additional conditions we need to impose to guarantee that CS rewriting serves
as a sound and complete technique to deduce ground equalities, i.e., when is the
canonical term algebra Cané‘2 /A isomorphic to the initial algebra Trya4.

In this section, we introduce three notions of completeness for CS term
rewrite systems (R/A, p): (1) p-canonical completeness; (2) p-semantic com-
pleteness; and (3) p-sufficient completeness. The first two notions of complete-
ness are used to characterize the deductive power of CS rewriting. The third
is used to analyze specifications that may not be complete in the first two
senses, but may nevertheless represent useful applications of CS rewriting, such
as specifying infinite data-structures. Later, in Section 6.4, we will show how
these three completeness properties can be checked for specifications satistying
appropriate requirements such as left-linearity, ground p-weak normalization,

ground p-confluence, and ground p-sort-preservation.

6.3.1 Canonical completeness

The first property we consider is whether the canonical forms of CS rewriting

and ordinary rewriting agree:

Definition 6.3.1. A TRS R/A over a signature ¥ is p-canonically complete
if every (R/A, u)-irreducible term t € T is R /A-irreducible.

The theorem below shows that, for specifications that are ground p-weakly
normalizing and ground confluent, canonical completeness is enough to imply

that CS and ordinary rewriting agree on convergence relations.

Theorem 6.3.2. If « TRS R/A over ¥ is ground p-weakly normalizing, -

canonically complete, and ground confluent, then for t,u € Tx, t |gr/a u iff

tl%/A Uu.

Proof. We trivially have that ¢ l%/A u=1|gsau Toseet |g/au=1t L%/A u,
since R/A is p-weakly normalizing, there must be (R/A, p)-irreducible terms
t',u' € Tx such that ¢ *)'!R/A,;l, t’ and u HER/A,LL u'. R/A is p-canonically
complete, so both ¢ and «' must be R/A-irreducible as well. This implies that
t' =4 u' by the ground confluence of R/A. O

As a corollary, we observe that this class of specifications is u-confluent.

Corollary 6.3.3. If R/A is ground p-weakly normalizing, u-canonically com-
plete, and ground confluent, then R/A is ground p-confluent.

132

Proof. If t _>;2/A,u u and ¢ —%/A# v, we have u |g,4 v by the ground conflu-
ence of R/A. Thus, u l%/A v by Theorem 6.3.2. O

In a similar vein, we can show ground p-sort-preservation of R /A by showing
that R/A is ground p-weakly normalizing, u-canonically complete, and sort-

preserving.

Theorem 6.3.4. If R/A is ground p-weakly normalizing, u-canonically com-

plete, and ground sort-preserving, then R/A is ground p-sort-preserving.

Proof. Assume t € Tx ¢ and ¢ _);‘%/A,u u with u ¢ Tx 5. Since R/A is ground
p-weakly normalizing and p-canonically complete, there is an R/A-irreducible
term u' € Ts such that u —>;*3/A7# u’. Because R/A is ground sort-preserving,
there must be a term v € Ty 4 such that *);Q/A v. However, u’ is R/A-
irreducible, so u’ =4 v. It follows that v —7, /A, Vs and R/A is ground p-sort-

preserving. O

Together, Corollary 6.3.3 and Theorem 6.3.4 provide a means to check
p-confluence and p-sort-preservation for p-weakly normalizing, p-canonically
complete, confluent, and sort-preserving specifications. Since one can prove
p-termination with existing tools [43, 61, 104], and check p-canonical complete-
ness of left-linear specifications with the decision procedure in Section 6.4.1, this
eliminates the need for specialized CS-aware checking procedures for this class
of specifications. The case of ground weak normalization and ground p-weak
normalization for p-canonically complete specification yields a relation in the

other direction.

Theorem 6.3.5. If R/A is ground p-weakly normalizing and p-canonically

complete, then R/A is ground weakly normalizing.

Proof. If R/A is ground p-weakly normalizing, then for each term ¢t € Tk,
there is a (R/A, p)-irreducible term w € T% such that ¢ —>IR/A# u. Since
R/A is p-canonically complete it follows that u is R/A-irreducible as well, so

1
tH'R/Au. O

On the other hand, if R/A is ground weakly normalizing and p-canonically
complete, it may not be ground p-weakly normalizing. Let £ = &, and R/A
have the rules f(x) — f(x), a — b, and f(b) — b. R/A is ground weakly
normalizing, because every term can reduce to the R/A-irreducible term b.
Given the replacement map p with p(f) = @, R/A is p-canonically complete,
because b is the only (R/A, u)-irreducible term as well. However, R/A is not
p-weakly normalizing, because f(a) 7R A -

As an example of a u-canonically complete specification, we present a Maude
module in Figure 6.1 for computing the factorial of a natural number. This
specification protects the built-in NAT specification, which contains constructor

operators 0 and s for for zero and successor respectively, along with defined

133

fmod FACTORIAL is protecting NAT .

var X Y Z : Nat .

op p : Nat -> Nat .

eq p(s(X)) =X .

eq p(0) =0 .

op if0 : Nat Nat Nat -> Nat [strat(l 0)].

eq if0(0, Y, Z) =Y . eq ifo(s(X), Y, Z) = Z .

op fact : Nat -> Nat .

eq fact(X) = if0(X, s(0), X * fact(p(X))) .
endfm

Figure 6.1: Factorial example

operators for plus and times. Predecessor p is defined as usual, and the op-
erator if0 is annotated with a strategy strat(1 0), indicating that only the
first argument should be evaluated. Since the other operators are not given a
strategy, Maude uses its default strategy, which evaluates every argument. In
effect, these declarations define a replacement map p where p(if0) = {1} and
w(f) ={1,...,arity(f)} for f # if0. Using if0, factorial can be defined with
a single equation.

Without the strategy declaration on if0, this specification is not terminat-
ing, and evaluating fact(0) quickly leads to a segmentation fault in the Maude
interpreter. However, with the given replacement map pu, the specification is
p-terminating. Moreover, it is p-canonically complete, ground p-confluent, and
ground p-sort-preserving. Since there is only one sort, p-sort-preservation is
obvious. As the specification is left-linear, the decision procedure we introduce
in Section 6.4.1 will allow us to automatically check its u-canonically complete-
ness. To see that it is ground p-confluent one can just observe that it is confluent

(indeed, orthogonal), and use Corollary 6.3.3.

6.3.2 Semantic completeness

Canonical completeness means that Cang /4, = Can#a A for each sort s € S.
By itself, this is not enough to immediately imply that Can% /A and Trua
are isomorphic. This is implied by another notion of completeness, called p-

semantic completeness, which we define below.

Definition 6.3.6. A TRS R/A over ¥ is u-semantically complete iff for all

t,uETg,tl%/Au iff t =ruA U.

This definition at the syntactic level of terms captures the agreement be-
tween operational semantics and mathematical semantics that we want when

the canonical algebra Can% /A is well-defined.

Theorem 6.3.7. If R/A is ground p-weakly normalizing, ground p-confluent,
and ground p-sort-preserving, then R/A is p-semantically complete iff Can,,‘é/A

134

18 1tsomorphic to Trua-

Proof. Let ¥ = (S, F, <) denote the signature for R/A, and let £ = RUA. If
Canf, /A is isomorphic to Tg, they must satisfy the same equations, so R/A is

p-semantically complete. On the other hand, the equivalence
t=cu tl%/A :AUL%/A

implies that the surjective map ¢ : [t]a — [t]¢ is injective for each s € S, and
therefore bijective. To see that ¢ : Can#{ /A T¢ is an Y-isomorphism, we should
check that ¢! is also a ¥-homomorphism. Consider [t]g, then ¢~ 1([t]e) =
[t 17’%/14], and for any operator f : s1...s, — s in X, given [t;] € Tg s, for

i € [1,n], we can choose a term t; L%/A € [tile N Tx s, for i € [1,n], so that

qil(TS,f([tl]v ceey [tnD = q71 ([f(tl lfz/A yeoestn i%/A)]S)

= [f(tl lf/#g/A N l%/A) l’/lug/A]A = Canf,#g/Ayf (qil([tl])a . -vqil([tn])) .
]

The next question that we address is how to check that a specification is
p-semantically complete. The results in the previous section on p-canonical

completeness lead to the following result:

Theorem 6.3.8. A TRS R/A that is ground p-weakly normalizing, p-canon-
ically complete, ground confluent, and ground sort-preserving is p-semantically

complete.

Proof. Let £ =R U A. By Theorem 6.3.5, R/A is ground weakly-normalizing.
It follows that ¢t =¢ u iff t |z 4 u since R/A is ground confluent and sort-
preserving as well. By Theorem 6.3.2, we have that ¢ |g/4 w iff ¢ L%/A u. So
R/A is p-semantically complete. O

As a corollary, we can easily obtain checkable conditions under which all

three of the algebras Canly /A7 Cang /4 and Tryua are isomorphic.

Corollary 6.3.9. If R/A is ground p-weakly normalizing, u-canonically com-
plete, confluent, and sort-preserving, then Can%/A and Cang 4 are both well-

defined and isomorphic to TruA-

Proof. We know that Cang,4 is well-defined and isomorphic to Trua since
R /A is weakly normalizing by Theorem 6.3.5. We also know by Theorems 6.3.8
and 6.3.7, that Can% /A is isomorphic to Try4. Therefore, all three algebras are

isomorphic. O

When the TRS R/A is ground p-weakly normalizing, ground confluent, and
ground sort-preserving, p-canonical completeness is a sufficient condition to

show p-semantic completeness, but it turns out not to be a necessary condition.

135

For example, let R have the rules: f(f(x)) — f(z), a — b, and f(b) — f(a),
and let p be the replacement map with p(f) = @. The initial algebra contains
two equivalence classes: one with the constants a and b, the other with terms
containing f. The (R, u)-canonical terms are b and f(a), and it is easy to show
that Caun7“2 /A and Tryua are isomorphic. Since R is also ground p-weakly nor-
malizing, ground p-confluent and ground p-sort decreasing, R is p-semantically
complete by Theorem 6.3.7. However, f(a) is R-reducible, leaving b the only
R-irreducible term, and so R is not u-canonically complete. In addition to not
being p-canonically complete, R is not ground weakly normalizing. However, if
R is ground weakly normalizing, p-semantic completeness implies p-canonical

completeness.

Theorem 6.3.10. If R/A is ground weakly normalizing and p-semantically

complete, then R/A is u-canonically complete.

Proof. Let £ = RU A, and let t € Ty be an (R/A, p)-irreducible term. As
R/A is weakly-normalizing, there is a R/A-irreducible term u € T such that
t —% /4 U We know that t =¢ u by the soundness of rewriting, and since
R/A is p-semantically complete, we have ¢ 17’% /A U However, both ¢t and u are
(R/A, p)-irreducible, so t =4 u. Since u is R/A-irreducible as well, it follows
that t is R-irreducible. O

In other words, if R/A is ground weakly normalizing and not p-canonically

complete, it is not u-semantically complete either.

6.3.3 Context-sensitive sufficient completeness

Although p-canonical completeness and p-semantic completeness are useful no-
tions of completeness in CS rewriting, there are many interesting applications
of CS rewriting, especially those involving infinite data structures, that are not
p-semantically complete. As an example, we present a typed version of a spec-
ification of infinite lists from [101] in Figure 6.2. In that specification, the term
from(M) represents the infinite list “M : M + 1 : ...”, and there are func-
tions for obtaining the ith element in a list and the first n elements in the list.
This specification is an interesting use of CS rewriting to obtain a terminating
method to execute a non-terminating rewrite system. Although the equation
for from is non-terminating, it is p-terminating because of the strategy on “:”.

The specification INF-LIST is not p-canonically complete, and its canonical
algebra is not isomorphic to the initial algebra of the equational theory given by
its axioms. For example, the terms 0 : from(s(0)) and 0 : s(0) : from(s(s(0)))

are distinct p-canonical terms, however
0: from(s(0)) =myr—r1sT 0 : 5(0) : from(s(s(0))).

In order to check properties of specifications like INF-LIST that are not u-

semantically complete, we therefore need techniques that analyze CS specifica-

136

fmod INF-LIST is protecting NAT .
sorts Nat? List .
subsort Nat < Nat? .

op none : -> Nat? [ctor].
op [l : -> List [ctor].
op _:_ : Nat List -> List [ctor strat(l 0)].

vars M N : Nat . var L : List .

op sel : Nat List -> Nat? .
eq sel(0, N : L) =N .
eq sel(s(M), N : L) = sel(M, L) .

op from : Nat -> List .
eq from(M) = M : from(s(M))

op first : Nat List -> List .

eq first(0, L) = []

eq first(s(M), N : L) = N : first(M, L) .
endfm

Figure 6.2: Infinite lists example

tions directly. The case of u-termination is well understood when A = & or
contains only AC and free symbols [60, 102, 145]. The case of p-confluence has
already been studied in [103].

Another interesting property that seems not to have been studied for CS
specifications is sufficient completeness. Sufficient completeness in term rewrit-
ing specifications means that enough equations have been defined so that all
terms reduce to constructor terms. For example, a sufficiently complete specifi-
cation involving arithmetic over the natural numbers should reduce every term
containing plus and times to a term containing only zero and successor.

Although simple, this definition of sufficient completeness seems too strong
in the context of CS specifications. The reason is that the non-replacing po-
sitions of a symbol intentionally do not reduce their arguments. Accordingly,
our definition of p-sufficient completeness allows defined symbols in the non-
replacing positions of canonical terms, provided that all replacing positions have

constructor symbols.

Definition 6.3.11. Let R/A be a ground p-weakly normalizing and ground -
sort-preserving TRS over a signature ¥ = (S, F, <) equipped with an indezxed
family of constructor symbols C' = {Cuy s} (w,s)es+xs with each Cy s C Fy 5.
We say that R/A is p-sufficiently complete relative to C' iff for all (R/A, u)-
irreducible terms t € T, post(t) C pos(t) where

posg(t) = {i € pos(t) |t =c(t) A\c€ECy s NtETs w }.

Our definition of p-sufficient completeness reduces to the usual definition of

137

ground reducibility when every position is a replacing position, i.e., u = ur.

Theorem 6.3.12. If R/A is ground p-weakly normalizing, p-canonically com-
plete, and ground sort-preserving, then R/A is p-sufficiently complete relative

to C iff it is sufficiently complete relative to C.

Proof. First, it should be noted that our definition of u-sufficiently completeness
only applies if R/A is py-sort decreasing. However, given the conditions, we know
that it is p-sort-preserving by Theorem 6.3.4.

If R/A is p-canonically complete, then R/A and (R/A,) have the same
canonical forms. It follows then that if R/A is sufficiently complete relative
to C, R/A must be p-sufficiently complete. On the other hand, suppose that
R/A is p-sufficiently complete relative to C. The characterization of sufficient
completeness given by Theorem 5 of [74] shows that R/A is sufficiently complete
iff each term ¢ € T s with a defined symbol at the root and constructor subterms
is R/A-reducible. However, since R/A is p-sufficiently complete and the root
must be a replacing position, we know that each (R/A, u)-irreducible term ¢ €
Tx. must have a constructor at the root. So any term with a defined symbol at
the root must be (R/A, p)-reducible, and consequently, R/A-reducible due to
R /A being p-canonically complete. O

6.4 Checking completeness properties

In the left-linear case, we are able to reduce the p-canonical completeness and
p-sufficient completeness properties to the propositional emptiness problem for
equational tree automata. We are further able to use the results of Theo-
rem 6.3.8 to have sufficient conditions for showing the u-semantic complete-
ness of R when R is left-linear, p-weakly normalizing, p-canonically complete,
ground confluent, and ground sort-preserving. We can reduce the CS com-
pleteness properties for a TRS R/A into a propositional emptiness test for an
equational tree automaton over the unsorted theory A. When A consists of any
combination of associativity, commutativity, and identity axioms, we can use
the techniques described in Chapter 3 to check the corresponding propositional

emptiness problem.

6.4.1 Checking canonical completeness

From the definition of p-canonical completeness, we know that R/A is not u-ca-
nonically complete iff there is a term ¢ € T, that is R/A-reducible and (R/A, p)-
irreducible. Therefore, we can reduce the p-canonical completeness problem to
a propositional emptiness problem of an automaton A by defining a language
containing precisely equivalence classes [t] € Tg that are counterexamples.

In order to recognize ground terms that are R /A and (R /A, u)-reducible in a
tree automata framework, we will additionally need to recognize terms matching

subterms appearing in the left-hand side of rules in R.

138

Definition 6.4.1. Given a set of rules R over a signature 3, the intermediate
terms I denote the set of quantified non-variable strict subterms appearing in
the left-hand side of a rule in R along with the sort-constraints on the variables

in the terms, i.e.,
In={t|C[tjelhs(R) At &€ X NC #0O}.

where 1hs(R) denotes the left-hand sides of the rules in R, i.e., lhs(R) = {I |
l—-reR}

Theorem 6.4.2. Given a left-linear TRS R/A, one can effectively construct an
automaton Acc and formula ¢ over the states in Age such that R is p-canonically
complete iff Ly(Acc/A) = @.

Proof. Let 3 = (S, F, <) denote the signature of R/A. We define Acc so that
its states recognize well-sorted terms in T4, terms that match subterms in I'g
modulo A, and R/A-reducible and R/A-reducible terms. Formally, Aqc is an

automaton over the signature 3 and states () where

Q={rr"qriU{glseStU{q|ueclr}.

To simplify later notation, for each variable z; € X, we let ¢,, = ¢s. The

automaton Agc is then defined as follows.

e For each declaration f: sy...s, — s, Acc contains
qs(f(z1,. 0 2n)) <= qsy (T1)5 -5 s, (Tn)-

e For distinct sorts s, s’ € S such that s < s, Aec contains gy (x) < gs(x).
e For each sort s € S, Aec contains g7 (z) < gs(x).

e For each term f(¢1,...,t,) € I, Acc contains
Af(tyty) (f(@1 o 20)) < gy (1), 1, (T0)-
e For each left-hand side f(¢y,...,t,) € lhs(R), Acc contains
r(f(x1, .. 20)) < @ (1), -y g, (T0).
e For each operator f € F with arity n and index i € u(f), Acc contains
r(f(z1, .. x0)) < qr(@1), . (T0)y . g7 (T0)-

e Acc contains the rule r(z) < r#(x).

e Finally, for each operator f € F with arity n and index ¢ € [1,n], Acc

contains r(f(z1,...,24)) < qr(T1), .-, 7(X4), -, g7 (X0).

139

By inductionon t € T, we have t € L, (Acc) iff t € Tx 5. A similar inductive
argument allows us to show that ¢ € £, (Acc) iff there is a substitution 6 such
that ¢ = uf. In turn, this allows us to show that ¢ € L.u(Age) iff there is a
p-replacing context C, substitution 6, and rule [— r in R such that ¢t = C[16],
and to show that t € £, (Aec) iff there is a context C, substitution 4, and rule
! — r in R such that t = C[if].

To reduce p-canonical completeness to a propositional emptiness problem
we let ¢ be the formula ¢ = gt A r A —r#. Since A is sort-independent, it
follows from Theorem 3.1.1 that L£,(Acc/A) contains an equivalence classes
with a well-sorted term that is R/A-reducible and (R/A, p)-irreducible. Thus
Ls(Acc/A) = @ iff R/A is p-canonically complete. O

The algorithm for constructing the tree automaton Agc from a Maude spec-
ification has been implemented, and integrated into the Maude Sufficient Com-
pleteness Checker presented in Section 5.4. By using the tool to check the
p-canonical completeness of the FACTORIAL specification given in Section 6.3.1,

we are able to verify that it is p-canonically complete:

Maude> (ccc FACTORIAL .)
Checking canonical completeness of FACTORIAL ...
Success: FACTORIAL is canonically complete.

By using the tool to check the INF-LIST specification, we find a counterexample

showing that the specification is not p-canonically complete:

Maude> (ccc INF-LIST .)
Checking canonical completeness of INF-LIST ...
Failure: The term O : first(0,[]) is a counterexample that is

mu-irreducible, but reducible under ordinary rewriting.

6.4.2 Checking semantic completeness

Since we were able to check the p-canonical completeness of a left-linear spec-
ification R using the results in the previous section, using the results in The-
orem 6.3.8, the u-semantic completeness of specifications can be mechanically
checked by showing: (1) p-canonical completeness with the checker in the previ-
ous section; (2) p-terminating with a CS termination tool such as [43, 61, 104];
and (3) confluence and sort-preservation with a tool such as the Maude Church-
Rosser checker. This allows us to show that, for example, the FACTORIAL spec-

ification is p-semantically complete.

140

6.4.3 Checking sufficient completeness

Using our definition of p-sufficient completeness, we are able to extend the
Maude Sufficient Completeness Checker in Section 5.4 to the CS case.

Theorem 6.4.3. Given a left-linear TRS R/A that is ground p-weakly normal-
izing and ground p-sort-preserving, one can construct an automaton Asc and

formula ¢ such that R/A is p-sufficiently complete relative to constructors C' iff
£¢(.ASC/Z) = .

Proof. Let ¥ = (S, F, <) denote the signature of R/A.

The language L, (Asc/A) is defined so that it accepts the equivalence class
[t]g of a a (R, u)-irreducible term ¢ € Ty, with a replacement position i € pos*(t)
that is not in poss(t). The states @ of the automaton Agc is the set

Q={r"qr}U{gscs|s€StU{qu|ueclr}.

As before, to simplify later notation for each variable z, € X, we let q,, = ¢s.
Additionally, for each constructor symbol ¢ € C with arity n and each index

i € [1,n], we define the function rep’;ﬂ- 1S — (@ as the function so that
rep;. ;(s) = ¢, if i € p(c) rep.. ;(s) = qs otherwise.

We define Agc as follows.

e For each declaration f:sy...s, — sin F', Agc contains
as(f(x1,. . 2n)) < g5y (1), - -1 s, (Tn)-
e For each constructor declaration c¢: s1...s, — s in C, Agc contains
cs(c(wy, ... xp)) < repl (s1)(x1),. .., rept,, (sn)(Tn).

e For distinct sorts s,s’ € S such that s < s’, Agc contains gy (z) < ¢s(x)
and ¢y () < cq(x).

e For each sort s € S, Agc contains g1(x) < gs(z).

e For each term f(t1,...,t,) € I, Asc contains
Af(tryeetn) (1, T0)) = g (31),-- 0 G, (T0).
e For each left-hand side f(¢y,...,t,) € lhs(R), Asc contains

r(f(x1, .., 20)) < @ (T1)y -, @, ().

141

e Finally, for each operator f € F with arity n and index i € p(f), Asc

contains
(1, m0)) <= qr(Tn), (@), - g1 ().

The rest of our proof is similar to that used in Theorem 6.4.2. By induction
on t € Ty, we have t € L, (Asc) iff t € Tx 5. A similar argument shows that
L, (Asc) iff there is a substitution 6 such that ¢ = uf. This allows us to show
that ¢ € L.« (Asc) iff there is a p-replacing context C, substitution 6, and rule
I — 7 in R such that ¢ = C[lf]. Finally, we can show that t € L. (Asc) iff
t € Ts, ; and post(t) C posq(t).

To reduce p-sufficient completeness to a propositional emptiness we define

the formula
¢ =-rt A \/qs/\—'cs.
seS
As A is sort-independent, it follows from Theorem 3.1.1 that £4(Asc/A) con-
tains equivalence classes which contain a well-sorted term ¢t € Tx which is
(R/A, p)-irreducible while pos#(t) € pos(t). It follows that L4(Asc/A) = @
iff R/A is p-semantically complete. O

We have also implemented an algorithm for constructing the automaton Asc
from a CS Maude specification automatically. In this case, the checker succeeds
on the FACTORIAL example, as expected:

Maude> (mu-scc FACTORIAL .)
Checking the mu-sufficient completeness of FACTORIAL ...
Success: FACTORIAL is mu-sufficiently complete assuming that it is

ground mu-weakly normalizing and ground mu-sort-preserving.
Running the checker on the INF-LIST example yields an error:

Maude> (mu-scc INF-LIST .)
Checking the mu-sufficient completeness of INF-LIST ...
Failure: The term sel(0,[]) is an mu-irreducible term with sort Nat?

in INF-LIST with defined symbols in replacement positions.

It turns out that the rewrite system given in [101] was missing equations for
defining sel and first when the second argument was the empty list. If we add
the equations “sel (M, []) = none” and “first(M, []1) = []” to the Maude

specification, the p-sufficient completeness check succeeds.

6.5 Related work and conclusions

An earlier paper by Lucas [103]| has a section on relating the R and (R, p)-ca-

nonical forms. In one of the results, a replacement map ufé is constructed from

142

R and the subset of symbols B C F, and results show that R is p-canonically
complete if the (R, u)-irreducible terms are in T, and p O & . This condition
is sufficient to show that the FACTORIAL example is p-canonically complete.
However it is easy to give examples where R is p-canonically complete, but
p 2 uk. Since we have now a decision procedure for y-canonical completeness,
by varying the replacement map pu, one can use our results to find all minimal
replacement maps p for which R is p-canonically complete.

It would be useful to investigate the relationships between the work we have
presented here and infinite rewriting and infinite normal forms, e.g., [17, 40],
which has been extended to the CS case in [100]. In particular, it seems inter-
esting to investigate the relations between algebras of finite and infinite terms,
and the extension of sufficient completeness to infinite normal forms.

We have proposed a new model-theoretic semantics for order-sorted CS spec-
ifications in the form of the p-canonical term algebra Can;é /A" And we have
investigated three notions of CS completeness: (1) p-canonical completeness
with respect to canonical forms; (2) p-semantic completeness with respect to
equational deduction; and (3) p-sufficient completeness with respect to con-
structors. We have also proposed and implemented decision procedures based
on propositional tree automata that, under reasonable assumptions on the CS
specification (which can be discharged by other existing tools), ensure that it
satisfies the different p-completeness properties. These results provide new ways
of reasoning formally about CS equational programs, not only allowing a pro-
grammer to check that his/her program behaves as desired, but also to prove
properties: for example, it is sound to use an inductive theorem prover to reason
about a p-semantically complete CS program, whereas in general such reasoning
may be unsound, since Can7“a /4 May not satisfy the equations of R and may
have “junk” data outside the image from the initial algebra.

We think that it would be useful to extend the concepts and results presented
here to: (1) more general conditional CS specifications in membership equational
logic [111]; (2) CS specifications with non-left-linear rules, for which the tree
automata techniques proposed in [80] could be quite useful; and (3) infinite

p-normal forms and infinitary rewriting, as discussed above.

143

Chapter 7

Inductive theorem proving

Inductive theorem proving is one of the most successful verification techniques
for proving complex properties about software algorithms. Many different induc-
tive theorem provers have been developed over the years including ACL2 [91],
Coq [12], HOL [65], Isabelle [121], Larch [68], the Maude ITP [27], PVS [128],
RRL [88] and SPIKE [11]. These tools support a wide variety of different tech-
niques, logics, and technical approaches.

One common characteristic of inductive theorem provers is that they are
almost always interactive theorem provers, and proving challenging theorems
requires trained user intervention. The advantage of user interaction is that the
user can direct the theorem prover to show theorems that cannot be proven by
fully automatic techniques. However, it is important from the user’s perspective
that the theorem prover not require too much input. It is often the case that the
user already “knows” the theorem is true, and wants the prover to perform the
necessary steps to prove it. However, with current technology the prover will
often need direction on problems that appear trivial to the user. Many inductive
theorem proof attempts are abandoned when the user decides the theorem prover
requires too much involvement. This author has personally abandoned several
such proof attempts due to the proof requiring too much work.

Techniques to improve and/or reduce user interaction has been a major line
of research in inductive theorem proving, and there are at least three different
research directions aimed at improving a user’s experience with the inductive

theorem prover:
1. Better techniques and heuristics for generating induction schemas;

2. More powerful and better integrated automated reasoning algorithms and
decision procedures to eliminate cases generated from the chosen induction

scheme.

3. Improvements to the logic and proof assistant to help the user understand
the current state of the proof and interact with the prover in a more

natural way.

The main focus on this chapter is on the different improvements we have
made to the ITP as part of this thesis, and how they relate to these three areas.

In addition, we review some of the main existent features of the ITP as well as

144

discuss improvements in a fourth direction of extensibility. These improvements
are summarized below.

Induction schemas. The ITP has traditionally supported two forms of induc-
tion: structural induction and induction over the less than relation < on the
natural numbers. We have extended this with an additional induction scheme:
coverset induction [146]. Coverset induction generates induction schemes by an-
alyzing recursive calls in an operation defined by a complete set of terminating
rewrite rules, and adding coverset induction to the ITP required developing a
new form of coverset induction for membership equational logic.

In addition to extending coverset induction to membership equational logic,

we extended coverset induction in several other directions. First, we added a
command in the I'TP to define an alternate set of memberships for representing
the elements in a sort. These alternate set of memberships can be used by
coverset induction to generate more appropriate induction schemes. Second,
due to our experience with the Powerlist case study, we found it helpful to
allow coverset induction to take additional patterns other than the one used to
generate the induction scheme. These additional patterns are used to further
specialize the subcases generated by the theorem prover, and if used intelligently
can help reduce a conjecture to a set of proof obligations that can be proven in
a fully automatic way.
Automated Reasoning. We have also improved the core automated tactics
used be the Maude ITP by developing new commands and extending existing
ones. The main new feature that we have added is the ability to prove that a
commutative relation in the user’s theory is an equivalence relation, and then
automatically propagate facts implied by the transitivity of equivalence relation.
This feature has lead to much simpler proofs in the Powerlist case study in the
following chapter. The other new command is a command eq-split which
instantiates universally quantified variables in a goal to better match the left-
hand sides of rules in the specification. This is essentially a form of constructor
splitting that uses the left-hand side of rules in the specification to control the
splitting process.

We have also improved existing commands in several ways: (1) we have
improved the auto command to automatically split conjunctions into multiple
subgoals which are then automatically simplified; (2) we have added a new con-
gruence closure algorithm which fixes the spurious Maude metalavel warnings
and improves the performance of the old algorithm; (3) we have added com-
mands to enable and disable rules; and (4) we have improved the parsing of
formulas to extract better inference rules from lemmas and the antecedents of
a goal which we are proving.

User understandability. In order to help the user better understand what to
do next, we have added additional commands for displaying information about
the current state of the proof and figure out which rules can be applied. The

new commands include a command red for evaluating arbitrary terms in the

145

current theory, a command show-hyps for displaying the current hypotheses,
and a command show-rules with for identifying all inference rules that contain
a given operator. These commands help the user to figure out what existing
lemmas one may want to apply as well as devise new lemmas to simplify the
current goal.
Extensibility. Finally, we have improved the ITP to make it a better platform
for future extension. Our first change was to update the ITP to be compatible
with the new Maude 2.3 metalavel — the latest public version of Maude at the
time of this writing. While doing this, we refactored the ITP’s source code to
be more readable and documented the different data-structures and invariants
of the ITP. Finally, we have overhauled the command parsing component to
generate better error messages and become more extensible. One benefit of
this work is that Ralf Sasse was able to port his JAVA+ITP tool [132] to the
new version of ITP while making no changes to the source code of the ITP.
Previously, JAVA+ITP required Java-specific changes to the ITP source code.
In the rest of this chapter we discuss the main improvements to the ITP in
more detail. We first start by briefly introducing some of the existing commands
that the ITP already supports. In Section 7.2, we describe our basic approach
to coverset induction in membership equational logic, and prove its soundness.
In Section 7.3, we describe the main enhancements to this basic approach that
we have made in the coverset induction’s implementation. In Section 7.4, we
describe our approach to propagating additional facts when a relation is known
to be an equivalence relation. Finally, in Section 7.5, we discuss the other
commands that we have added, and in Section 7.6, we discuss possible future
research directions for the Maude ITP.

7.1 The Maude ITP

The Maude ITP is an experimental interactive tool for proving properties of
the initial algebra T¢ of a membership equational logic (MEL) specification &
written in Maude. The ITP has been written entirely in Maude, and is in
fact an executable specification in MEL of the formal inference system that it
implements. The ITP inference system treats MEL specifications as data —
for example, the ITP command imp adds the hypotheses of the current goal as
rules to the current goal’s associated theory. This makes the ITP a reflective
design, in which Maude equational specifications become data at the metalevel.
Indeed, the fact that membership equational logic is a reflective logic [26] and
that Maude efficiently supports reflective MEL computations is systematically
exploited in this tool. A similar reflective design has been adopted to develop
other formal tools in Maude [25]. Using reflection to implement the ITP tool
has one important additional advantage, namely, the ease to rapidly extend it
by integrating other tools implemented in Maude using reflection, as it is the

case of the sufficient completeness checker presented in Chapter 5.

146

An ITP session begins with the user providing a Maude theory £ whose
equations and rules have been oriented into a conditional rewrite membership
system R along with a first-order MEL formula ¢ which the user wishes to prove
holds in the initial algebra Te. The ITP is interactive and requires user input to
discharge the formula ¢. At each point in an ITP session, the ITP maintains the
sequence of goals remaining to be proved. Each goal has an associated formula
and an associated theory which extends the original theory with lemmas and
assumed hypotheses introduced by the user. Once all the goals are discharged,
then the original conjecture ¢ has been proven to be true.

The ITP offers many different commands available to the user to aid in the
task of proving the remaining goals. A tutorial on the ITP can be found in [27].
Although a complete reference is beyond the scope of this section, we introduce
a few of the commands here that are mentioned in this chapter and used in the

powerlist case study in the next chapter.

ind and ind*. The ind and ind* commands each take a variable x that is
universally quantified in the current formula, and perform structural induction
on z. The current formula should have the form (Vz) z : s = ¢, and the
structural induction is obtained from the constructor memberships from the
original specification. Specifically, for each constructor membership ¢ : s’ if @

in the original specification with s’ a subsort of s, we create a subgoal
(Wvars(t)) @ = o¢x/t].

The current goal is then replaced by these subgoals. The difference between ind
and ind* is that ind* will automatically call the auto command for simplifying
each subgoal, while ind will output the unsimplified subgoals. In many proof
attempts, ind* will completely eliminate all the subgoals, so a single ind* com-

mand can often discharge the current goal without generating any new subgoals.

cns. The cns command performs universal quantifier elimination when the
current formula has the form (VY') ¢. When this command is issued, the ITP
introduces a fresh constant c, for each variable y € Y. This constant is added
to the current module, each variable y appearing in the formula ¢ is replaced

by ¢y, and the outermost quantifier is dropped from the current goal.

e-inst. The e-inst command is the counterpart to cns for performing existen-
tial quantifier elimination. When the current formula has the form (3Y') ¢ and

the user issues the command
(e-inst with sub .)
where sub is a substitution 8 : Y — T%(X), the ITP replaces the current formula

(3Y) ¢ with the formula ¢6.

147

imp. The imp command can be used when the current formula is an implication
¢ = 1 to introduce additional inference rules into the current module. When
invoked, the ITP parses ¢ to extract one or more conditional rules to add to
the module. Each such rule is labeled as an hypothesis, numbered, and added
to the current module. If the antecedent ¢ contains formulas that cannot be
added to the module, then each one is added to the current goal as an auxiliary
labeled formula which may be instantiated later by the user. After extracting
and labeling the rules in ¢ the conditions in ¢ are eliminated and the current

formula is replaced with .

lem. The lem command is used to introduce lemmas to help prove the current

formula. The syntax of the command is
(lem name : formula .)

When this command is issued, a new goal with the given name is added to the
current list of goals with the given formula. In addition, the given formula is
parsed with the same algorithm used by imp command, and one or more new
inference rules may be added to the current module. If the formula cannot be
parsed as a rule, it is added as a formula which may be used with the a-inst

command described below.

a-inst. The a-inst goal is primarily used for instantiating universally quan-
tified labeled formulas added by imp or lem for introducing lemmas. Usually,
these are rules that cannot be executed, because the condition contains extra

variables. The syntax of a-inst is
(a-inst name with sub .)

where name is a labeled formula or inference rule (VY) ¢ appearing in the
current goal, and sub is a substitution § : Y — Tx(X). After this command is
issued, the ITP parses ¢f to extract new rules, and adds them to the current

module.

auto. The auto command is perhaps the most commonly used ITP command.
It attempts to automatically discharge the current goal through a variety of
tactics. If the current goal is a universally quantified formula, it uses the cns
command to perform quantifier elimination. If the current goal is an implica-
tion, it assumes the hypotheses by using the imp command. Otherwise, the auto
command rewrite all the terms in the current formula and the current hypothe-
ses. If the terms in an equation are reduced to the same term ¢ = ¢, then the
equation is replaced with true. The current goal is eliminated if it reduces to
true, or if one of the equations in the hypotheses is reduced to true = false. It

would be useful to extend this elimination in future work to more general forms

148

of hypotheses. For example, it would be useful to eliminate goals containing
unsatisfiable hypotheses such as ¢ + ¢ = 1 where ¢ is a constant with sort Nat
by using a linear arithmetic decision procedure.

In this work, we have extended the auto command in two ways. The first is
to perform equivalence propagation as described later in Section 7.4. The second
extension occurs when the current formula is a conjunction ¢; A - -+ A ¢, with
n > 2, the extended auto command will automatically split the conjunction into
n separate goals with the formulas ¢1, ..., ¢, respectively. It will then invoke
the auto command each subgoal. Previously the auto command would halt on

conjunctions.

This section introduced several of the commands which already exist in the
ITP. In the remaining sections we will discuss the additional commands that
have been added to the ITP in order to improve its induction features, core

reasoning capabilities, and user interface.

7.2 Coverset induction

Coverset induction was introduced in [146] as a method for generating induc-
tion schemes for equational specifications where the operations are defined via
a terminating and sufficiently complete set of rewrite rules (see Chapter 5 for a
discussion of sufficient completeness). The idea builds upon Boyer and Moore’s
idea to use terminating function definitions to generate induction schemes [20].
In coverset induction, the theorem prover chooses a recursively defined function
symbol f either by analyzing the current goal with heuristics or by taking a func-
tion provided by the user. The prover then extracts an induction schema where
each goal is drawn from the left-hand sides of the equations containing f and
whose induction hypotheses are obtained from the corresponding occurrences of
f on the right-hand side.

Our work on cover set induction in the Maude ITP is based on unpublished
joint work with Manuel Clavel, Deepak Kapur, and José Meseguer. It generalizes

coverset induction in several different ways.
e The equations in a specification may be conditional.
e The operations and constructors may be partial.

e The induction scheme may be formed from a more general term, where
the function we generate the scheme for is allowed to have non-variable

arguments, and where the function need not be sufficiently complete.

These three features are essential for the powerlist case study discussed in Chap-
ter 8.
Coverset induction requires that the specification is terminating, and for

conditional rewriting the subject of termination is quite complicated. As shown

149

in [44], it is insufficient to merely require that the rewrite relation —% be well-
founded as a rewriting engine may loop when evaluating a condition without
ever even applying a single rewrite rule. For CERM systems, perhaps the most
effective notion of termination is the notion of operational termination described
in [44]. The core idea is that an entailment system relative to a specific theory is
operationally terminating if there are no well-formed infinite proof trees. For our
purposes in this work, we define a slightly simpler notion that reuses this basic
idea, but is defined in terms of the equational theory £ rather than the rewrite
theory R. For the results in this section, we assume that the memberships in £
can all be considered constructor memberships (see Chapter 5). We also assume

that & satisfies the following property:

Definition 7.2.1. A MEL theory £ over a signature ¥ = (K, F,S) is equa-
tionally reductive if there is a well-founded ordering >=¢ over terms in Tx, such
that:

o For each conditional equation (VYY) 1 = r if @ and each substitution 6 :
Y — Tx, such that Te = @b, 10 =¢ 6.

o Ift>gu thent =g v for all v € subterms(u).

Our algorithm for generating coverset induction schemes is quite similar to
the narrowing algorithm used in the sufficient completeness checker described in
Section 5.3. The algorithm is a function of several inputs: (1) a MEL theory &
over a signature £ whose equations have been oriented into a set of terminating
conditional rewrite and membership rules R, (2) a term p € Tx(X) called the

pattern term where vars(t) = {x1,...,2, }, and (3) a first-order formula ¢.

These inputs are required to satisfy several different properties:

e The formula ¢ has the form

d=Nz1...T0)T1 81N ATy 1 8y = ¢ (7.1)

e The memberships in £ are properly sorted (see Definition 5.3.1).
e The equational theory & is equationally reductive modulo A.

The algorithm outputs a set of induction cases { ¢1,. .. ¢, } such that

Tg|:¢<:>Tg':¢1/\-~-/\¢m. (7.2)

By itself, the property in (7.2) is trivial to satisfy — the set { ¢ } would satisfy
this property. The utility of coverset induction stems from the fact that cov-
erset induction should generate formulas ¢, ..., ¢,, that are easier to prove —
preferably without using further induction. Our case study in the next chapter

will show how coverset induction is useful in proving properties of powerlists.

150

In unsorted logics, coverset induction for a defined symbol f generates a

single induction case for each equation f(¢1,...,¢,) = w in the specification.
This approach relies on the specification being sufficiently complete relative to
a set of constructor symbols C with f ¢ C. However, as we argue in Chapter 5,
this notion of sufficient completeness is inadequate in the context of member-
ship equation logic due to partiality and potential overloading of constructor
symbols. Accordingly, in the context of membership equational logic, we use a
different approach for generating coverset induction schemes that does not rely
on sufficient completeness explicitly. The techniques are similar to the suffi-
cient completeness checking approach described in Section 5.3. Similar to that
approach for sufficient completeness checking, our algorithm for generating co-
verset induction schemes consists of two phases: a goal narrowing phase, and
an induction generation phase.
Goal narrowing. Given a formula of the form (7.1), the narrowing proce-
dure returns a finite set A* of conditional terms tz where t € Ts(X) and @ a
conjunction of membership and equality atomic formulas. The variables in a
conditional term are denoted by vars(tz) = vars(t) U vars(@). A ground term
u € Ty is a ground instance of tg if there is a substitution 6 : vars(tz) — Tx
such that u =¢ t0 and Tg | @f. By construction, we guarantee that each
ground instance of the conditional term pg,.s,A..-Az,:s, 18 @ ground instance of
some conditional term in A*.

We construct A* incrementally by starting with an initial set A° and ap-
plying an inference rule to obtain A', A2, ... until completion to obtain A*.
Strictly speaking, this process is not confluent, and different values for A* may
be obtained depending on the strategy that controls how the inference rule is
applied. We show below that no matter which strategy is used, the resulting set

A* will have the same ground instances. We define the initial set A° as follows:

AO = {pxlzsl/\-n/\zn:sn }

We then apply the rule (7.3) below until completion. This rule defines the
expandability relation <« which is defined below:

Definition 7.2.2. Let t,t' be terms in Tx,(X) such that vars(t) Nvars(t') = 0,
and x € vars(t). Then, t 4, t’iff t and t' are unifiable and in the most general

unifier 0 = mgu(t,t'), 0(x) is not a variable.

Next, we define the inference rule that generates the set A. Note that this
rule will only be applied a finite number of times, because of the condition

t 4, t' on the rule.

trsna € AY 3w € vars(t),l € 1hs(€) s.t. t <, |
Attl = Al \ {tw:s/\a} U {t[x/u]a[z/u]Aaz | u:sifay € S}

(7.3)

151

As a simple example, suppose we wanted to prove that
(Vpq)p : PowerlistAq : PowerlistAlen(p) = len(q) = len(pxq) = len(p)+len(q)

in the specification POWERLIST of powerlists given in Figure 2.5. We can prove
this by using coverset induction on the term p x ¢ where p and ¢ have sort

Powerlist. The relevant equations are

(p1 [p2) x (R[S) =(p1 x q1) | (P2 X ¢2) [m] x [n] =[M] | [N]

In this case, both the variables p and ¢ in the coverset term are expandable,
because px ¢ 4, [m] % [n] and p x ¢ 4,4 [m] x [n]. We can expand either variable,

but in this case we choose to expand p. The relevant memberships are

p | g : Powerlist if p : Powerlist A ¢ : Powerlist A len(p) = len(q)
[m] : Powerlist if m : Nat

Expanding using these memberships results in the set

Al = {((pl | p2) X Q)pl,pg,q:Powerlist/\len(pl)zlen(pg); ([m] X q)m:NatAq:Powerlist}
where p1, po, q : Powerlist is equivalent to the conjunction
: Powerlist A ps : Powerlist A ¢ : Powerlist.

In both of the terms in A! the variable ¢ is expandable. In the first case, this
is because of the first equation on x, and in the second case, this is because of
the second equation on x. We can expand these in either order, to yield the set

~{

(pl |p2) ((h | q2>)p1,pg,ql,qg:Powcrlist/\lcn(p1)zlcn(pg)/\lcn(ql)zlcn(qQ)7
(pl |p2) [])pl,pz:Powerlist/\n:Nat/\len(p1)zlen(pg)a

(
(
([m] x (g1 | 42))m: NatAqi,q2:PowerlistAlen (g1)=len(gz2)>
([m] x [n])m,n:Nat}
In this case, the algorithm terminates with A3, because the variables are ap-
pearing in terms are not further expandable.

It is not difficult to show that each application of the inference rule preserves

the ground instances of A?.

Proposition 7.2.3. Let A"™! denote a set of conditional terms obtained from
A by applying the inference rule (7.3).
A term u € Tx, is a ground instance of a conditional term in A" iff it is a

ground instance of a conditional term in AL,

Proof. To show this, we must show two things:

152

(1) If v is a ground instance of t;.snz then t6 is a ground instance of some

pattern in the set
{t[gj/u]a[ac/u]/\az | u:sifap € 6} (74)

where the variables in £ have been renamed to be distinct from vars(t,.spz)-

(2) If v is a ground instance of one of the conditional terms in (7.4), then t6 is

a ground instance of t;.sna.

Let Y = vars(t,.shg). Showing (2) is quite easy. To show (1), we note that
if v is a ground instance of t,.sag then there is a substitution 6 : Y — T such
that v =¢ t0, Te = 0(x) : s, and Te = @f. As Tg |=0(x) : s, there must exist a
membership (VZ) u : s if @ in £ and substitution ¢ such that 0(z) =¢ uy and
Te ': Q).

As vars(u) Nvars(ty.sha) = &, we can define the substitution ¢’ : Y\ {z } U
Z — Ts such that

V'(y) =v(y) ify e Z Y (y) =0(y) otherwise

It is not difficult to show that v =¢ t0 =¢ t[z/u]y’, Te E a[z/uly’, and
Te |= @y’ Tt follows that v is a ground instance of t[x/u]g[z/ujra, - O

The following corollary captures the main correctness property of the nar-

rowing phase. It is an immediate consequence of the previous proposition.

Corollary 7.2.4. If A* is obtained from A° by applying the inference rule (7.3)
until completion, then each ground instance pO of Puy:sin-Az,:s, 15 @ ground

instance of some conditional term in A*.

Induction generation. The induction generation phase takes the set A* gen-
erated by narrowing along with the theory &, pattern p € Tx(X), and goal
formula ¢. The phase outputs a subgoal for each conditional term in A*. We
first observe that for each conditional term in tz € A*, there must be a substi-
tution 0 : vars(p) — Tx(X) such that ¢t = pf. The substitution 0 will be used for
the induction subgoal. In order to definite the induction hypotheses, we find the
instances of p that appear in the right hand side of a rule 1§ = rf if @ where
I =rif @ is an equation in £. Specifically, the induction formula IC4(pfgz) of a

condition term pfgz € A* is defined as follows:

IC4(px) = (Vvars(pbz)) @ A N\ @ = ¢p) = ¢'0
I=r if axe€&
(3) lyp=pb
ppEsubterms(riy)
The correctness of our coverset induction algorithm is shown by the following

theorem:

153

Theorem 7.2.5. Let £ denote a MEL theory that is equationally reductive with
respect to the well-founded ordering »=¢. Given a formula ¢ of the form

(Vop ... Tp) X1 i SIA ATy 2 8y = ¢

and a term p € Ts({1,...,2n }), let A* be a set of conditional terms obtained
by applying the inference rule (7.3) until completion starting from the initial set

{PeysinoAwz,:s, |- It is the case that

Te ¢ <= [\ TeE=ICy(pbz).

pOgEA*

Proof. Let Y ={xy,...,2, }.

We first show that T¢ = ¢ implies that T¢ |= IC4(pfg) for each conditional
term pbg in A*. We prove this by assuming T¢ = ¢ and showing that for each
ground substitution p : vars(pfz) — Ty, Te = @p implies Tg = ¢'0p.

Note that if T¢ | @p, then pfp is a ground instance of pfz. By Corol-
lary 7.2.4, this implies that ppf is a ground instance of py,.s,A---Az,.:5,, a0d thus
for each Tg |= x;0p : s; for each i € [1,n]. As Tz = ¢ by assumption, we know
that for each ground substitution ¢ : Y — Tx if £ F ;9 : s; for ¢ € [1,n], then
Te E ¢'t. If we let ¢ = Op, it follows that Tg = ¢'0p.

It remains to show if Ty |= IC4(pfg) for all conditional terms pfz in A*,
then Tg |= ¢. First, we use >¢ and p to define an well-founded ordering >¢ ,

over ground substitutions 6 : vars(p) — T% by letting
01 Fgﬁp 92 i p01 -& p02.

We show that T¢ |= ¢ by showing by induction on >¢ , that for each substitution
¢ such that Tg = (x;) : s; for i € [1,n], Te | ¢'1.

Given a substitution ¢ where Te = 9(x;) : s; for each i € [1,n], we know
that pi is a ground instance of py, .5, A--Az,.:s,, - 1t follows by Corollary 7.2.4 that
there is a conditional term pfz € A* such that p = ¢ and Te | @p for some
ground substitution p : vars(pfz) — Tx. Since 1 = 0p, we can show Tg | ¢/t
by showing Te | ¢'6p.

Our hypothesis has assumed that T¢ = ICy(pfz). Consequently,

Tz FapA /\ (@2p = ¢pap) = ¢'0p.
l=r if ar €&
(Fp2) lp2=p0
pp2 Esubterms(riyz)
Therefore, we can show that Te &= ¢'0p by showing that Te = ¢pap for each
rule I = r if @y in £, each substitution ¢y such that lyy = pf and Te = aap,
and each substitution ps such that ppy € subterms(ris).
However, this follows by our induction hypothesis as pfp = liap =g T1b2p

and ppap € subterms(riysp) implies that pfp ¢ ppap. Consequently, ¢ =

154

0p =g pop and so by our induction hypothesis Teg = ¢p2p. O

7.3 Coverset induction in the Maude ITP

We have extended the Maude ITP with two commands cov and cov* which
apply coverset induction when invoked by the user. The difference between
the two commands is that cov* will automatically simplify all of the subgoals
generated by coverset induction with the auto command, while cov will leave
them unchanged. Each command takes the pattern as an argument with the

syntax:
(cov on pattern) (cov* on pattern)

where pattern is a term whose variables are universally quantified in the current
formula.

One useful feature of coverset induction is that, in addition to generating
potentially useful induction hypotheses, it specializes terms appearing in the
current problem to match additional rules in the specification. This allows
them to be simplified by rewriting. Splitting based on constructors is called
constructor splitting, and has been quite useful in our powerlist case study. The
ITP already offers a command ctor-term-split to do this, but the command
only replaced a single variable with its constructor memberships, and did not
explicitly attempt to match a term against the left-hand sides of equations. As a
consequence, ctor-term-split often had to be invoked several times to achieve
the required matching. In contrast, a single coverset induction command would
have done the job. Coverset induction also potentially introduced induction
hypotheses even if they were not necessary, and so we decided to add the com-
mands eq-split and eq-split* which essentially perform coverset induction,

but do not add the induction hypotheses.
(eq-split on pattern .) (eq-split* on pattern .)

The difference between these two commands is that eq-split* invokes the auto
command to attempt to automatically discharge each subgoal while eq-split
does not modify the generated goals.

Coverset induction is the main type of induction that we use in the powerlist
case study in Chapter 8. Our experience led us to improve the theoretical
algorithm described in the previous section in several ways: (1) apply the A-
rule only to variables that are demanded by the most equations in &; (2) use
a simple subsumption test to eliminate redundant induction cases; (3) allow
substitutions in subgoals to be further specialized by additional patterns; and

(4) allow the user to define alternative constructors for sorts in the specification.

155

7.3.1 Most demanded variables

One of the main differences between our approach to coverset induction in mem-
bership equational logic and the original idea in unsorted logics is that our
scheme may potentially generate multiple induction subgoals for each equation.
One heuristic to reduce the number of subgoals is to use an intelligent strategy
for deciding when to expand a variable = using the rule (7.3). For the ITP, if
multiple variables may be expanded by the rule (7.3), we expand the variable
demanded by a maximal number of equations. This is similar to the idea of
natural narrowing [46], with the main difference being that we are narrowing a
variable to consider all ground instances of a term rather than just considering
specific instances that unify with a set of patterns.

To illustrate why the choice of which variable to expand is important, con-
sider the theory £ with constants a and b and a binary symbol f. In addition

& contains constructor memberships a : s and b : s, and equations:

fla,) f(b,a) f(b,b)

If asked to perform coverset induction with the pattern f(x1,22)z,:sa25:5, We
can expand either z; or xs. If we expand xo in f(z1,22)z, :sAzs:s USing the

rule (7.3), we get the patterns

{f(xla a)iblrsv f(xl, b)ml:s }

We next can only expand x; in both of these goals and the narrowing phase

terminates with four cases:

{f(a,a), f(a,b), f(b,a), f(a,b) }

The schema generation phases will then produce four separate subgoals, one for

each term. However, if we expand x, first, we obtain the patterns

{ f(a7 I2)m2:sv f(b, xQ)rz:s }

We then only need to expand x5 in f(b,z2), and thus the narrowing phase

terminates with the patterns

{f(a7x2)w2157 f(ba a)v f(b7 b) }

which are then instantiated into three subgoals.

Given a pattern p and an equation [= r if @, we say that a variable
x € vars(p) is demanded by [iff there is a most-general unifier § = mgu(p,t)
such that #(z) is not a variable. The strategy we have chosen for the ITP is to
only apply the rule (7.3) to variables that are demanded by a maximal number of

equations in £. This is a greedy algorithm, but has worked well in the Powerlist

156

case study described in the next chapter.

7.3.2 Subsumption checking

A second optimization that we use is to perform subsumption checking to re-
duce the number of cases. We say that a conditional term tz subsumes t.,
iff each ground instance of tZ, is a ground instance of tw. Due to the poten-
tial for arbitrary conditions @ and @, it is in general undecidable whether one
conditional term subsumes another. This means that in general, our cover-
set induction approach will always generate an induction scheme, but it may
have redundant cases. To eliminate some of those redundant cases, we have
implemented an approximate solution that can often detect subsumption syn-
tactically. To understand our approach, first observe that tz subsumes t., if

there is a substitution 6 such that:
ot =1,
e for each equation [=r € @, 1§ = rf € @, and

e for each membership [: s € @, there is a membership {0 : s’ € @ such that

s’ is a subsort of s.

These properties are easy to check, and the ITP will remove a conditional term
¢, from the current conditional terms A’ when a different conditional term tx
is detected to satisfy these three properties. This removal is sound, because the
set of ground instances of A’ are preserved.

To see how this subsumption is useful, consider the following theory £ over
a signature with sorts s; < so, and unary functions ¢ and f that contains the

memberships:
z:syif x: sy c(x) :s1if x5 c(z) : so if x : s0.

Additionally, £ contains a single equation with the left-hand side f(c(z)). Given
the initial pattern f(x)g.s,, we expand x with the memberships x : s9 if = : s1

and ¢(z) : o if = : s9. This yields the set
{ f(w)I:SI) f(c(x))JJ:SQ }
We then must further instantiate f(x),.s, to yield the final set

{1 f(e(®))asy, [(e(@))azs, }

However, since s; is a subsort of so, we have an extra pattern f(c(z))s.s, which
would generate a redundant induction case. By using our syntactic check, the

ITP will automatically remove f(c(2))q.s, -

157

7.3.3 Additional patterns

As shown in the next chapter, many of the lemmas in our powerlist case study
are discharged with a single cov* command. However, for many of the lemmas
where this failed, we could discharge them automatically if we performed ad-
ditional constructor splitting on terms appearing in the subgoal. This process
requires multiple commands, and we decided to automate the process by intro-
ducing two coverset induction commands that take additional patterns, called
split patterns, which are used for splitting the subgoals. They are not used
to generate the induction hypothesis. The two commands have the following

syntax:

(cov-split on pattern split split-patterns)
(cov-split* on pattern split split-patterns)

where pattern is the term used for coverset induction and split-patterns is a
semicolon separated list of terms.

The cov-split (resp. cov-split#*) commands can be thought of as per-
forming coverset induction with the given pattern, and then eq-split (resp.
eq-split*) on the induction cases. The actual implementation is somewhat
different, and is achieved by modifying the narrowing phase described in the
previous section. Essentially, our narrowing phase additionally guarantees for
each pattern p in the split patterns and each left-hand side [of an equation in
& that

mgu(p,l) # g = p matches [.

Our experience with the powerlist case study has shown that virtually all of the
lemmas involving coverset induction and eq-split could be solved in a single

cov-split* command.

7.3.4 Alternative constructors

The fourth and final extension to coverset induction that we have implemented
in the ITP is the ability to define alternative constructor declarations with the

command

(ctor-def name : Az : s}

(E{Y1}t1 =z &condy) V... V(E{Y,} t, = z & cond,,) .)

where each formula cond; is a (possibly empty) conjunction of equations and
memberships.

After giving this command to the ITP, the ITP creates a subgoal which
requires the user to prove the given formula, and it adds a set of alternative

memberships
Mypame = {t1 : s if cond; t, : s if cond, }

158

to the current goal. These memberships can then be used in lieu of the normal
constructor memberships with sort s during the narrowing phase of coverset
induction. In order to specify which alternative memberships to use, we added

the following four commands:

(cov using mames on pattern)
(cov* using names on pattern)
(cov-split wusing names on pattern split split-patterns)

(cov-split* using mames on pattern split split-patterns)

where names is a semicolon separated list with the names of constructor def-
inition names. Fach name in the list must be associated to memberships for
a distinct sort, and when a name is provides we replace the memberships in £
for that name with the memberships M, for the purposes of instantiating a
variable using the rule (7.3).

Alternate constructors are used in the powerlist case study in several places.
A key property of powerlists is that each powerlist with more than one element
can be represented as either the concatenation P | Q of two powerlists or the
interleaving P x @ of two powerlists. In our Maude specification of powerlists,
we use a membership with | as the main constructor, but prove an alternate set
of constructors with x. For operations that are most naturally defined using x,
we use the alternate constructors for coverset induction.

In some cases, one may want to make the alternative constructor definitions

the default constructors. This can be done with the command
(set-default-ctor name.)

After issuing this command the memberships with the given name will be used
for their associated sort whenever constructor narrowing occurs. The default
set of memberships for a sort can be used by calling set-default-ctor with

the name of the sort.

7.4 Equivalence propagation

In addition to coverset induction, we have extended the ITP with specialized
support for equivalence relations. As membership equational logic is functional
and does not support relations other than the sort predicates, a relation in the
context of this section is a binary function whose output kind is the kind used
by the built-in Boolean type. A relation p is an equivalence relation over a
sort s € S for our purposes if it is labeled with the comm attribute marking the

symbol as commutative and satisfies the following two properties:

Te = (VYx:s) p(z,z) = true
Te = (Vx:s,y:8,2:5) p(x,y) =true Ap(y, z) =true = p(x,z)=true

159

where true refers to the operator for true in the predefined BOOL module and
(V@ s) ¢ is syntactic sugar for the formula (Vz) 2 :s = ¢.

Equivalence relations benefit from specialized automated reasoning support,
because ordinary rewriting cannot deal with extra variable y in the condition of

the transitivity axiom

p(z, 2) if p(x,y) A p(y, 2).

Our solution to this has been to extend the ITP with two commands: a com-
mand defequiv for defining equivalence relations, and equiv-propagate for
propagating facts implied by transitivity. In addition, the built-in euto com-
mand has been extended to also perform equivalence propagation in addition to
its other tactics.

To indicate that a given operation is an equivalence relation, we have added

the following command to the ITP:
(defequiv p on sort .)

The operation p must be labeled with the commutativity attribute. When
this command is issued to the ITP, the ITP generates two subgoals — one for
each equation that an equivalence relation must satisfy, and then records in the
original goal that the operation p is an equivalence relation for arguments with
a sort sort

Once one or more equivalence relations are added using defequiv, equiva-
lence propagation will automatically occur when the user calls the auto com-
mand which automatically applies several tactics including rewriting, equiv-
alence propagation, and hypothesis simplification to resolve the formula. In
addition, the user may request equivalence propagation to occur with the com-
mand (equiv-propagate .) When equivalence propagation is used with either
command, for each predicate p that is an equivalence relation on s, we apply

the following rule until completion.

p(t,u) = true,p(u,v) = true € € s.t. p(t,v) |¢# true
E =W {p(t,v) =true}

where £ denotes the theory containing the current module and any hypothe-
ses assumed in the current goal, and p(¢,v) |¢ denotes the term obtained by
rewriting p(t,v) with the equations in & oriented as rules. After applying the
rule, we replace the current goal’s theory £ with £, and then repeat the process
until either: (1) the rule can no longer be applied, or (2) we detect a conflict
because p(t,u) = true, p(u,v) = true and p(t,v) |¢= false. If a conflict is
detected, then the current hypotheses are unsatisfiable, and the current goal is

immediately discarded.

160

7.5 Other commands

In this section we describe the other commands which we added to the ITP for

developing a proof strategy, and debugging failed proofs.

Enable/Disable. The enable and disable commands control the executabil-
ity of the different rewrite rules and memberships in the current goal. The
rules can either come from hypotheses in the current module, lemmas that were

previously added, or labeled equations in the original user’s module.
(enable rule-name .) (disable rule-name .)

If enable is called with the name of a rule in the module labeled with the
attribute nonexec, it will discard the nonexec attribute, thus enabling the rule
during rewriting. Conversely, when the disable command is given for a rule
that is not labeled with the nonexec attribute, it will add the nonexec attribute
to the rule, thus disabling it when rewriting is used to simplify goals. These
commands can be used in debugging to help identify non-terminating hypotheses
or lemmas. They also can be used for information hiding. It is often useful
to prove lemmas that state the essential properties of an operation, and then

disable the operation’s definition.

Reduction. It can be difficult to remember all the lemmas and hypotheses
added to a module, and sometimes rules may fail to apply because a condition
cannot be resolved. Unfortunately, there is no automatic way to fix the second

problem, but to aid the debugging process, we have added the command
(red term .)

which computes the canonical form and least sort of an arbitrary term in the

current module.

Showing rules. A large part of the success of inductive theorem provers stems
from a user’s ability to construct a set of terminating rules that yield unique
normal forms for terms appearing in the current goal. In the ITP, the rules
depend not only on the definitions in the user’s module and lemmas, but also
on the hypotheses added to the current proof attempt. Unlike the lemmas, the
hypotheses are usually different for each subgoal, and so it is often helpful to
see the current hypotheses assumed in the current goal. To do this, we added
the command (show-hyps .) to show the current hypotheses.

In addition to the hypotheses, it is often useful to see all of the rules related
to a given symbol appearing in the current goal. Although the existing show-all
command will display all of the rules, it can be tedious to sort through them
in larger proofs to see the rules that are currently relevant. For more targeted

searches, we added the command

161

(show-rules with op .)

which will display the equations and memberships whose left-hand side refer-

ences op.

7.6 Conclusions and future work

In this chapter we have presented several improvements to the Maude Inductive
Theorem Prover. This includes a general form of coverset induction, equivalence
propagation, and several different commands to help debug proofs using the
rewriting engine. These techniques have already proven useful in the powerlist
case study which we will discuss in the next chapter. However, there are still
many ways the ITP could be improved.

Our approach to coverset induction is similar to the first sufficient complete-
ness checking algorithm described in Section 5.3. It would also be interesting
to develop equational tree automata-based techniques for generating coverset
induction schemes. These techniques should allow us to generate better cover-
set induction schemas with specifications supporting rewriting modulo axioms.
This is related to the work in [86] which considered rewriting modulo linear
arithmetic. Our work would build upon that to consider other theories such as
the combinations of associativity, commutativity, and identity supported by our
CETA tree automata library.

A second research direction would be to extend the auto tactic to take advan-
tage of recent advances in efficient decision procedures for uninterpreted function
symbols, linear arithmetic, bit vectors, and arrays. These decision procedures
have been successfully combined with algorithms for Boolean satisfiability as
the basis for SAT Modulo Theories (SMT)-based theorem proving, and there
are currently many different SMT-theorem provers including Barcelogic [13],
CVC3 [9], MathSAT [23], Yices [45], and Z3 [116]. One recent direction is to
combine the capabilities of SMT-based theorem provers with matching modulo
ground equations [115] and superposition [114]. It seems worth investigating
whether these techniques can be combined with the (conditional) rewriting sup-
ported by the ITP in an efficient way.

A third direction for further research is to further decouple the reasoning
capabilities in the ITP from the ITP’s user interface. This would enable the
core reasoning of the I'TP to more easily be integrated in other tools such as
Full Maude or Real-time Maude. This should be possible since all of these tools
use the core Maude metalevel infrastructure. One step in this direction that we
have taken in the ITP is to make the module used to define the ITP’s commands
an argument to the initial ITP state. This allows us to define new commands
to the ITP in a modular way without altering any of the existing ITP’s source
code. After making this change, Ralf Sasse was able to port the JAVA+ITP [132]

extension to the newest version of the I'TP with no code changes to the ITP’s

162

source code.

It is an exciting time for automated theorem proving as their techniques
have become fundamental to many different formal analysis tools. The ITP
has a great deal of potential to become useful across the different Maude tools.

However, it is important to carefully validate these ideas on different domains.

163

Chapter 8

Powerlist case study

To evaluate the Maude ITP and the extensions introduced in the previous chap-
ter, we present a case study in which we mechanically prove the correctness of
many different algorithms over Misra’s powerlist [113] data type. Powerlists
are non-empty lists which can be nested, but where two lists P and) can be
concatenated to form P | @ if and only if they are similar — that is they have
the same number of nested levels and the same length at each level. Powerlists
satisfy the nice algebraic property that the interleaving P x @) of two similar

powerlists P and @ can be distributed over concatenation,

(Pr | P2) X (Q1]Q2) =(P1 x Q1) | (P2 xQ2) S1 xSy =851 | S,

where Py, P>, 1, and Q5 are all similar powerlists, while S; and S; denote single
elements or nested powerlists. We sometimes refer to | as the tie operator, and
X as the zip operator.

It is not difficult to see that each powerlist has 2" elements for some n € N.
A crucial property of powerlists is that each powerlist with more than one ele-
ment can be represented as either the concatenation Py | Py or the interleaving
@1 X Q2 of two similar powerlists. Moreover, the conversion between the in-
terleaving and concatenation representations can be done efficiently in parallel
architectures [96]. Powerlists can also succinctly describe many different parallel
algorithms in a way that leads to elegant correctness proofs [1, 96, 113].

Powerlists have served as a challenge problem for inductive theorem provers.
There are several papers which reproduce the different correctness properties
of powerlists in both ACL2 [55-57] and the RRL [85, 87]. Unfortunately, it is
widely felt that these proofs lack the simplicity of hand proofs. Attempts to
replicate that simplicity have lead to new techniques for simplifying inductive
theorem proofs [84], however there have not yet been any completely satisfactory
solutions. The aim of this work is to replicate many of these proofs using the
Maude ITP in a natural way that achieves the simplicity of the hand proofs.
We hope to use this experience to identify both strengths of the ITP that may
be useful in other theorem provers and weaknesses where we can improve the
ITP.

An important reason why the powerlist proofs are complicated in other for-

mal tools is that powerlists cannot be naturally formalized in the logics sup-

164

ported by those tools. For example, ACL2’s logic is an applicative subset of
Common Lisp, and powerlists were encoded in [56] as trees formed from cons
and nil rather than treating the tie and/or zip operators directly as construc-
tors. Our goal is to determine if membership equational logic can avoid this
problem. One important feature of MEL is that the partial powerlist construc-
tors of | and x can be naturally expressed as conditional memberships.

Our results are encouraging, and we have verified many of the powerlists
theorems in existing work in the Maude ITP. We have formally proven many of
the theorems in [113] on basic properties of powerlists, and on the Fast Fourier
Transform (FFT), inverse FFT, and the Batcher sort algorithm. We also have
proven the results in [1] on representing arbitrary size ripple-carry and carry-
lookahead adders in powerlists. The proofs scripts for the different proofs con-
tain over 100 different theorems and lemmas. The vast majority of these were
proven using a single ITP command using coverset induction or the cov-split
described in the previous chapter.

The rest of this chapter is organized as follows. In the next section we in-
troduce our parameterized specification of powerlists in membership equational
logic. This parameterized specification forms the basis for all of the later proofs,
and is instantiated in later proofs for powerlists over natural numbers, complex
numbers, and bits. In Section 8.2, we show how basic algorithms on powerlists
can be proven correct in the ITP. Many of the lemmas in this section are reused
in later proofs. In Section 8.3, we present our definitions and correctness proofs
for the FFT and inverse FFT. In Section 8.4, we present our results on the
Batcher sort algorithm. In Section 8.5, we present our results on the ripple-
carry and carry-lookahead adders. Finally, we conclude in Section 8.6 with a
discussion of how our work relates to existing work as well as promising future
directions of research. To improve the flow of this chapter, we will not always

show the full proof scripts, however they are included in Appendices A-D.

8.1 Powerlists in membership equational logic

Powerlists [113] are often treated as an abstract data type in which the basic
element type is left undefined. They could be natural numbers, complex num-
bers, bits, or any other data type. Formally, this is most naturally captured by
defining powerlists as a parametric data type. The parameter must contain at
least one sort for defining the elements of the powerlist, but some of the algo-
rithms described in [113] require other operations as well. For example, sorting
the elements in a powerlist requires that the parameter is equipped with a total
order, while computing a prefix sum requires that the parameter is equipped
with an associative operation.

As explained in [28], parametric data types are supported in Maude by defin-
ing one or more named theories for the parameters, and a parametric functional

module taking the theory as an argument. Maude also provides several built-in

165

theories in its prelude — the most basic of which is the TRIV theory defined
below:

fth TRIV is
sort Elt .
endfth

The only elements of this theory are an implicit kind [E1t] and a single sort
Elt with the kind [E1t].

Given the theory TRIV, we then define powerlists in Maude using the speci-
fication in Figure 8.1. The module POWERLIST defines three sorts for unnested
powerlists: E1t{X} for powerlists with a single element, NsPowerlist{X} for
powerlists with multiple elements, and Powerlist{X} for all unnested pow-
erlists. The module also defines three sorts for potentially nested powerlists:
Scalar{X} for powerlists with a single element or nesting, NsPowerlist*{X} for
potentially nested powerlists with length greater than two, and Powerlist*{X}
for all powerlists. The operator [_] represents a single element powerlist, <_>
represents a single nested powerlist, and _tie_ represents the concatenation of
two powerlists. Note that, in general, P tie Q is not a well-sorted term. In-
stead, we define the similarity relation sim? and two conditional memberships
to define when P tie Q has sorts NsPowerlist{X} and NsPowerlist*{X}. The
last operation we introduce is the zip operator which interleaves two powerlists.

Later proofs will show how it can be an alternate constructor for powerlists.
We have shown how to define parametric theories, but we still need to show
how to use them via instantiation. Instantiating POWERLIST requires a mapping
which associates the sort X$E1t in the TRIV parameter theory of POWERLIST
with a concrete sort in a Maude module. This is done by defining a view from
the parameter theory to a concrete module. The Maude prelude also includes
several predefined views. For example, TRIV maps its E1t sort to the sort Nat
corresponding to the natural numbers in the built-in module NAT with the view:

view Nat from TRIV to NAT is
sort E1t to Nat .

endv

Note that the identifier Nat is used in two distinct ways in this definition: it is
used as the name of the view as well as the name of the sort for representing
the natural numbers in the module NAT. This overloading is not required, but as

a useful convention adopted in the Maude prelude for naming views from TRIV.
The POWERLIST specification can then be instantiated with the view Nat by
importing it into another module with the line

protecting POWERLIST{Nat} .

Note that Nat refers to the name of the view, and not to the sort. The parameter
X in POWERLIST will be replaced with Nat in the names of the sorts, so the sorts in
POWERLIST imported by this line will be named E1t{Nat}, NsPowerlist{Nat},

166

fmod POWERLIST{X :: TRIV} is protecting NAT .
--- Sorts for unnested powerlists.
sorts E1t{X} NsPowerlist{X} Powerlist{X} .
subsort E1t{X} NsPowerlist{X} < Powerlist{X} .
--- Sorts for nested powerlists.
sorts Scalar{X} NsPowerlist*{X} Powerlist*{X} .
subsort Scalar{X} NsPowerlist*{X} < Powerlistx{X} .
--- Subsorts relating unnested and nested powerlists.
subsort E1t{X} < Scalar{X} .
subsort NsPowerlist{X} < NsPowerlist*{X} .
subsort Powerlist{X} < Powerlist*{X}

--- Construct single element powerlist.

op [_] : X$E1t -> E1t{X} [ctor].

--- Construct nested powerlist.

op <_> : Powerlist*{X} -> Scalar{X} [ctor].

--- Partial tie comstructor.

op _tie_ : Powerlist*{X} Powerlist*{X} ~> Powerlist*{X} [prec 35].

var E E’ : X$Elt

var S S’ : Scalar{X} .

var P Q : Powerlist{X} .

var Px P1x P2% Q% Q1% Q2% : Powerlistx{X}
var NsP* : NsPowerlist*{X} .

--- Similarity predicate.

op sim? : Powerlist*{X} Powerlist*{X} -> Bool [comm].
eq sim?([E], [E>]J) = true .

eq sim?(< Px >, [E]) = false .

eq sim?(< P*x >, < Q* >) = sim?(P*, Q*)

eq sim?(NsP*, S) = false .

eq sim?(P1* tie P2%, Qlx tie Q2%) = sim?(P1lx, Q1%)

--- Constructor memberships.
cmb P tie Q : NsPowerlist{X} if sim?(P, Q)
cmb P* tie Q* : NsPowerlist*{X} if sim?(Px*, Q%)

--- Definition of zip.
op _zip_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .
eq S zip S’ = S tie S’ [label def-zip-1].
eq (P1x tie P2%) zip (Q1* tie Q2%)
= (P1* zip Q1%) tie (P2x zip Q2*) [label def-zip-2].
. More operations
endfm

Figure 8.1: Powerlists in Maude

167

Powerlist{Nat}, Scalar{Nat}, NsPowerlist*{Nat}, and Powerlist*{Nat}.
The protecting import will also import all of the operators, equations, and
memberships in POWERLIST with the appropriate instantiated sorts.

One relevant feature of Maude is sort and operator renaming. Renaming is
useful for the powerlist case study, because at present the I'TP does not directly
support parameterized theories. Moreover, we would like to reuse many of
the basic powerlist lemmas across results for powerlists over different elements,
including powerlists over natural numbers, complex numbers, and bits. To
solve this problem, we use Maude’s renaming feature to rename the sorts to
be consistent each of the different types of elements. For example, we use the
following import statement for defining powerlists over the natural numbers:

protecting POWERLIST{Nat}
* (sort Elt{Nat} to Elt,
sort Scalar{Nat} to Scalar,
sort NsPowerlist{Nat} to NsPowerlist,
sort Powerlist{Nat} to Powerlist,
sort NsPowerlist*{Nat} to NsPowerlistx,

sort Powerlist*{Nat} to Powerlistx*)
For powerlists over complex numbers, we use the following module.

protecting POWERLIST{Complex}
* (sort Elt{Complex} to Elt,
sort Scalar{Complex} to Scalar,
sort NsPowerlist{Complex} to NsPowerlist,
sort Powerlist{Complex} to Powerlist,
sort NsPowerlist*{Complex} to NsPowerlist*,

sort Powerlist*{Complex} to Powerlistx)

These renamings map the sorts to the same syntactic name. Though just syn-
tactic sugar, this naming convention allows us to easily define many powerlist
theorems in a reusable way. Our I'TP proof scripts has been grouped into files
containing reusable lemmas that are often independent of the basic element
type. This considerably reduces the number of lemmas that we must write out,
and allows us to get many of the benefits of direct support for parameterized

theories without the ITP actually supporting them at the moment.

8.2 Basic results

In later sections, we will show how to prove the correctness of advanced algo-
rithms on powerlists, but we first build up a library of basic results that we will
reuse in later proofs. In this section, we will prove properties about the similar-
ity relation, the zip operation, the logarithm of the length of the powerlist, and

operations for permuting the elements in different ways.

168

8.2.1 Similarity

One of the most fundamental defined relations on powerlists is the similarity
relation, as it is fundamental in the definition of what a powerlist is. In our
Maude POWERLIST module in Figure 8.1, the similarity relation is given by the
recursively defined operation sim?.

The operator sim? represents an equivalence relation, but Maude does not
allow rewriting over different equivalence relations. Prior to the new support for
defining equivalence relations discussed in Section 7.4, we would have to prove a
transitivity lemma, and then manually instantiate it whenever it was necessary.
Fortunately, we can now have the lemma applied automatically by issuing the
following command:

(defequiv sim? on Powerlist* .)

This command records that sim? is an equivalence relation over terms with
sort Powerlist* and adds a reflexivity rule in the current goal. As sim? was
declared to be commutative, the command generates two proof obligations: one
to show that sim? is reflexive; the other to show that sim? is transitive.

label-sel: *er-sim?-reflex-Powerlist*@0

A{VO#0:Powerlistx*}
sim? (VO#0:Powerlist*,VO#0:Powerlist*) = true

label: *er-sim?-trans-Powerlist*Q0

A{VO#0:Powerlist* ; VO#1:Powerlist* ; VO#2:Powerlistx*}
sim? (VO#2:Powerlist*,VO#1:Powerlist*) = true

& sim? (VO#0:Powerlist*,VO#1:Powerlist*) = true

==> s5im? (VO#0:Powerlist*,VO#2:Powerlist*) = true

The first subgoal *er-sim?-reflex-Powerlist*@0 can be proven immedi-
ately with coverset induction.

(cov* on sim?(VO#0, VO#0) .)

Coverset induction actually generated three subgoals when this command was
issued: one for elements, one for nested powerlists, and the third for concatena-
tion. However, by using the cov* command, we automatically simplified each
of the subgoals and discharged them automatically.

The second goal *er-sim?-trans-Powerlist*@0 is more complex. It can
be proven via coverset induction with splitting. In this case, coverset induction
with splitting generates 20 separate subgoals. All but 2 subgoals are discharged
automatically — the remaining two require manually instantiating the induction
hypotheses for transitivity.

169

(cov-split* on sim?(VO#0, VO#2)
split (sim?(VO#0, VO#1)) ; (sim?(VO#1, VO#2)) .)
--- Nesting subgoal.
(a-inst hyp-2 with (VO#1:Powerlist* <- V1#2*Powerlist*) .)
(auto .)
--- Concatenation subgoal.
(a-inst hyp-5 with (VO#1:Powerlist* <- V1#2*Powerlist*) .)
(auto .)

After proving this lemma, we will never need to manually instantiate transitivity
of sim? again, as that will automatically be done by equivalence propagation.
We initially found it surprising that the cov-split command generated 20
separate subgoals for this problem. This seemed like a large number. However,
in this case we are splitting on three different powerlist variables, and for each
variable there are three basic cases: single elements, nested powerlists, and the
concatenation of two powerlists. There are not 3% = 27 different cases, because
sim? has been defined so that some combinations of arguments do not require
further splitting. For example, given the definition of sim?, splitting will not
occur if one of the arguments has sort NsPowerlist* while the other has sort
Scalar despite the fact that a scalar could be either a nesting or a single element.
As explained in Section 7.3.1, the number of subgoals generated depends on
the strategy used during narrowing. An early version of coverset induction which
did not implement the optimization described in 7.3.1 generated 31 subgoal
cases. One culprit for the additional cases were the two subsort declarations:

subsort NsPowerlist{X} < NsPowerlist*x{X} .
subsort Powerlist{X} < Powerlist*{X} .

These subsort declarations implicitly declare the memberships

x : NsPowerlist*{X} if = : NsPowerlist{X}

x : Powerlist*{X} if = : Powerlist{X}

In Maude, the memberships corresponding to subsort declarations are consid-
ered constructor memberships as defined in Chapter 5. Consequently, the nar-
rowing algorithm considers them when expanding variables. Since the member-
ships obtained from these subsort declarations are implied by the other member-
ships, the cases they introduce in constructor splitting are redundant. However,
we cannot omit these subsort declarations due to Maude’s preregularity require-
ment — every term must have a least sort. One way to work around this is
to give alternative constructor definitions which omit these memberships. The
constructor memberships for Powerlist* follows quite easily.

(ctor-def plist* :
A{P:Powerlist*}
((P) : NsPowerlist* V (P) : Scalar) .)
(eg-split* on (sim?(P, P)) .)
(set-default-ctor plist* .)

170

The last command sets plist* as the default constructor memberships.

For NsPowerlist* the proof is more complicated, because the ITP currently
requires that existential quantifiers are manually instantiated using the e-inst
command.

ctor-def nsplist* :
A{NsP:NsPowerlist*}
(E{P:Powerlist* ; Q:Powerlistx*}
((P tie Q) = (NsP)
& (sim?(P, Q)) = (true))) .)
(eg-split on (sim?(NsP, NsP)) .)

(cns .)
(imp .)
(e-inst

with ((P:Powerlist* <- (VO#O*Powerlist*)) ;
(Q:Powerlist* <- (VO#1%*Powerlist*))) .)
(auto .)
(set-default-ctor nsplist* .)

This proof uses eq-split to instantiate NsP* with its constructor memberships,
and then uses cns and imp to perform quantifier elimination and assume the
implications. The existential quantifier is then eliminated, and the proof can be
automatically proven.

We need one more lemma about similarity for later proofs. Specifically, we
show that the similarity is a right congruence with respect to tie. As sim? is
a function, this congruence lemma takes the following form:

(lem tie-r-sim* :
A{P:Powerlist* ; Qil:Powerlist* ; Q2:Powerlist* ; R:Powerlistx*}
((sim?(P, Q2)) = (true)
& (sim?7(Q1, Q2)) = (true)
=> (sim?(P tie Q1, R)) = (sim?(P tie Q2, R))) .)
(eg-split* on sim?(P tie Q1, R) .)

The rule formed from this lemma contains a free variable Q2% that does not
appear in the left-hand side. Consequently, this rule is not directly executable
by the I'TP. Fortunately, we only need to do this twice in all of the proofs in this
chapter. However, in the future it may be worth investigating other techniques

for handling congruence rules.

8.2.2 Zip and unzip

We now turn our attention to another fundamental powerlist operation: the zip
operator which is defined as follows:

op _zip_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .
eq S zip S’ = S tie S’ [label def-zip-1].

eq (P1* tie P2%) zip (Ql* tie Q2%)

= (P1* zip Q1x) tie (P2* zip Q2x) [label def-zip-2].

171

The two equations are labeled so that we can enable and disable them in proofs.
We use 7> in the operator declaration instead of -> to indicate that the operator
is partial. Consequently, the operator declaration for zip does not implicitly
declare a membership stating that the zip of two powerlists is a powerlist.

Given the definition, our first task is to define a lemma stating when zip is
well-defined, and when the zip of two powerlists is similar to another. This is
done in the following lemma appearing in lem-zip-sim.itp:

(lem zip-sim* :
A{P:Powerlist* ; Q:Powerlist* ; R:Powerlist*}
((sim?(P, Q)) = (true)
=> (P zip Q) : NsPowerlist*

& ((sim?(P zip Q, R)) = (sim?(P tie Q, R)))) .)
(cov-split* on P zip Q split (sim?(P tie Q, R)) .)
--- Induction case 8.2:

(a-inst lem-tie-r-sim*
with (Q1:Powerlist* <- VO#1*Powerlistx) ;
(Q2:Powerlist* <- VO#5xPowerlist*) .)
(auto .)

By proving this lemma, the following two inference rules are automatically added
to the current goal:

cmb P zip Q : NsPowerlist* if sim?(P, Q) = true
[label lem-zip-sim* metadata "|cat:lem|"].
ceq sim?(P zip Q, R) = sim?(P tie Q, R) if sim?(P, Q) = true

[label lem-zip-sim*2 metadata "|cat:lem|"].

Observe that the ITP is capable of automatically parsing this lemma as two
separate rules, and that they are labeled with different names. This enhanced
parsing was one of the features added to the ITP in this work. These rules may
be disabled, and are labeled with the metadata attribute "|cat:lem|" so that
they are not treated as axioms for generating induction schemes. In the future,
we will not explicitly state the rules that a lemma introduces, because they are

straightforward to derive from the lemma itself.
The previous lemma shows that zipping two similar powerlists together yields
a non-scalar powerlist. For unnested powerlists, we prove the following theorem:

(lem zip-sim :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true) => (P zip Q) : NsPowerlist) .)

(cov* on P zip Q .)

A major goal in this section is to show that every non-scalar powerlist can be
expressed as the zip of two similar powerlists. This will be done through an al-
ternative constructor definition, which will require two operations for unzipping

powerlists:

172

--- Left powerlist obtained by unzipping.

op unzip-1 : NsPowerlist*{X} -> Powerlistx{X} .

eq unzip-1(S tie S’) =S .

eq unzip-1(NsP* tie NsQ*) = unzip-1(NsP*) tie unzip-1(NsQx*)
--- Right powerlist obtained by unzipping.

op unzip-r : NsPowerlist*{X} -> Powerlist*{X} .

eq unzip-r(S tie S’) = §?

eq unzip-r(NsP* tie NsQ*) = unzip-r(NsP*) tie unzip-r(NsQ*)

These two functions recursive deinterleave a non-scalar powerlist. The correct-
ness for unzip-1 for powerlists over natural numbers is shown in the following
theorems in unzip-1.itp:

(goal unzip-1-zip : POWERLIST-NAT
|- A{P:Powerlist* ; Q:Powerlistx}
((sim?(P, Q)) = (true)
=> (unzip-1(P zip Q)) = (P)) .)
load lem-sim-basics.itp
load lem-zip-sim.itp

(cov* on (P zip Q) .)
The correctness proof for unzip-r is virtually identical:

(goal unzip-r-zip : POWERLIST-NAT
|- A{P:Powerlist* ; Q:Powerlistx*}
((sim?(P, Q)) = (true)
=> (unzip-r(P zip Q)) = Q) .)
load lem-sim-basics.itp
load lem-zip-sim.itp

(cov* on (P zip Q) .)

We next show that every non-scalar powerlist can be represented as the zip
of two powerlists. Showing this requires the previous lemmas on zip as well as
the following two lemmas:

(lem zip-unzip :
A{NsP:NsPowerlistx*}
((unzip-1(NsP) zip unzip-r(NsP)) = (NsP)) .)
(cov* on (unzip-1(NsP)) .)

(lem sim-unzip-l-unzip-r-1 :
A{NsP:NsPowerlist*}
((sim? (unzip-1(NsP), unzip-r(NsP))) = (true)) .)
(cov* on (unzip-1(NsP)) .)

The alternative constructor definitions for nested and unnested powerlists follow
easily, but require manually instantiating the existentially quantified variables.
This is done with the e-inst command and using the unzip-1 and unzip-r
operators to obtain the left and right sides of the zip operator. The script for
defining the alternative constructor memberships is given in Figure 8.2, and it
creates the following alternative constructor memberships:

173

(ctor-def zip* :
A{NsP:NsPowerlist*}
(E{P:Powerlist* ; Q:Powerlist*}
((P zip Q) = (NsP) & (sim?(P, Q)) = (true))) .)
(cns .)
(e-inst with ((P:Powerlist* <- (unzip-1(NsP*NsPowerlist*))) ;
(Q:Powerlist* <- (unzip-r(NsP*NsPowerlist*)))) .)

(auto .)

(ctor-def zip :
A{NsP:NsPowerlist}
(E{P:Powerlist ; Q:Powerlist}
((P zip Q) = (NsP) & (sim?(P, Q)) = (true))) .)
(cns .)
(e-inst with ((P:Powerlist <- (unzip-1(NsP*NsPowerlist))) ;
(Q:Powerlist <- (unzip-r(NsP*NsPowerlist)))) .)

(auto .)

Figure 8.2: Alternative constructor definitions for zip

cmb P*:Powerlist* zip Q*:Powerlist* : NsPowerlistx*
if sim?(P*:Powerlist*, Q:Powerlist*) = true
cmb P:Powerlist zip Q:Powerlist : NsPowerlist

if sim?(P:Powerlist, Q:Powerlist) = true

8.2.3 Lgl

As powerlists may only be combined if they have the same length, each powerlist
must have length 2" for some natural number n € N. Accordingly, we can define
the operation 1gl which computes the logarithm in base 2 of their length as
follows:

op 1lgl : Powerlist*{X} -> Nat .
eq 1g1(8) = 0 . eq 1gl(P* tie Q%) = s 1gl(P*)

This function will be useful later in Section 8.3. For now, we just show two

basic results in the file lem-1gl.itp:

1. If two powerlists are similar, then the logarithm of their length is the same:
(lem sim-1gl :
A{P:Powerlist ; Q:Powerlist}

((sim?(P, Q)) = (true) => (1gl(P)) = (1gl(Q)) .)

(cov* on sim?(P, Q) .)

2. The logarithm of the length of zip 1gl(P* zip Q*) is the successor of
the 1gl (P*).

174

fmod POWERLIST-PERMUTATIONS{X :: TRIV} is
pr POWERLIST{X} .
var N : Nat .
var NsP* : NsPowerlistx{X} .
var Px Q* : Powerlist*{X} .
var S : Scalar{X} .

--- Rotates elements in powerlist right by one.
op rr : Powerlist*{X} -> Powerlist*{X} .

eq rr(S) =S .

eq rr(P* zip Q%) = rr(Q*) zip Px .

--- Rotates elements in powerlist left by one.
op rl : Powerlist*{X} -> Powerlist*{X} .

eq rl(S) =S .

eq r1(P* zip Q*) = Q* zip rl1(Px*)

--- Reverse powerlist.

op rev : Powerlist*{X} -> Powerlist*{X} .

eq rev(S) = S .

eq rev(Px tie Q%) = rev(Q*) tie rev(Px*)

--- Rotates bitstring of indices right by one bit.
op rs : Powerlist*{X} -> Powerlist*{X} .
eq rs(S) =S .
eq rs(P* zip Q*) = P* tie Qx .
--- Rotates bitstring of indices left by one bit.
op 1ls : Powerlist*{X} -> Powerlist*{X} .
eq 1s(8) =S .
eq 1s(P* tie Q*) = Px zip Q% .
--- Inverts bitstring of indices.
op inv : Powerlist*{X} -> Powerlist*{X} .
eq inv(8) = S .
eq inv(P* tie Q%) = inv(Px*) zip inv(Q%*)
endfm

Figure 8.3: Operations for permuting powerlists

(lem 1lgl-zip :
A{P:Powerlist* ; Q:Powerlistx*}
((sim?(P, Q)) = (true)
=> (1gl(P zip Q)) = (s 1gl(P))) .)

(covx on P zip Q .)

8.2.4 Permutations

We conclude this section with six functions for permuting elements of powerlists.
Three of the functions are best viewed as permuting the elements of a powerlist,
while the other three functions are best viewed as permuting the indices of the
powerlist. Both types of permutation can be naturally expressed in the powerlist
notation. The six functions are defined in the module POWERLIST-PERMUTATIONS
presented in Figure 8.3.

As an example to illustrate these operations, consider the following powerlist

175

P and its indices taken from [113] over letters in the alphabet:

P=[a b c d e f g h]
P’s indices = [000 100 010 110 001 101 011 111

The indices show the position of each element encoded as a bitstring with the
least-significant bit first. The operations rr and rl rotate the elements to the

right and left respectively.

rr(P) =] h a b c d e f g]

rr(P)’s indices =[111 000 100 010 110 001 101 011]
r1(P) = b c d e f g h a |

[]

r1(P)’s indices = [100 010 110 001 101 011 111 000

The indices show the original position of each element in the list.
We show in rl-rr.itp and rr-rl.itp that rl and rr are inverses.

(goal rl-rr : POWERLIST-PERMUTATIONS-NAT

|- A{P:Powerlistx*} ((zxl(xr(P))) = (P)) .)
load lem-sim-basics.itp
load lem-zip-ctor.itp

(covx using zip* on rr(P) .)

(goal rr-rl : POWERLIST-PERMUTATIONS-NAT
|- A{P:Powerlistx}
(rrx1(®))) = P)))
load lem-sim-basics.itp
load lem-zip-ctor.itp

(cov* using zip* on rl1(P) .)

WhenaPDWERLIST—PERMUTATIONS—NATinXHtsPOWERLIST—PERMUTATIONS with
the view Nat.

The operation rev reverse the elements.

rev(P)=[h g ! e d c b a |
rev(P)’s indices = [111 011 101 001 110 010 100 000]

It is interesting to observe that rev toggles the bits in the indices between 0
and 1. In lem-rev-basics.itp, we show that rev commutes with zip and that
rev(P) is similar to P. The proofs are straightforward coverset induction proofs
with a couple of case splits in the second lemma.

(lem rev-zip :
A{P*:Powerlist* ; Q*:Powerlist*}
((sim?(P*, Q%)) = (true)
=> (rev(Px zip Qx)) = (rev(Q*) zip rev(P*))) .)

(cov* on (P*x zip Q) .)

176

(lem sim?-rev :
A{P*:Powerlist* ; Q*:Powerlistx*}
((sim?(rev(P*), Q%)) = (sim?(P*, Q%)) .)
(cov-split* on rev(Px) split (sim?(P*, Qx)) .)
--- Induction case.
(split on (sim?(VO#0*Powerlist*,VO#3*Powerlist*)) .)
(auto .)
(split on (sim?(VO#0*Powerlist*,VO#1*Powerlist*)) .)
(auto .)
(auto .)

We also show that rev is a self-inverse in lem-rev-rev.itp, and the iden-

tity rev(rr(rev(rr(P)))) = P in rev-rr-rev-rr.itp. The proofs are quite

straightforward, so we omit them here, but they are available in Appendix A.
The operations rs and 1s can be viewed as rotating the bits in the bitstrings

used to encode the indices to the right and left

rs(P) =] a c e g b d f h]
rs(P)’s indices = [000 010 001 011 100 110 101 111
1s(P)=[a e b f c g d h]

[]

1s(P)’s indices=[000 001 100 101 010 011 110 111

In 1s-rs.itp and rs-1s.itp, we show that the operations rs and 1s are in-
verses. The proof is quite straightforward and does not require coverset induc-
tion — only splitting.

Finally, the inv operation can be viewed as reversing the order of the indices.

inv(P) = a e c g b f d h]
inv(P)’s indices = [000 001 010 011 100 101 110 111

In lem-inv-basics.itp, we show that inv(P*) is similar to P* and that inv

can be defined over zip rather than tie as follows:

(lem inv-zip :
A{P:Powerlist* ; Q:Powerlistx*}
((sim?(P, Q)) = (true)
=> (inv(P zip Q)) = (inv(P) tie inv(Q))) .)
(cov* on (P zip Q) .)

This equivalence definition is used in inv-inv.itp to show that inv is a self

inverse, i.e., inv(inv(P)) = P.

(goal inv-inv : POWERLIST-PERMUTATIONS-NAT
|- A{P:Powerlist*}
((Anv(Env(P))) = (P)))
load lem-sim-basics.itp
load lem-zip-sim.itp
load lem-inv-basics.itp

(cov* on inv(Px*) .)

177

The lemmas in lem-inv-basics.itp are also used in conjunction with those in
lem-rev-basics.itp to show in inv-rev.itp that inv and rev commute.

(goal inv-rev : POWERLIST-PERMUTATIONS-NAT
|- A{P:Powerlist*}
((inv(rev(P))) = (rev(inv(P)))) .)
load lem-sim-basics.itp
load lem-zip-sim.itp
load lem-inv-basics.itp
load lem-rev-basics.itp

(cov* on rev(Px*) .)

8.3 Fast Fourier transform

The Fast Fourier Transform is one of the most widely used algorithms in scien-
tific computing. This is an efficient algorithm for computing the discrete Fourier
transform — the evaluation of a polynomial P with n complex coefficients at
the nth principal roots of 1. It was invented by Gauss, but rediscovered by
James Cooley and John Tukey [37]. Misra showed in [113] how the Fast Fourier
Transform (FFT) and inverse FFT can naturally be expressed as powerlist oper-
ators. He gave compact proofs for showing that the FFT defined over powerlists
does indeed compute the discrete Fourier transform, and he also showed how to
derive the inverse FFT directly from the definition of FFT.

Our goal in this section is to formally specify both the FFT and inverse FFT
elegantly in Maude using Misra’s approach, and also to develop proofs in the
ITP for both the correctness of the FFT and inverse FFT. Before doing that,
we first need to develop a reasonable approximation of complex numbers in
Maude. We say an approzimation, because there is no way to directly represent
the uncountably many complex numbers as a term algebra in Maude.

Our approach is to represent a fragment of the complex numbers sufficient
for defining the FFT operations. Specially, each complex number we represent
can be expressed as the sum (r1,a1)+- -+ (ry, a,) of pairs of rational numbers.

Each pair (rj,a;) in the sum represents the complex number
zj =r; - (cos(2ma;) + i - sin(2may)).

Essentially, the pair (r;, a;) is a complex number in polar coordinates where r;
is the radius and a; corresponds to revolutions around the origin rather than
radians. Not every complex number can be represented in this way. However,
in our proofs we only rely on a few basic equational properties of these numbers,
and these equational properties are also complex numbers.

In Figure 8.4, we present the Maude theory for defining complex numbers
and a few basic operations. In order to define a valid domain for division, we

introduce an additional sort NzPolar containing pairs (7, a) where 7 is a non-zero

178

fmod COMPLEX is protecting RAT .
sort NzPolar Complex .
subsort NzPolar < Complex .

--- A complex number is represented as a sum of numbers in polar
--- form (R, A) form where the angle A is measured in revolutions.
--- The representation is normalized so that A is in [0,1/2) and
--- addition satisfies certain basic identities.

op ((_,.)) : NzRat Rat -> NzPolar [ctor].

op ((_,.)) : Rat Rat -> Complex [ctor].

op _+_ : Complex Complex -> Complex [ctor assoc comm prec 33].

var R A R1 A1 R2 A2 : Rat
var NzR : NzRat

var C C1 C2 : Complex .
var N : Nat

--- Basic identities.

eq (0, NzR) = (0, 0)

ceq (R, A) = (R, Arem1 + 1) if A< O

ceq (R, A) = (R, A rem 1) if 1 <= A .

ceq (R, A) (- R, A -1/2) if 1/2 <= A /\ A <=1
eq (0, 0) +C=C .

eq (R1, A) + (R2, A) = (R1 + R2, A)

--- Multiplication over complex numbers.

op _*_ : Complex Complex -> Complex [assoc comm prec 31].

eq (R1, A1) * (R2, A2) = (R1 * R2, A1l + A2)

eq (C1 +C2) * C=C1 *C+C2x*C.

--- Division operator over NzPolar numbers.

op _/_ : Complex NzPolar -> Complex [prec 31].

eq (R1, A1) / (NzR, A2) = (R1 / NzR, _-_(A1, A2))

eq (C1 +C2) /C=(C1/C)+ (C2/C)

--- root(n) denotes the 2"nth principle root of 1.

op root : Nat -> NzPolar .

eq root(N) = (1, 1 / 2 =~ N) [label def-root].
endfm

Figure 8.4: Complex numbers in Maude

179

rational number. This extra sort is used so that we can declare that division
over NzPolar numbers is a total operation.

In lem-fft-basics.itp, we prove several lemmas about complex numbers
that are useful for later proofs. These lemmas are proven by structural induction
on the terms used to define our subset of complex numbers, but they are also
true for all complex numbers. It turns out that the equation def-root which
we use to define the root operation is rarely useful in later proofs. Instead,
we define the following two lemmas in lem-fft-basics.itp and then disable
def-root:

(lem root-sn :

A{N:Nat}

((root(s N) * root(s N)) = (root(N))) .)

(auto .)
(lem root-1 :

((root (1)) = ((-1, 0))) .)
(auto .)
(disable def-root .)

The other lemmas about complex numbers are standard arithmetic facts, so we
omit them here, but they may be found in Appendix B.
To instantiate POWERLIST over the complex numbers, we define the view:

view Complex from TRIV to COMPLEX is
sort Elt to Complex .

endv

Powerlists can then be defined by instantiating POWERLIST with the Complex
view. We do this in the module POWERLIST-COMPLEX in Figure 8.5. This module
imports POWERLIST, and defines operators for element-wise addition, multiplica-
tion, division, and subtraction in the obvious way. To define a total domain of
the division operator, we define a sort NzPolarPowerlist for representing pow-
erlists over elements with sort NzPolar. In addition, Maude’s requirement that
every term has a least sort, requires us to define the sorts NzPolarElt for single
element powerlists and NsNzPolarPowerlist for multiple element powerlists.

We prove several different elementary theorems about these operations in
lem-fft-basics.itp. The results follow trivially by coverset induction, but
they include: (1) basic facts about the similarity relation over the element-
wise arithmetic operations, (2) various forms of associativity, distributivity, and
identity axioms between addition, multiplication, and division, (3) alternative
definitions of the elementwise arithmetic operations in terms of zip rather than
tie. In order to avoid cluttering this chapter, we refer the interested reader to
the Appendix B for the complete proof scripts.

Having defined basic operations over powerlists of complex numbers, we now
turn our attention to defining the discrete Fourier transform. We first present

a way of representing polynomials as powerlists. The basic idea in [113] is that

180

fmod POWERLIST-COMPLEX is
protecting POWERLIST{Complex}

* (sort Elt{Complex} to Elt,
sort Scalar{Complex} to Scalar,
sort NsPowerlist{Complex} to NsPowerlist,
sort Powerlist{Complex} to Powerlist,

sort NsPowerlist*{Complex} to NsPowerlistx,
sort Powerlist*{Complex} to Powerlistx)

sorts NzPolarElt NsNzPolarPowerlist NzPolarPowerlist
subsort NzPolarElt NsNzPolarPowerlist < NzPolarPowerlist
subsort NzPolarElt < Elt

subsort NsNzPolarPowerlist < NsPowerlist

subsort NzPolarPowerlist < Powerlist

var P P1 P2 Q Q1 Q2 : Powerlist .
var C C’ : Complex .

var NzPol : NzPolar .

var NzP NzQ : NzPolarPowerlist

op [_] : NzPolar -> NzPolarElt [ctor].
cmb NzP tie NzQ : NsNzPolarPowerlist if sim?(NzP, NzQ)

--- Multiply elements in powerlist by scalar.

op _*_ : Complex Powerlist -> Powerlist [prec 31].

eqC*[C>]1=[C=*¢C]

eq C * (P tie Q) = (C *x P) tie (C * Q)

--- Elementwise multiplication.

op _*_ : Powerlist Powerlist ~> Powerlist [prec 31].

eq[Clx[C1=[Cx*xcC]

eq (P1 tie P2) * (Q1 tie Q2) = (P1 * Q1) tie (P2 * Q2)

--- Elementwise addition.

op _+_ : Powerlist Powerlist > Powerlist [assoc comm prec 33].

eq [Cl1+[C]1=[C+C]

eq (P1 tie P2) + (Q1 tie Q2) = (P1 + Q1) tie (P2 + Q2)

--- Elementwise subtraction

op _-_ : Powerlist Powerlist ~> Powerlist [prec 33].

eqP -Q=P+ (-1, 0) *xQ .

--- Elementwise division.

op _/_ : Powerlist NzPolarPowerlist ~> Powerlist [prec 31].

eq [C]1 / [NzPol] = [C / NzPol]

eq (P tie Q) / (NzP tie NzQ) = (P / NzP) tie (Q / NzQ)
endfm

Figure 8.5: Powerlists over complex numbers in Maude

181

a polynomial with m = 2™ coefficients

P=po+piz+- +pp_1a™ !

can be represented by a powerlist P = [po, p1,. -, Pm—1]-
For a complex number ¢, we can evaluate P[c| using the operation eval

defined below:

op eval : Powerlist Complex -> Complex .
eq eval([C 1, C’) =C .
eq eval(P zip Q, C) = eval(P, C * C) + C * eval(Q, C * C) .

Furthermore, we can extend eval to evaluate P at a powerlist of points Q =
[q1,--.,¢m—1] with the following operation extending eval to powerlists:

op eval : Powerlist Powerlist -> Powerlist .
eq eval(P, Q1 tie Q2) = eval(P, Q1) tie eval(P, Q2)
eq eval(P, [C 1) = [eval(P, C) 1]

Finally, for each n € N and complex number ¢, we let powers(n,c) be the
powerlist

powers(n,c) = [?, ¢!, ... 02"—1]

This operation can be defined recursively in Maude as follows:

op powers : Nat Complex -> Powerlist .
eq powers(0, C) = [(1, 0)]
eq powers(s N, C) = powers(N, C * C) zip (C * powers(N, C x C)) .

To define the discrete Fourier transform, we must evaluate a powerlist with
length 2™ at the 2"th principle roots of 1 which we denoted by root(n) in the
module COMPLEX in Figure 8.4. For each n € N, we let w(n) denote this list:

op w : Nat -> Powerlist .
eq w(N) = powers(N, root(N)) [label def-w].

The discrete Fourier transform can then be defined in Maude with the operation:

op ft : Powerlist -> Powerlist .
eq ft(P) = eval(P, w(1gl(P))) .

This definition is correct, but does not capture how the FFT is able to more
efficiently compute the discrete Fourier transform. The FFT is a divide and con-
quer based algorithm which computes the discrete Fourier transform of £ft (P
zip Q) by first computing the FFT of P and Q separately, and then merging
the results with some basic arithmetic operations. Before defining the FFT in
Maude, we first must define the powerlist u(N) whose elements are the square
root of w(N). Specifically,

op u : Nat -> NzPolarPowerlist .
eq u(N) = powers(N, root(s N)) [label def-ul.

182

(lem sim?-u :
A{P:Powerlist ; Q:Powerlist}
((sim?(u(1gl(P)), Q)) = (sim?(P, Q))) .)
(auto .)

(lem sim?-w :
A{P:Powerlist ; Q:Powerlist}
((sim? (w(1gl(P)), Q)) = (sim?(P, Q))) .)
(auto .)

(lem 1gl-u :
A{N:Nat} ((1gl(u(®)) = (D)) .)
(auto .)

(lem u-squared :
A{N:Nat} ((u(N) * u(N)) = (w(N))) .)
(ind* on N .)

(lem w-tie :
A{N:Nat} ((w(s N)) = (u(N) tie ((-1, 0) * u()))) .)
(ind* on N .)

(lem w-0 :
w() = (L (1, 00 1))

(auto .)

(disable def-u .)
(disable def-w .)

Figure 8.6: Lemmas for u(N) and w(N) in lem-fft-basics.itp

183

For later results, the equations def-w and def-u for defining w and u actually
make the proofs much more difficult. Our approach is to prove the lemmas
shown in Figure 8.6, and then disable def-w and def-u.

Having defined u, we can define FFT recursively as follows:

op fft : Powerlist -> Powerlist .

eq fft([C 1) = [C]

eq fft(P zip Q)

= (fft(P) + u(lgl(P)) * £ft(Q)) tie (££ft(P) - u(lgl(P)) * ££ft(Q))

Recall that the operation 1gl(P) denote the log base 2 of the length of P.

Our first task with the ITP is to show that fft is the same function as ft.
To show this, we first need to prove some basic facts about the function eval
used to evaluate polynomials. First we show that eval (P,Q) is similar to Q.

(lem sim?7-eval :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(eval(P, Q), R)) = (sim?(Q, R))) .)
(cov-split* on eval(P, Q) split (sim?(Q, R)) .)

Next we need to define eval in terms of zip rather than tie. We need this
because £ft is defined in terms of zip. Due to the our previous lemmas, alter-
native definitions for eval in terms of zip are quite easy to show:

(lem eval-zip-right :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (eval(R, P zip Q)) = (eval(R, P) zip eval(R, Q))) .)

(cov¥ on P + Q .)

(lem eval-zip-left :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim? (P:Powerlist, Q:Powerlist)) = (true)
=> (eval(P zip Q, R)) = (eval(P, R * R) + R * eval(Q, R * R))) .)

(covx on R * R .)
These results about eval allow us to show our goal quite easily.

(goal fft-ft : FFT
|- A{P:Powerlist}
(£ (P)) = (££(P))) .)
. Previously shown lemmas
--- Main theorem:
(cov* using zip on fft(P:Powerlist) .)
--- Induction case:
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#OxPowerlist) ;
(Q:Powerlist <- VO#1*Powerlist) .)
(auto .)

184

The lemma lem-sim-1gl was shown in Section 8.2.3. It states that if P and Q
are similar, then 1g1(P) = 1g1(Q). The full proof may be found in fft-ft.itp
in Appendix B.

The inverse FFT can also be expressed as a recursive operation in Maude:

op ift : Powerlist -> Powerlist .
eq ift([C 1) = [C]
eq ift(P tie Q)
= ift((1 /2, 0) * (P + Q)
zip ift((1 / 2, 0) * ((P - Q) / u(lgl(P))))

The fact that £ft and ift are inverses follows directly from coverset induction
with the previous lemmas:

(goal fft-ift : FFT
|- A{P:Powerlist}
(£ @£ (P))) = (P)))
. Previously shown lemmas
--- Main theorem:
(covx on ift(P) .)
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#0*Powerlist) ;
(Q:Powerlist <- VO#1*Powerlist) .)
(auto .)

(goal ift-fft : FFT
|- A{P:Powerlist}
(GEE(£E£E(P))) = (P)))
. Previously shown lemmas

(cov* using zip on fft(P) .)

The full proofs are in fft-ift.itp and ift-fft.itp, and can be found in
Appendix B.

8.4 Batcher sort

In this section, we develop a Maude specification for a parallel sorting algorithm
developed by Batcher in [10]. The basic approach of this algorithm is to use
a divide-and-conquer approach: a list is divided into two equal parts, which
are sorted independently and then merged back together using a parallel merge
algorithm called the Batcher merge.

The first challenge to defining a sorting algorithm on top of our Maude
powerlist specification is that the elements in TRIV are unordered. Consequently,
the elements are not directly comparable. To solve this problem, parameterized
modules can be instantiated with a view from one theory to another. We can use
this to instantiate POWERLIST to another parameterized module over a theory
whose elements are ordered. The Maude prelude actually defines two such

185

fth TOTAL-PREORDER is
protecting BOOL .
including TRIV .
op _<=_ : Elt E1lt -> Bool .
vars X Y Z : Elt .
eq X <= X = true [nonexec label reflexive]
ceq X <= Z = true if X <= Y /\ Y <= Z [nonexec label transitive]
eq X <= Y or Y <= X = true [nonexec label total]
endfth

fth TOTAL-ORDER is

including TOTAL-PREORDER .

vars X Y : Elt .

ceq X =Y if X <= Y /\ Y <= X [nonexec label antisymmetric]
endfth

Figure 8.7: Theories for total preorders and orders in Maude’s prelude

theories, which appear in Figure 8.7. Both theories extend the trivial theory
TRIV with an additional binary operator:

op _<=_ : Elt Elt -> Bool .

The first theory, TOTAL-PREORDER, has non-executable equations that require <=
to be a reflexive, transitive, total preordering. The second theory, TOTAL-ORDER,
extends TOTAL-PREORDER with an additional non-executable equation requiring

<= to be antisymmetric.
The prelude also defines a view with the overloaded name TOTAL-PREORDER
from TRIV to TOTAL-PREORDER:

view TOTAL-PREORDER from TRIV to TOTAL-PREORDER is endv

If we instantiate POWERLIST with this view, we obtain a parameterized module
POWERLIST{TOTAL-PREORDER} containing the powerlist module extended to have
the parameter theory TOTAL-PREORDER rather than TRIV. For total orders, the
prelude defines the view TOTAL-ORDER from TOTAL-PREORDER to TOTAL-ORDER.

view TOTAL-ORDER from TOTAL-PREORDER to TOTAL-ORDER is endv

The view TOTAL-ORDER can be used to map a parameterized module with the pa-
rameter TOTAL-PREORDER to the same parameterized module with TOTAL-0ORDER
as the parameter. Accordingly, POWERLIST{TOTAL-PREORDER}{TOTAL-ORDER}
is the parameterized module with the POWERLIST definitions whose parameter
theory is TOTAL-ORDER.

We define the Batcher merge and sort algorithms in the parameterized mod-
ule BATCHER-SORT in Figure 8.8. This module captures the abstract nature of
the sorting algorithm, and can be instantiated to sort powerlists over an arbi-
trary totally ordered set. The parametric sorts in POWERLIST are also instan-
tiated with the views TOTAL-PREORDER and TOTAL-ORDER, so we use renaming

186

to reduce the clutter in their names. The key function is the Batcher merge
operation _bm_. It merges two sorted powerlists P1 zip P2 and Q1 zip Q2 us-
ing divide-and-conquer. It recursively computes sorted lists P = P1 bm Q2 and
@ = P2 bm Q1 that are mutually interleaved: That is, if we let P = [p1,...,pn]
and Q@ = [q1,...,qn], we have that max(p;,¢;) < min(p;y1,¢;+1) for each
i € [1,n). Batcher merge then returns the merger of P and @, denoted by
compare(P, Q). The correctness of this algorithm depends crucially on the prop-
erty that P and @ are interleaved.

Maude’s support for parameterized theories allows us to quite naturally ex-
press the Batcher sort algorithm. However, parameterized modules are not
currently supported by the ITP, so there does not seem to be at present an
easy way to mechanically prove that the Batcher’s algorithm correctly sorts
powerlists over an arbitrary totally order set. However, we are saved by one
important observation made by Misra in [113]: Batcher sort is an example of a
compare and swap sorting method, and such approaches to sorting are correct
if they correctly sort lists only containing zero and one (see [95, Section 5.3.4]).
To construct Maude powerlists over this type, we define the module BIT in Fig-
ure 8.9 with a sort Bit containing constants 0 and 1 and total ordering such
that 0 < 1.

One important feature of powerlists of bits is that there is an easy way to
specify that a powerlist of bits is sorted using the zip operator. Specifically, a
powerlist P zip Q is sorted if P and Q are sorted, and the number of zeros in
P is either one less or equal to the number of zeros in Q. We define the sorted
property in the module POWERLIST-BIT-SORT which appears in Figure 8.10.

This approach to defining whether a powerlist is sorted was also used in [113],
and appears to be a key insight to elegantly showing the correctness of Batcher

sort. We show in sorted-bs.itp the following theorem:

(goal sorted?-bs : POWERLIST-BIT-SORT
|- A{P:Powerlist}
((sorted?(bs(P))) = (true)) .)

The lemmas in the ITP largely follow Misra’s hand proof. We need several
auxiliary lemmas (which we omit here) stating that for similar lists P and Q,
the lists min(P,Q), max(P,Q) and bs(P) are similar to P, and that P bm Q
is similar to P zip Q. Most of these proofs follow automatically by coverset
induction, although the proof that P bm Q is similar to P zip Q requires us to
manually instantiate the congruence rule tie-r-sim* described in Section 8.2.1.
In addition, we show several lemmas in sorted-bs.itp showing that for all

sorted similar lists P and Q, both P max Q and P min Q are sorted, and

zeros (P max Q) = min(zeros(P), zeros(Q))

zeros(P min Q) = max(zeros(P), zeros(Q))

187

fmod BATCHER-SORT{X :: TOTAL-ORDER} is
pr POWERLIST{TOTAL-PREORDER}{TOTAL-ORDER}{X} * (
sort E1t{TOTAL-PREORDER}{TOTAL-ORDER}{X} to E1t{X},
sort NsPowerlist{TOTAL-PREORDER}{TOTAL-ORDER}{X} to NsPowerlist{X},
sort Powerlist{TOTAL-PREORDER}{TOTAL-ORDER}{X} to Powerlist{X},
sort Scalar{TOTAL-PREORDER}{TOTAL-ORDER}{X} to Scalar{X},
sort NsPowerlist*{TOTAL-PREORDER}{TOTAL-ORDER}{X} to NsPowerlist*{X},
sort Powerlist*{TOTAL-PREORDER}{TOTAL-ORDER}{X} to Powerlist*{X}).

var E E’ : X$El1t .
var P P1 P2 Q Q1 Q2 : Powerlist{X} .

--- Take minimum of each element in arguments.

op _min_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

e [E]l min [E>] = [if E <= E’ then E else E’ fi] .

eq (P1 zip P2) min (Q1 zip Q2) = (P1 min Q1) zip (P2 min Q2)

--- Take maximum of each element in arguments.

op _max_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq [E]lmax [E>] = [if E <= E’ then E’ else E fi] .

eq (P1 zip P2) max (Q1 zip Q2) = (P1 max Q1) zip (P2 max Q2)

--- compare([pl .. pn 1, [gl .. gn]) returns the powerlist:
-—- [min(pl, q1) max(pl,ql) .. min(pn, qn) max(pn,qn)]
op compare : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq compare(P, Q) = (P min Q) zip (P max Q)

--- Batcher merge

op _bm_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq [E] bm [E>] = compare([E 1, [E>])

eq (P1 zip P2) bm (Ql zip Q2) = compare(P1 bm Q2, P2 bm Q1)

--- Sort using Batcher merge.
op bs : Powerlist{X} -> Powerlist{X} .
eq bs(LE]) =[E]
eq bs(P zip Q) = bs(P) bm bs(Q)
endfm

Figure 8.8: Batcher sort in Maude

188

fmod BIT is

sort Bit .
ops 0 1 : -> Bit [ctor].
op _<=_ : Bit Bit -> Bool .
eq B:Bit <= B:Bit = true .
eq 0 <=1 = true .
eq 1 <= 0 = false .

endfm

view Bit<= from TOTAL-ORDER to BIT is
sort Elt to Bit
endv

Figure 8.9: Bits in Maude

fmod POWERLIST-BIT-SORT is
pr BATCHER-SORT{Bit<=}

* (sort Elt{Bit<=} to Elt,
sort Scalar{Bit<=} to Scalar,
sort NsPowerlist{Bit<=} to NsPowerlist,
sort Powerlist{Bit<=} to Powerlist,

sort NsPowerlist*{Bit<=} to NsPowerlist,
sort Powerlist*{Bit<=} to Powerlistx*)
var B : Bit
var P Q : Powerlist .

--- Returns numbers of zeros in powerlist.
op zeros : Powerlist -> Nat

eq zeros(P zip Q) = zeros(P) + zeros(Q)
eq zeros([0 1) =

eq zeros([1 1) =0 .

op sorted? : Powerlist -> Bool .
eq sorted?([B 1) = true .
eq sorted?(P zip Q)
= sorted?(P) and
sorted?(Q) and
(zeros(Q) <= =zeros(P)) and
(zeros(P) <= s zeros(Q))
endfm

Figure 8.10: Sorting bits in Maude

189

In Misra’s work, a slightly different approach was used. His approach relied
on an implicit assumption that max and min were commutative. We could
add commutativity as an axiom to our operator declarations and replicate his
approach, however our approach has a similar complexity and avoids the need
to add additional axioms.

Unfortunately, as the ITP’s decision procedure for linear arithmetic was
incompatible with the other changes in Chapter 7, proving these lemmas was
rather tedious. The proofs require some manual case splitting and instantiation
of linear arithmetic facts. Collectively, the proofs total about 200 lines. We
believe that the length of these proofs reflect just a current limitation in the
implementation of the ITP, and not a major theoretical challenge. It appears
that the manual quantifier instantiation and case splitting can be eliminated if
an SMT-based theorem prover were to be integrated into the I'TP as we propose
in Chapter 7.

Together, these lemmas on min and max allow us to easily show that bm
returns a sorted list given sorted lists P and Q, and that the number of zeros
in P bm Q equals the total number of zeros in P and Q. The proof is fairly
straightforward, but does require a few case splits.

(lem sorted?-bm :

A{P:Powerlist ; Q:Powerlist}

¢ (sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)

=> (sorted?(P bm Q)) = (true)
& (zeros(P bm Q)) = (zeros(P) + zeros(Q))) .)
(cov-split* using zip on P bm Q
split (zeros(P)) ; (zeros(Q)) .)

--- First subcase
(split on zeros(VO#0*Powerlist bm VO#3*Powerlist)

<= zeros(VO#2*Powerlist bm VO#1*Powerlist) .)
(auto .)
(a-inst lem-<=-false->true

with (M:Nat <- (zeros(VO#2*Powerlist bm VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist bm VO#3*Powerlist))) .)

(auto .)
--- Second subcase
(split on zeros(VO#0*Powerlist bm VO#3*Powerlist)

<= zeros(VO#2xPowerlist bm VO#1*Powerlist) .)
(auto .)
(auto .)
--- Third subcase
(split on zeros(VO#0*Powerlist bm VO#3*Powerlist)

<= zeros(VO#2*Powerlist bm VO#1*Powerlist) .)
(auto .)
(auto .)

190

Given the previous lemmas, we are able to easily conclude with our main
theorem:

(goal sorted?-bs : POWERLIST-BIT-SORT
|- A{P:Powerlist}
((sorted?(bs(P))) = (true)) .)
. Previously shown lemmas

(cov* using zip on bs(P) .)

8.5 Ripple carry and carry lookahead adders

We conclude the powerlist case study with an examination of specifying adder
circuits in Maude with powerlists. The basic idea is to represent the natural
numbers in powerlists over bits using a binary representation, and then define
addition over this representation. In this section we present two different addi-
tion algorithms: a ripple carry adder and a carry lookahead adder.

The approach we use to represent adders using powerlists comes from Adams
in [1]. For powerlists with length n, each number less than 2™ may be uniquely
encoded in a powerlist with length n over zero and one with the least-significant
bit first. For example, the number 13 may be represented by the powerlist
[1,0,1,1]. The ripple carry adder adds elements one bit at a time. Let Q =
[90,---yqn—1] and R = [rg,...,7n—1] be powerlists that we wish to sum. This

problem can be written out as follows:

qn—1--- 41 90
Tn—1-.-T17T0 (81)
777

The ripple carry adder adds gg and rg, computes the carry bit, and then pro-
cedures to add ¢; and r; with the previous carry bit. It adds each pair of bits
sequentially until finishing with ¢,_; and r,_1.

The other type of adder we consider, the carry lookahead adder is able to be
efficiently executed in parallel. The idea is that we can compute a powerlist con-
taining each carry bit c; for each pair of bits ¢; and r; using a prefix computation
and then compute the sum for each following pair ¢;41 and r;41 independently
by using the carry bit powerlist. To compute the carry bit, we observe that for
each pair of bits ¢; and r;, one of three conditions will hold: (1) both ¢; and r;
will be 0, and thus the carry bit ¢; must be 0; (2) both ¢; and r; will be 1, and
thus the carry bit ¢; must be 1; or (3) ¢; and r; have different values 0 and 1,
and thus the carry bit ¢; will propagate the value of the previous carry bit ¢;_1.

In the Maude module CARRY in Figure 8.5, we define a sort Carry for storing
the three possible conditions that may hold for a given pair of bits ¢; and r;.
The module uses 0 and 1 to represent that both ¢; and r; have the value 0 or 1

respectively, and uses the constant p to represent that they differ, and therefore

191

fmod CARRY is protecting BIT .
sort Carry .
subsort Bit < Carry .
op p : -> Carry [ctor].

var B : Bit . var C : Carry .

--- Compute carry for two bits.
op carry : Bit Bit -> Carry .

eq carry(B, B) = B .

eq carry(0, 1) = p .

eq carry(1l, 0) = p .

--- Combines carry bits together.

op _!_ : Carry Carry -> Carry .
eqC!B=B.
eqC!p=2C.

endfm

Figure 8.11: Maude module for carry values

propagate a carry value. The operator carry in Figure 8.5 computes the carry
value ¢; for given bits ¢; and r;. Carry values can be concatenated together.
If we have two strings of bits ¢;¢;+1 and r;r;41 with carry values ¢; and ¢;41
respectively, then the carry value for the string c;c;11, denoted ¢;lc; 11, will be
¢; if ¢;11 = p and ¢;41 otherwise. We prove in rc-cl.itp that the operator ! is
associative, and that if ¢; is 0 or 1, then ¢;lc;1q 18 0 or 1.

The actual value for each carry bit used for adding ¢; and r; in the sum is the
bit v; =0legle! ... le;—1. We let V' denote the powerlist V' = [vg,...,vn-1].
The powerlist V is called the prefiz sum of the powerlist C' = [0,¢q,...,ch_2]
with respect to the associative operator !. The prefix sum can be computed
sequentially by reading through the elements in C' and accumulating each value
v;. We present a parameterized module for computing prefix sums over an
arbitrary set and associative operator + in Figure 8.5. The definition we give in
that figure is sequential; however, Misra showed in [113] how prefix sums can be
computed in parallel over powerlists using the algorithm developed by Ladner
and Fischer [97].

Due to some restrictions in Maude on overloaded operators imported in
parameterized specifications, it is necessary to use a single import for pow-
erlists over carry values that imports PREFIX-SUM for defining both powerlists
over bits and carry values. We can then introduce a sorts for powerlists over
bits with the appropriate constructors directly. This is done in the module
POWERLIST-NAT-ENCODING in Figure 8.5, which also defines an operator bv for
mapping natural numbers in the built-in representation to their corresponding
powerlist representation, and an operator eval for evaluating the powerlists
back into natural numbers.

In order to know the carry bit for the next inputs, the ripple carry adder

192

fth A-OP is

inc TRIV .

op _+_ : Elt Elt -> Elt

var X Y Z : Elt

eq X+ (Y+2Z) = X+ Y)+ Z [nonexec].
endfth

view A-OP from TRIV to A-OP is endv

fmod PREFIX-SUM{X :: A-OP} is
pr POWERLIST{A-OP}{X}

* (sort E1t{A-0P}{X} to E1t{X},
sort Scalar{A-0OP}{X} to Scalar{X},
sort NsPowerlist{A-OP}{X} to NsPowerlist{X},
sort Powerlist{A-OP}{X} to Powerlist{X},
sort NsPowerlist*{A-OP}{X} to NsPowerlist*{X},
sort Powerlist*{A-OP}{X} to Powerlist*{X})

var E E> : X$Elt
var P Q : Powerlist{X} .

--- Apply + to all elements of powerlist.

op _+_ : X$E1t Powerlist{X} -> Powerlist{X} .
eq E+ (P tie Q) = (E + P) tie (E + Q)
eqE+ [E2]=[E+E]

--- Prefix sum.

op prefix : Powerlist{X} ~> Powerlist{X} .

eq prefix([E]) =[E]

eq prefix(P tie Q) = prefix(P) tie (last(prefix(P)) + prefix(Q))
endfm

Figure 8.12: Parametrized prefix sum in Maude

193

fmod POWERLIST-NAT-ENCODING is
protecting PREFIX-SUM{Carry}

* (sort Elt{Carry} to Elt,
sort Scalar{Carry} to Scalar,
sort NsPowerlist{Carry} to NsPowerlist,
sort Powerlist{Carry} to Powerlist,

sort NsPowerlist*{Carry} to NsPowerlist*,
sort Powerlist*{Carry} to Powerlist,
op _+_ : Carry Powerlist{Carry} ~> Powerlist{Carry} to _!_)

sort E1t{Bit} NsPowerlist{Bit} Powerlist{Bit} .
subsort El1t{Bit} NsPowerlist{Bit} < Powerlist{Bit} .
subsort E1t{Bit} < Elt

subsort NsPowerlist{Bit} < NsPowerlist

subsort Powerlist{Bit} < Powerlist

var P Q : Powerlist{Bit} .
var N Val : Nat

op [_] : Bit -> Elt{Bit} [ctor ditto].
cmb P tie Q : NsPowerlist{Bit} if sim?(P, Q)

--- Returns least-significant bit of number.

op 1lsb : Nat -> Bit

eq 1sb(0) = 0 .

eq 1sb(1) =1

eq 1lsb(s s Val) = 1lsb(Val)

--- bv(N, Val) returns representation of Val in powerlist with 1lgl N.

op bv : Nat Nat -> Powerlist{Bit} .

eq bv(0, Val) = [1sb(Val)]

eq bv(s N, Val) = bv(N, Val) tie bv(N, Val >> 2 =~ N)

--- Expands powerlist into natural number.

op eval : Powerlist{Bit} -> Nat .

eq eval([0]) =0 .

eq eval([1 1) =1 .

eq eval(P tie Q) = eval(P) + (eval(Q) << (2 =~ 1gl(P)))
endfm

Figure 8.13: Representation of natural numbers as powerlists

194

outputs both the current sum and output carry bit. In the Maude module
ADDER, we define the following sort for storing both these values:

sort AdderQOutput .
op <_;_> : Bit Powerlist{Bit} -> AdderOutput [ctor].

We also define operators carry and list, which return the first and second
values in a pair < B ; P>.

op carry : AdderOutput -> Bit .

eq carry(< B ; P >) =B .

op list : AdderOutput -> Powerlist{Bit} .
eq list(< B ; P >) =P .

Our ripple carry adder takes the previous carry bit and two powerlists to be
added as inputs, and returns both the next carry bit and the sum of the inputs.

op rc : Bit Powerlist{Bit} Powerlist{Bit} ~> AdderQOutput .

eqrc(0, [O0]1, [0 =<0;[01>.
eqrc(0, [0], [1])=<0;[11]>.
eqrc(0, [1], [01)=<0;[11]>
eqrc(0, [11, [11])=<1;[01]>
eqrc(l, [0], [O01)=<0; [11]1>
eqrc(l, [01, [11)=<1;[0]>
eqrc(1, [11, [0])=<1;[0]>.
eqrc(1, [1], [1D=<1;01]1>.

eq rc(B, P1 tie P2, Q1 tie Q2)
= < carry(rc(carry(rc(B, P1, Q1)), P2, Q2)) ;
list(rc(B, P1, Q1)) tie list(zrc(carry(zrc(B, P1, Q1)), P2, Q2)) > .

In rc.itp, we show that the ripple carry adder correctly implements modular
addition.

(goal rc : ADDER
|- A{B:Bit ; P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim? (P, Q)) = (true)
=> (rc(B, P, Q))
= (< 1sb(eval([B]) + eval(P) + eval(Q) >> 2 ~ 1gl(P)) ;
bv(1gl(P), eval([B]) + eval(P) + eval(Q))>)) .)

This formula is complicated, due to the fact that rc implements addition mod-
I we let m = eval([b]) + eval(P) + eval(Q), then this
theorem states that the carry bit returned by rc is the least-significant bit of m
divided by n, while the bit-vector returned is the powerlist with length 2'!(*)

obtained by evaluating m.

ulo n = 22

We first need some of the previous lemmas about similarity, results about
similarity of the powerlists returned by bv and rc, and basic arithmetic facts
about the 1sb, bv, and eval functions. We omit these lemmas and their proofs,
because they turn out to be quite straightforward to show by coverset induction.
The full details may be seen in Appendix D. The main goal, rc, follows by

coverset induction, but requires two manual instantiations of lem-sim-1gl:

195

. Previous lemmas:
--- Main theorem
(covx on rc(B, P, Q) .)
--- Last goal:
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#2*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- VO#1xPowerlist‘{Bit‘}) .)
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#3*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- VO#1*Powerlist‘{Bit‘}) .)
(auto .)

Our final result in this chapter is to define an operation that describes a
carry lookahead adder and prove that it computes the same function as the
ripple carry adder. We first extend the carry operation defined in CARRY to
powerlists.

op carry : Powerlist{Bit} Powerlist{Bit} ~> Powerlist .
eq carry([B1, [B> 1) = [carry(B, B?)]
eq carry(P1 tie P2, Q1 tie Q2) = carry(P1, Q1) tie carry(P2, Q2)

To compute the prefix sum over the carry bits, we define the operation rsh
below to shift the elements off carry to the right by one position and insert a
new value C as the left-most element.

op rsh : Carry Powerlist "> Powerlist .
eq rsh(C, [C> 1) =[C]
eq rsh(C, PC tie QC) = rsh(C, PC) tie rsh(last(PC), QC) .

The prefix sum V used in summation is defined by
V = prefix(rsh(0, carry(P, Q)))).

After obtaining the prefix sum, we can compute the sum of similar powerlists
P and @ by a function which accepts the prefix sum and the carry values
carry(P,Q). The idea is that for bits ¢ and r, carry(q,7) = 0 iff ¢ +r = 0,
carry(q,r) = p iff ¢+ r = 1, and carry(q,r) = 1 iff ¢ +r = 2. We use this to
define the following function sum, which takes prefix (rsh(0, carry(P, Q))))
and carry(P,Q) to compute the final sum.

op sum : Powerlist{Bit} Powerlist ~> Powerlist{Bit} .
eq sum(P tie Q, PC tie QC) = sum(P, PC) tie sum(Q, QC) .

eq sum([B]1, [B> 1) = [B]
eqsum([0], [p 1D =011
eqsum([11, [p 1D =001

The carry lookahead adder is then defined as follows:

op ¢l : Bit Powerlist{Bit} Powerlist{Bit} ~> AdderOutput .

eq c1(B, P, Q

= < last(prefix(rsh(B, carry(P, Q)))) ! last(carry(P, Q)) ;
sum(prefix(rsh(B, carry(P, Q))), carry(P, Q) > .

196

Finally, we show that the ripple carry adder rc and carry lookahead adder
cl implement the same function.

(goal rc-cl : ADDER
|- A{B:Bit ; P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim?(P,Q)) = (true)
=> (rc(B,P,Q)) = (c1(B,P,Q))) .)

The proof of this is non-trivial, but essentially involves showing that the two
ways of computing the carry bits are equivalent. The proof requires several
similarity and typing lemmas which we omit. It also requires that we show the
associativity of ! as well as a lemma stating that ! commutes with last.

(lem !-left-assoc :
A{C1:Carry ; C2:Carry ; C3:Carry}
((c1 v (C2 1 €3)) = ((C1 1t C2) ! C3)))
(eg-split* on C2 ! C3 .)

(lem !-left-assoc-list :
A{C:Carry ; C’:Carry ; P:Powerlist}
(cr (@ tp))=crcH e D
(cov-split* on C’> ! P split (C ! C?) .)

(lem last-!
A{C:Carry ; P:Powerlist}
((Qast(C ! P)) = (C ! last(P))) .)

(covk on C ! P .)

We also need to show how to move a carry concatenation operation inside
of a prefix sum. Fortunately, the proofs are quite simple:

(lem last-prefix-rsh :
A{C:Carry ; C’:Carry ; P:Powerlist}
((C ! last(prefix(rsh(C’, P)))) = (last(prefix(rsh(C ! C’, P))))) .)

(covk on C ! P .)

(lem prefix-rsh :
A{C:Carry ; C’:Carry ; P:Powerlist}
((C ' prefix(rsh(C’, P))) = (prefix(rsh(C ! C’, P)))) .)

(covk on C ! P .)

Given the previous lemmas, showing the goal rc-cl involves a single coverset

induction command.

(cov* on rc(B, P, Q) .)

8.6 Conclusions and related work

We have presented a detailed case study of Maude and the Maude ITP. Our

experience so far suggests that membership equational logic is an excellent logic

197

for specifying powerlists, and that the ITP — with the enhancements discussed
in the previous chapter — can provide much of the reasoning support to auto-
mate many of Misra’s and Adam’s elegant hand-proofs for powerlist algorithms.
We have used the I'TP to formally prove many of the main theorems and lemmas
in both [1, 113], including basic powerlist lemmas, the correctness of the Fast
Fourier Transform and inverse FFT, the correctness of Batcher sort, and the
correctness of ripple carry and carry lookahead adder circuits.

There are already a number of papers on automated reasoning about pow-
erlists. For the RRL theorem prover, Kapur and Subramaniam have proven re-
sults on the correctness of Batcher merge sort and hypercube embedding in [85].
They have also proven results on prefix sum, the ripple carry adder, and carry
lookahead adder in [87]. For the ACL2 theorem prover, Gamboa has proven
many of the same basic theorems we have, as well as the correctness of merge
sort and Batcher sort for powerlists and results on prefix sums in [56, 57]. He has
also proven many of the same results that we have proved for discrete Fourier
transforms in [55]. Our primary research goal in this work is to not just to
mechanically prove these results, but to do so in a natural way that reflects
the elegance of the informal proofs in [1, 96, 113]. We believe that this work
represents a major step towards that goal.

Although our results so far seem promising, there are several different re-
search directions that seem worth pursuing. One research direction, that we
mentioned at the end of Chapter 7, is to find ways to integrate the Maude I'TP
with existing theorem provers based on satisfiability modulo theories (SMT).
These theorem provers handle disjunction quite well by case splitting, and sup-
port many different decisions procedures such as linear arithmetic which could
be used to simplify the proofs in Section 8.4. Related to this would be to add
non-standard analysis to the Maude ITP in order to fully model complex num-
bers. This was done by Gamboa and Cowles in ACL2 [58]. A third research
direction would be to extend the work on syntactic rewriting modulo multi-
ple equivalence relations in [22] for the ACL2 theorem prover to membership
equational logic and the ITP. By implementing their ideas we could have the
congruence equations such as tie-r-sim* automatically execute without man-
ual instantiating the lemma as the ITP currently requires.

Another important research direction would be to find ways to automatically
prove many of the various similarity lemmas that we had to prove. Although
these lemmas were not difficult to prove, their large number meant that simply
stating them often distracted from the fundamental results we wanted to prove.
One approach to eliminating these lemmas may lay in extending the idea of
context-preserving rewriting in [84] to membership equational logic. Another
interesting approach may be to extend the decidability results in [34] on Visibly
Tree Automata with Memory to develop a decidable type system capable of

expressing the similarity constraints on powerlists.

198

Appendix A

Basic powerlist scripts

A.1 powerlist.maude

fmod POWERLIST{X :: TRIV} is protecting NAT .
--- Sorts for unnested powerlists.
sorts E1t{X} NsPowerlist{X} Powerlist{X} .
subsort E1t{X} NsPowerlist{X} < Powerlist{X} .
--- Sorts for nested powerlists.
sorts Scalar{X} NsPowerlist*{X} Powerlist*{X} .
subsort Scalar{X} NsPowerlist*{X} < Powerlist*{X} .
--- Subsorts relating unnested and nested powerlists.
subsort E1t{X} < Scalar{X} .
subsort NsPowerlist{X} < NsPowerlist*{X} .
subsort Powerlist{X} < Powerlist*{X}

--- Basic constructors.

op [L] : X$E1t -> E1t{X} [ctor].

op <_> : Powerlist*{X} -> Scalar{X} [ctor].

op _tie_ : Powerlist*{X} Powerlist*{X} ~> Powerlist*{X} [prec 35].

var E E’ : X$Elt

var S S’ : Scalar{X} .

var P Q : Powerlist{X} .

var Px P1x P2% Q% Q1% Q2% : Powerlistx{X}
var NsP* NsQ* : NsPowerlistx{X}

--- Similarity predicate.

op sim? : Powerlist*{X} Powerlist*{X} -> Bool [comm].
eq sim?([E], [E>]) = true .

eq sim?(< Px >, [E]) = false .

eq sim?(< Px >, < Q* >) = sim?(P*, Q%)

eq sim?(NsP*, S) = false .

eq sim?(P1x tie P2x, Qlx tie Q2%) = sim?(P1x, Q1x)

--- Constructor memberships.

cmb P tie Q : NsPowerlist{X} if sim?(P, Q)
cmb P*x tie Q* : NsPowerlist*{X} if sim?(Px*, Q)

199

--- Definition of zip.

op _zip_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .
eq S zip S’ = S tie S’ [label def-zip-1].

eq (P1x tie P2%) zip (Q1* tie Q2%)

= (P1* zip Q1*) tie (P2* zip Q2*) [label def-zip-2].

--- Returns the left powerlist obtained by unziping the argument.
op unzip-1 : NsPowerlist*{X} -> Powerlist*{X} .
eq unzip-1(S tie §’) =S .
eq unzip-1(NsP* tie NsQ*) = unzip-1(NsP*) tie unzip-1(NsQx)

--- Returns the right powerlist obtained by unziping the argument.
op unzip-r : NsPowerlist*{X} -> Powerlist*{X} .
eq unzip-r(S tie §’) = §°
eq unzip-r(NsP* tie NsQ*) = unzip-r(NsP*) tie unzip-r(NsQx*)
--- Logarithm of length of Powerlist.

op 1lgl : Powerlist*{X} -> Nat

eq 1gl(s) =0 .

eq 1gl(Px tie Q%) = s 1gl(P*)

--- Returns first element in powerlist.
op first : Powerlist{X} -> X$Elt

eq first([E]) = E .

eq first(P tie Q) = first(P)

--- Returns last element in powerlist.
op last : Powerlist{X} -> X$Elt .

eq last([E]) = E .

eq last(P tie Q) = last(Q)

endfm

---(
Theorems:
1. [lem-rev-basics.itp]
rev(Px zip Q%) =
2. [lem-rev-rev.itp]
rev(rev(P*)) = P
3. [lem-zip-ctor.itp]
NsP* = unzip-1(NsP*)
4. [unzip-1l-zip.itp]
unzip-1(P1* zip P2x%)
5. [unzip-r-zip.itp]
unzip-r(P1lx zip P2x%)

rev(Q*) zip rev(Px)

zip unzip-r (NsP*)

== Plx,

== P2x,

200

--- Functions over Powerlists.
fmod POWERLIST-PERMUTATIONS{X :: TRIV} is
protecting POWERLIST{X} .

var N : Nat

var NsP*x : NsPowerlist*{X} .
var Px Q* : Powerlist*{X} .
var S : Scalar{X} .

--- Rotates elements in powerlist right by one.
op rr : Powerlist*{X} -> Powerlist*{X} .

eq rr(S) =S .

eq rr(P* zip Q*) = rr(Qx) zip Px

--- Rotates elements in powerlist left by one.
op rl : Powerlist*{X} -> Powerlist*{X} .

eq rl(S) =S .

eq r1(P* zip Q*) = Q* zip rl(Px)

--- Rotates elements in powerlist right by an arbitrary value.
op grr : Nat Powerlist*{X} -> Powerlist*{X} .
eq grr(N, S) =S .
eq grr(N, P* zip Q%)
= if 2 divides N then
grr(N >> 1, P*) zip grr(N >> 1, Q%)
else
grr((N >> 1) + 1, Q%) zip grr(N >> 1, Px)
fi

op grl : Nat Powerlist*{X} -> Powerlist*{X} .
eq grl(N, S8) = S .
eq grl(N, P*x zip Q%)
= if 2 divides N then
grl(N >> 1, P*) zip grl(N >> 1, Q%)
else
grl(N >> 1, Q*) zip grl((N >> 1) + 1, P%)
fi

op rs : Powerlist*{X} -> Powerlist*{X} .
eq rs(S) =S .
eq rs(P* zip Q%) = Px tie Q*

op 1ls : Powerlist*{X} -> Powerlist*{X} .
eq 1s(S) =S .

eq 1s(P* tie Q%) = Px zip Q*

--- Reverse powerlist.

201

op rev : Powerlist*{X} -> Powerlist*{X} .
eq rev(S) =S .

eq rev(Px tie Q%) = rev(Q*) tie rev(Px*)

op inv : Powerlist*{X} -> Powerlist*{X} .
eq inv(8) = S .
eq inv(P* tie Q*) = inv(P*) zip inv(Q*)

endfm

---(Theorems:

--- rr and rl theorems:

1. [rr-rl.itpl
rr(rl(P)) =P

2. [rl-rr.itp]
rl(rr(P)) =P

3. [rev-rr-rev-rr.itp]
rev(rr(rev(rr(P)))) = P

--- rs and 1ls theorems:

4. [rs-1s.itp]
rs(1ls(P)) = P

5. [1s-rs.itp]
1s(rs(P)) =P

--- inv theorems:

6. [lem-inv-basics.itp]
inv(P zip Q) = inv(P) tie inv(Q)

7. [inv-inv.itp]
inv(inv(P)) = P .

8. [inv-rev.itp]

inv(rev(P)) = rev(inv(P))

A.2 powerlist-nat.maude

load powerlist

fmod POWERLIST-NAT is
protecting POWERLIST{Nat}
* (sort Elt{Nat} to Elt,
sort Scalar{Nat} to Scalar,
sort NsPowerlist{Nat} to NsPowerlist,
sort Powerlist{Nat} to Powerlist,
sort NsPowerlist*{Nat} to NsPowerlistx,
sort Powerlist*{Nat} to Powerlistx)

endfm

fmod POWERLIST-PERMUTATIONS-NAT is

202

protecting POWERLIST-PERMUTATIONS{Nat}
* (sort Elt{Nat} to Elt,
sort Scalar{Nat} to Scalar,
sort NsPowerlist{Nat} to NsPowerlist,
sort Powerlist{Nat} to Powerlist,
sort NsPowerlist*{Nat} to NsPowerlist*,
sort Powerlist*{Nat} to Powerlist*)

endfm

A.3 lem-sim-basics.itp

(ctor-def plist* :
A{P:Powerlist*}
((P) : NsPowerlist* V (P) : Scalar) .)
(eq-split* on (sim?(P, P)) .)
(set-default-ctor plist* .)

(ctor-def nsplist* :
A{NsP:NsPowerlistx*}
(E{P:Powerlist* ; Q:Powerlist*}
((P tie Q) = (NsP)
& (sim?(P, Q)) = (true))) .)
(eg-split on (sim?(NsP, NsP)) .)

(cns .)
(imp .)
(e-inst

with ((P:Powerlist* <- (VO#O*Powerlistx*)) ;
(Q:Powerlistx <- (VO#1*Powerlistx))) .)
(auto .)
(set-default-ctor nsplist* .)

--- Define sym to be an equivalence relation on Powerlistx*.
(defequiv sim? on Powerlist* .)
--- Reflexitivity goal:
(cov* on sim?(VO#0, VO#0) .)
--- Transitivity goal:
(cov-split* on sim?(VO#0, VO#2)
split (sim?(VO#0, VO#1)) ; (sim?(VO#1, VO#2)) .)
--- Nesting subggoal.
(a-inst hyp-2 with (VO#1:Powerlistx <- V1#2+Powerlistx) .)
(auto .)
--- Concatenation subgoal.
(a-inst hyp-5 with (VO#1:Powerlist* <- V1#2*Powerlistx*) .)
(auto .)

(lem tie-r-sim* :

203

A{P:Powerlist* ; Qil:Powerlist* ; Q2:Powerlist* ; R:Powerlistx*}
((sim?(P, Q2)) = (true)
& (sim?7(Q1, Q2)) = (true)
=> (sim?(P tie Q1, R)) = (sim?(P tie Q2, R))) .)
(eg-split* on sim?(P tie Q1, R) .)

A.4 lem-zip-ctor.itp

--- Requires lem-sim-basics.itp

(lem zip-unzip :
A{NsP*:NsPowerlist*}
((unzip-1(NsPx) zip unzip-r(NsP*)) = (NsPx)) .)
(cov* on (unzip-1(NsPx)) .)

(lem sim-unzip-l-unzip-r-1 :
A{NsPx*:NsPowerlist*}
((sim? (unzip-1(NsP*), unzip-r(NsP*))) = (true)) .)
(cov* on (unzip-1(NsP*)) .)

(ctor-def zip* :
A{NsP*:NsPowerlist*}
(E{P*:Powerlist* ; Q*:Powerlistx}
((P* zip Q*) = (NsPx)
& (sim?(P*, Q%)) = (true))) .)
(cns .)
(e-inst
with ((P*:Powerlist* <- (unzip-1(NsP**NsPowerlist*))) ;
(Q*:Powerlist* <- (unzip-r(NsPx*NsPowerlist*)))) .)

(auto .)

(ctor-def zip :

A{NsP:NsPowerlist}

(E{P:Powerlist ; Q:Powerlist}
((P zip Q) = (NsP) & (sim?(P, Q)) = (true))) .)

(cns .)
(e-inst

with ((P:Powerlist <- (unzip-1(NsP*NsPowerlist))) ;

(Q:Powerlist <- (unzip-r(NsP*NsPowerlist)))) .)

(auto .)

A.5 lem-zip-sim.itp
--- Requires lem-sim-basics.itp
--- Reduce zip to tie inside sim?

204

(lem zip-simx :
A{P:Powerlist* ; Q:Powerlist* ; R:Powerlist*}
((sim?(P, Q)) = (true)
=> (P zip Q) : NsPowerlist*

& ((sim?(P zip Q, R)) = (sim?(P tie Q, R)))) .)
(cov-split* on P zip Q split (sim?(P tie Q, R)) .)
--- Induction case 8.2:

(a-inst lem-tie-r-sim*
with (Ql:Powerlist* <- VO#1*Powerlistx*) ;
(Q2:Powerlist* <- VO#5*Powerlistx*) .)
(auto .)

(lem zip-sim :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true) => (P zip Q) : NsPowerlist)

(cov* on P zip Q .)
A.6 unzip-l-zip.itp
load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal unzip-1-zip : POWERLIST-NAT
|- A{P:Powerlist* ; Q:Powerlistx*}
((sim?(P, Q)) = (true)
=> (unzip-1(P zip Q)) = (P)) .)

load lem-sim-basics.itp
load lem-zip-sim.itp

(cov* on (P zip Q) .)
A.7 unzip-r-zip.itp
load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal unzip-r-zip : POWERLIST-NAT
|- A{P:Powerlist* ; Q:Powerlist*}
((sim?(P, Q)) = (true)
=> (unzip-r(P zip Q) = (@) .)

load lem-sim-basics.itp

205

load lem-zip-sim.itp
(cov* on (P zip Q) .)

A.8 rl-rr.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal rl-rr : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
((rl(xr(P*))) = (Px)) .)

load lem-sim-basics.itp

load lem-zip-ctor.itp

(cov* using zip* on rr(Px) .)

A9 rr-rl.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal rr-rl : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
((xr(rl(P*))) = (Px)) .)

load lem-sim-basics.itp

load lem-zip-ctor.itp

(cov* using zip* on rl(Px) .)

A.10 lem-rev-basics.itp

---- Requires lem-sim-basics.itp and lem-zip-sim.itp
(lem rev-zip :
A{P*:Powerlist* ; Q*:Powerlistx*}
((sim?(P*, Q%)) = (true)
=> (rev(P* zip Q*)) = (rev(Q*) zip rev(P*))) .)

(covx on (P* zip Q) .)

(lem sim?-rev :

206

A{P*:Powerlist* ; Q*:Powerlist*}
((sim?(rev(P*), Q%)) = (sim?(P*, Q*))) .)
(cov-split* on rev(Px) split (sim?(P*, Qx)) .)
--- Induction case 7.1:
(split on (sim?(VO#0*Powerlist*,VO#3*Powerlist*)) .)
(auto .)
(split on (sim?(VO#0*Powerlist*,VO#1*Powerlist*)) .)
(auto .)
(auto .)

A.11 lem-rev-rev.itp

(lem rev-rev :
A{P*:Powerlist*} ((rev(rev(P*))) = (P*)) .)

(cov* on (rev(P*:Powerlist*)) .)

A.12 rev-rr-rev-rr.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal rev-rr-rev-rr : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
((rev(rr(rev(rr(Px))))) = (Px)) .)

load lem-sim-basics.itp
load lem-zip-ctor.itp
load lem-zip-sim.itp
load lem-rev-basics.itp

load lem-rev-rev.itp

(lem sim?-rr :
A{P*:Powerlist* ; Q*:Powerlistx*}
((sim? (rr (P*), Q%))
= (sim?(P*, Q%))) .)
(cov-split* using zip* on rr(Px) split (rr(Q*)) .)
(split on (sim?(VO#0*Powerlist*,VO#1*Powerlist*)) .)
(auto .)
(split on (sim?(VO#1*Powerlist#,VO#2*Powerlist*)) .)
(auto .)
(auto .)

--- Goal:

(cov* using zip* on rr(Px) .)

207

A.13 1s-rs.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal 1ls-rs : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlist*} ((1s(xrs(Px))) = (Px)) .)

load lem-sim-basics.itp

load lem-zip-ctor.itp

(cov* using zip* on rs(P*:Powerlistx) .)

A.14 rs-1s.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal rs-1s : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
((rs(1s(P*))) = (Px)) .)

(cov* on 1s(P*:Powerlist*) .)

A.15 1lem-inv-basics.itp

--- Requires lem-sim-basics.itp and lem-zip-sim.itp

(lem inv-zip :
A{P*:Powerlist* ; Q*:Powerlistx*}
((sim?(P*, Q%)) = (true)
=> (inv(P* zip Q*)) = (inv(P*) tie inv(Q*))) .)

(cov* on (P*x zip Q%) .)

(lem sim?-inv :
A{P*:Powerlist* ; R*:Powerlist*}
((sim? (inv(P*), R*x)) = (sim?(P*, Rx*))) .)
(cov-split* on inv(P*)
split (sim?(Px, Rx)) .)

208

A.16 inv-inv.itp
load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal inv-inv : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
(Anv(inv(P*))) = (P*)) .)

load lem-sim-basics.itp
load lem-zip-sim.itp

load lem-inv-basics.itp

(cov* on inv(Px*) .)

A.17 inv-rev.itp

load powerlist-nat

select ITP-TOOL .

loop init-itp(uiuc)

(goal inv-rev : POWERLIST-PERMUTATIONS-NAT
|- A{P*:Powerlistx*}
((inv(rev(P*))) = (rev(inv(P*)))) .)

load lem-sim-basics.itp
load lem-zip-sim.itp
load lem-inv-basics.itp

load lem-rev-basics.itp

(cov* on rev(Px) .)

A.18 1lem-1gl.itp

--- Requires lem-sim-basics.itp and lem-zip-sim.itp

(lem sim-1gl :
A{P:Powerlist ; Q:Powerlist}
((sim? (P, Q)) = (true)
=> (1gl(®P)) = (1gl(@)) .)

(covx on sim?(P, Q) .)

(lem 1gl-zip :

209

A{P:Powerlist* ; Q:Powerlistx*}
((sim?(P, Q)) = (true)
=> (1gl(P zip Q)) = (s 1gl(P))) .)

(cov* on P zip Q .)

210

Appendix B

Fast Fourier transform scripts

B.1 powerlist-fft.maude

load powerlist

fmod COMPLEX is protecting RAT .
sort NzPolar Complex .

subsort NzPolar < Complex .

--- A complex number is represented as a sum of numbers in polar form
-——- (R, A) --- where the angle A is measured in revolutioms.

--- The representation is normalized so that A is in [0,1/2) and

--- addition satisfies certain basic identites.

op ((_,.)) : NzRat Rat -> NzPolar [ctor].

op ((_,.)) : Rat Rat -> Complex [ctor].

op _+_ : Complex Complex -> Complex [ctor assoc comm prec 33].

var R A R1 A1 R2 A2 : Rat .
var NzR : NzRat .
var C C1 C2 : Complex .

var N : Nat .

--- Basic identities.

eq (0, NzR) = (0, 0)

ceq (R, A) (R, Arem1 + 1) if A< O

ceq (R, A) = (R, Arem 1) if 1 <= A .

ceq (R, A) = (- R, A -1/2) if 1/2 <= A /\ A <=1 .
eq (0, 0) +C=C .

eq (R1, A) + (R2, A) = (R1 + R2, A)

--- Multiplication over complex numbers.

op _*_ : Complex Complex -> Complex [assoc comm prec 31].
eq (R1, A1) * (R2, A2) = (R1 * R2, Al + A2)

eq (CL +C2) *C=Cl *C+C2=x*C.

--- A partial division operator over complex numbers.

op _/_ : Complex NzPolar -> Complex [prec 31].

211

eq (R1, A1) / (NzR, A2) = (R1 / NzR, _-_(A1, A2))
eq (C1 +C2) /C=(C1/C)+ (C2/ C)

--- root(n) denotes the 2"nth principle root of 1.
op root : Nat -> NzPolar .
eq root(N) = (1, 1 / 2 =~ N) [label def-root].

endfm

view Complex from TRIV to COMPLEX is
sort Elt to Complex .

endv

fmod POWERLIST-COMPLEX is
protecting POWERLIST{Complex}
* (sort Elt{Complex} to Elt,
sort Scalar{Complex} to Scalar,
sort NsPowerlist{Complex} to NsPowerlist,
sort Powerlist{Complex} to Powerlist,
sort NsPowerlist*{Complex} to NsPowerlistx,

sort Powerlist*{Complex} to Powerlist*)

sorts NzPolarElt NsNzPolarPowerlist NzPolarPowerlist
subsort NzPolarElt NsNzPolarPowerlist < NzPolarPowerlist
subsort NzPolarElt < Elt

subsort NsNzPolarPowerlist < NsPowerlist

subsort NzPolarPowerlist < Powerlist

var P P1 P2 Q Q1 Q2 : Powerlist .
var C C’ : Complex .
var NzPol : NzPolar .

var NzP NzQ : NzPolarPowerlist

op [_] : NzPolar -> NzPolarElt [ctor].
cmb NzP tie NzQ : NsNzPolarPowerlist if sim?(NzP, NzQ)

--- Multiply elements in powerlist by scalar.

op _*_ : Complex Powerlist -> Powerlist [prec 31].
eqCx*[C>]1=[C=*¢C]

eq C * (P tie Q) = (C * P) tie (C * Q)

--- Elementwise multiplication.

op _*_ : Powerlist Powerlist ~> Powerlist [prec 31].
eq[ClI=*x[C1=[C=*¢C]

eq (P1 tie P2) * (Q1 tie Q2) = (P1 * Q1) tie (P2 * Q2)
--- Elementwise addition.

op _+_ : Powerlist Powerlist ~> Powerlist [assoc comm prec 33].
eq[Cl+[C1=[C+C]

eq (P1 tie P2) + (Q1 tie Q2) = (P1 + Q1) tie (P2 + Q2)

212

--- Elementwise subtraction

op _-_ : Powerlist Powerlist ~> Powerlist [prec 33].
eqP-Q=P+ (-1, 0) xQ .

--- Elementwise division.

op _/_ : Powerlist NzPolarPowerlist ~> Powerlist [prec 31].
eq [C]1 / [NzPol] = [C / NzPol]

eq (P tie Q) / (NzP tie NzQ) = (P / NzP) tie (Q / NzQ)

endfm

fmod FFT is
protecting POWERLIST-COMPLEX .

var N : Nat
var C C’ : Complex .
var P Q Q1 Q2 : Powerlist

--- Evaluate powerlist representing a polynomial at a specific point.
op eval : Powerlist Complex -> Complex .

eq eval([C 1, C’) =C .

eq eval(P zip Q, C) = eval(P, C * C) + C * eval(Q, C * C)

--- Extend eval to evaluate polynomial at each point in powerlist.
op eval : Powerlist Powerlist -> Powerlist

eq eval(P, Q1 tie Q2) = eval(P, Q1) tie eval(P, Q2)

eq eval(P, [C 1) = [eval(P, C) 1]

--- powers(N,C) return powerlist [0 C ... C~{2"n-1}]

op powers : Nat NzPolar -> NzPolarPowerlist

op powers : Nat Complex -> Powerlist

eq powers(0, C) = [(1, 0)]

eq powers(s N, C) = powers(N, C * C) zip (C * powers(N, C * C)).

--- u(N) returns powerlist with length N and where the value of w(N) at
--- position i times the 2°{n+1} principle root of 1.

op u : Nat -> NzPolarPowerlist

eq u(N) = powers(N, root(s N)) [label def-u].

--- w(N) returns powerlist with length N and where the value of w(N) at
--- position i times the 2°n principle root of 1.
op w : Nat -> Powerlist

eq w(N) = powers(N, root(N)) [label def-w].
--- Discrete fourier transform.
op ft : Powerlist -> Powerlist

eq ft(P) = eval(P, w(1lgl(P)))

--- FFT on powerlist.

213

op fft : Powerlist -> Powerlist .

eq fft([C 1) = [C]

eq fft(P zip Q)

= (££t(P) + u(lgl(P)) * ££t(Q))
tie (££ft(P) - u(lgl(P)) * ££t(Q))

--- Inverse FFT
op ift : Powerlist -> Powerlist .
eq ift([Cc1) =[C]
eq ift(P tie Q)
= ift((1 / 2, 0) = (P + Q)
zip ift((1 / 2, 0) * ((P - @ / u(1gl(P))))

endfm

---(Theorems:

Theorems:

1. [fft-ft.itp]
fft(P) = £t(P)

2. [ift-fft.itp]
ift (££t(P)) = P

3. [fft-ift.itpl
fft(ift(P)) = P

B.2 lem-fft-basics.itp

--- Requires lem-sim-basics.itp, lem-zip-sim.itp, and lem-zip-ctor.itp

--- Declare constructor for Powerlist to discard
--- NzPolarPowerlist subsort.
(ctor-def plist :
A{P:Powerlist}
((P) : NsPowerlist V (P) : Elt) .)
(eg-split* on (sim?(P, P)) .)
(set-default-ctor plist .)

(lem complex-*-0 :

A{C:Complex}

(¢ = (0, 0)) = (0, 0))) .

(cov on (C * (0,0)) .)
(auto .)
(eq-split* on (0, VO#1) .)
(sort-ctor-split on (V1#0%*Zero) .)
(auto .)

(lem complex-*-1 :

214

A{C:Complex}
((c* (1, 0)) = (@)
(cov* on (C * (1,0)) .)

(lem complex-*-2 :
A{C:Complex}
((C* (2, 00) =(C+0C))
(cov* on (C * (2,0)) .)

(lem collect-/-lem :
A{C1:Complex ; C2:Complex ; NzR:NzRat ; A:Rat}
((c1 = (C2 / (NzR, A))) = ((C1 * C2) / (NzR, A))) .)
(cov* on (C1 * C2) .)

(lem collect-/ :
A{C1:Complex ; C2:Complex ; NzP:NzPolar}
((C1 * (C2 / NzP)) = ((C1 * C2) / NzP)) .)
(eg-split* on NzP / NzP .)

(lem cancel-/ :
A{C:Complex ; NzP:NzPolar}
(((NzP * C) / NzP) = (C)) .)
(cov* on C / NzP .)

(lem complex-/-1 :
A{C:Complex}
((c/ @, 0) =@ .
(covx on (C / (1,0)) .)

(lem root-sn :
A{N:Nat}
((root(s N) * root(s N)) = (root(N))) .)
(auto .)

(lem root-1 :
((root (1)) = ((-1, 0))) .)

(auto .)

(disable def-root .)

(lem sim-+ :

215

A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P + Q) : Powerlist
& ((sim?(P + Q, R)) = (sim?(P, R)))) .)
(cov-split* on P + Q split (sim?(P, R)) .)

(lem cancel-+ :
A{P:Powerlist}
((P +P) = ((2,0) *P)) .)
(covx on (2, 0) * P .)

(lem sim-* :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P * Q) : Powerlist
& ((sim?(P * Q, R)) = (sim?(P, R)))) .)
(cov-split* on P * Q split (sim?(P, R)) .)

(lem *-zip :

A{P1:Powerlist ; P2:Powerlist ; Q1:Powerlist ; Q2:Powerlist}

((sim?(P1, P2)) = (true)
& (sim?(Q1, Q2)) = (true)
& (sim?(P1, Q1)) = (true)

=> ((P1 zip P2) * (Q1 zip Q2)) = ((P1 * Q1) zip (P2 * Q2))) .)
(cov-split* on P1 * Q1 split (P2 * Q2) .)

(lem sim?-scalar* :
A{P:Powerlist ; E:Complex ; R:Powerlist}
((sim?(E * P, R)) = (sim?(P, R))) .)
(cov-split* on E * P split (sim?(P, R)) .)

(lem scalar*-*-left :
A{C:Complex ; P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
=> ((C*P) *Q =(Cx*x (P*xQ) .)
(cov¥ on (P * Q) .)

(lem scalar*-*-right :
A{C:Complex ; P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
= P *x (CxQ) =(C=*Ex*xQ) .

216

(covx on (P * Q) .)

(lem scalar*-scalarx :
A{C1:Complex ; C2:Complex ; P:Powerlist}
((C1 * (C2 *x P)) = ((C1 * C2) * P)) .)

(covk on C2 * P .)

(lem scalar-1 :
A{P:Powerlist}
(1, 0 *P) = P))
(covx on (1, 0) * P .)

(lem scalar*-zip :
A{C:Complex ; P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
=> (C * (P zip Q)) = ((C * P) zip (C * Q)) .)
(cov¥ on (P * Q) .)

(lem scalar*-+-dist :
A{C:Complex ; P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
= (C*x P+Q)=(C€*xP+Cx*xQ).)

(covk on P + Q .)

(lem scalar*-+-collect :
A{C1:Complex ; C2:Complex ; P:Powerlist}
(C((C1 * P) + (C2 x P)) = ((C1 + C2) * P)) .)

(cov*x on C1 * P .)

(lem scalar*-+-zero :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
=> (P + ((0,0) * @) = (P)) .)

(cov¥ on P + Q .)

(lem cancel-scalar-+ :
A{P:Powerlist ; C:Complex}
(P + (C*xP)) = (((1,0) +C) *P)) .)

(covk on C *x P .)

(lem sim-/ :
A{P:Powerlist ; Q:NzPolarPowerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P / Q) : Powerlist

217

& ((sim?(P / Q, R)) = (sim?(P, R)))) .)
(cov-split* on P / Q split (sim?(P, R)) .)

(lem collect-plist/ :
A{P:Powerlist ; Q:Powerlist ; R:NzPolarPowerlist}
(C (sim?(P, Q)) = (true)
& (sim?(Q, R)) = (true))
= ((Px*(@Q/R))=UUP=*Q /R .
(cov-split* on Q / R split (sim?(P, Q)) .)

(lem scalar-/ :
A{C:Complex ; P:Powerlist ; Q:NzPolarPowerlist}
((sim?(P, Q)) = (true)
= ((C*xP) /Q =(Cx*x P/ D) D
(covx on P / Q .)

(lem cancel-*-/ :
A{P:NzPolarPowerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
= (P*xQ /P)=@) .)
(covk on Q / P .)

(lem 1gl-+ :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
=> (1gl(P + Q) = (1gl(P))) .)

(cov¥ on P + Q .)

(lem 1gl-* :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
=> (1gl(P * Q)) = (1gl(P))) .)

(covkx on P * Q .)

(lem 1gl-scalar :
A{C:Complex ; P:Powerlist}
((1gl(C * P)) = (1gl(P))) .)

(covk on C x P .)

(lem sim?-powers :

A{N:Nat ; C1:Complex ; C2:Complex}

218

((sim? (powers (N, C1), powers(N, C2))) = (true)) .)

(cov* on powers(N, C1) .)

(lem sim?-powers-1gl :
A{P:Powerlist ; Q:Powerlist ; C:Complex}
((sim? (powers(1gl(P), C), Q)) = (sim?(P, Q))) .)
(cov-split* on 1gl(P) split (sim?(P, Q)).)

(lem powers-* :
A{N:Nat ; Cl:Complex ; C2:Complex}
((powers(N, C1) * powers(N, C2)) = (powers(N, C1 * C2))) .)

(cov* on powers(N, C1) .)

(lem 1lgl-powers :
A{N:Nat ; C:Complex}
((1gl(powers(N, C))) = (M) .)

(cov* on (powers(N, C)) .)

(lem sim?-u :
A{P:Powerlist ; Q:Powerlist}
((sim?(u(1gl(P)), Q) = (sim?(P, Q))) .
(auto .)

(lem 1gl-u :
A{N:Nat}
(Agl(u(N))) = () .
(auto .)

(lem sim?-w :
A{P:Powerlist ; Q:Powerlist}
((sim? (w(1gl(P)), Q)) = (sim?(P, Q))) .)
(auto .)

(lem u-squared :
A{N:Nat}
(@ * u() = w@)) .

(ind* on N .)

(lem w-tie :
A{N:Nat}
((w(s M) = (u) tie ((-1, 0) * u(M))) .)
(ind* on N .)

(lem w-0 :

219

w@@)) = (L 1, 00 D D
(auto .)

(disable def-u .)
(disable def-w .)

(lem sim?-fft :
A{P:Powerlist ; Q:Powerlist}
((sim?(£££(P), Q) = (sim?(P, Q))) .)
(cov-split* using zip on fft(P) split (££t(Q)) .)

(lem sim?-ift :
A{P:Powerlist ; Q:Powerlist}
((sim?(ift(P), Q)) = (sim?(P, Q))) .)
(cov-split* on ift(P) split (sim?(P, Q)) .)
--- Induction case:

(split on (sim?(VO#O*Powerlist, VO#1*Powerlist)) .)

(auto .)
(split on (sim?(VO#0*Powerlist, VO#3*Powerlist)) .)
(auto .)
(auto .)

(lem 1gl-ift :
A{P:Powerlist}
((1glQft(P))) = (1gl(P))))
(a-inst lem-sim-1gl
with (P:Powerlist <- (ift(P:Powerlist))) ;
(Q:Powerlist <- P:Powerlist) .)
(auto .)

B.3 fft-ft.itp

load powerlist-fft

select ITP-TOOL .

loop init-itp(uiuc)
(goal fft-ft : FFT

|- A{P:Powerlist}
(£ (P)) = (£t(P))))

220

load lem-sim-basics.itp
load lem-zip-sim.itp
load lem-zip-ctor.itp
load lem-1gl.itp

load lem-fft-basics.itp

(lem sim?-eval :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(eval(P, Q), R)) = (sim?(Q, R))) .)
(cov-split* on eval(P, Q) split (sim?(Q, R)) .)

(lem eval-zip-right
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (eval(R, P zip Q)) = (eval(R, P) zip eval(R, Q))) .)

(cov¥ on P + Q .)

(lem eval-zip-left :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim? (P:Powerlist, Q:Powerlist)) = (true)
=> (eval(P zip Q, R)) = (eval(P, R * R) + R * eval(Q, R * R)))

(covx on R * R .)

--- Main theorem
(cov* using zip on fft(P:Powerlist) .)
--- Induction case:
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#0*Powerlist) ;
(Q:Powerlist <- VO#1*Powerlist) .)
(auto .)

B.4 fft-ift.itp

load powerlist-fft

select ITP-TOOL .

loop init-itp(uiuc)
(goal fft-ift : FFT

|- A{P:Powerlist}
((£££ (it (P))) = (P)))

221

load lem-sim-basics.itp

load lem-zip-sim.itp

load lem-zip-ctor.itp

load lem-1gl.itp

load lem-fft-basics.itp

(cov on ift(P) .)

(a-inst lem-sim-1gl

with (P:Powerlist <- VO#O*Powerlist)
(Q:Powerlist <- VO#1*Powerlist)

(auto .)

B.5 ift-fft.itp

load powerlist-fft

select ITP-TOOL .

loop init-itp(uiuc)

(goal ift-fft : FFT
|- A{P:Powerlist}

(GEe(E£E(P))) = (P))

load lem-sim-basics.itp

load lem-zip-sim.itp

load lem-zip-ctor.itp

load lem-1gl.itp

load lem-fft-basics.itp

(cov* using zip on fft(P)

D)

)

222

3

)

Appendix C

Batcher sort scripts

C.1 Dbit.maude

fmod BIT is
sort Bit .

ops 0 1 : -> Bit [ctor].

op _<=_ : Bit Bit -> Bool .

eq B:Bit <= B:Bit =
eq 0 <=1 = true .

eq 1 <= 0 = false .

endfm

view Bit from TRIV to
sort Elt to Bit .

endv

view Bit<= from TOTAL-

sort E1t to Bit .

endv

C.2 powerlist-sort.maude

load powerlist

fmod BATCHER-SORT{X ::

true .

BIT is

ORDER to BIT is

TOTAL-ORDER} is

protecting POWERLIST{TOTAL-PREORDER}{TOTAL-ORDER}{X} * (

sort E1t{TOTAL-PREORDER}{TOTAL-ORDER}{X}
sort Scalar{TOTAL-PREORDER}{TOTAL-ORDER}{X}
sort NsPowerlist{TOTAL-PREORDER}{TOTAL-ORDER}{X}
sort Powerlist{TOTAL-PREORDER}{TOTAL-ORDER}{X}
sort NsPowerlist*{TOTAL-PREORDER}{TOTAL-ORDER}{X}
sort Powerlist*{TOTAL-PREORDER}{TOTAL-ORDER}{X}

var E E’ : X$Elt .

var P P1 P2 Q Q1 Q2 :

Powerlist{X} .

223

to
to
to
to
to
to

E1t{X},
Scalar{X},
NsPowerlist{X},
Powerlist{X},
NsPowerlist*{X},
Powerlist*{X}).

--- Take minimum of each element in arguments.

op _min_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq [E] min [E>] = [if E <= E’ then E else E’ fi]

eq (P1 zip P2) min (Q1 zip Q2) = (P1 min Q1) zip (P2 min Q2)

--- Take maximum of each element in arguments.

op _max_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq [E]l max [E>] = [if E <= E’ then E’ else E fi]

eq (P1 zip P2) max (Q1 zip Q2) = (P1 max Q1) zip (P2 max Q2)

--- compare([pl .. pn 1, [gl .. gn]) returns the powerlist:
--- [min(p1, q1) max(pl,ql) .. min(pn, gn) max(pn,qn)]
op compare : Powerlist{X} Powerlist{X} ~> Powerlist{X} .
eq compare(P, Q) = (P min Q) zip (P max Q)

--- Batcher merge

op _bm_ : Powerlist{X} Powerlist{X} ~> Powerlist{X} .

eq [E] bm [E>] = compare([E], [E>])

eq (P1 zip P2) bm (Ql zip Q2) = compare(P1 bm Q2, P2 bm Q1)

--- Sort using batcher merge.

op bs : Powerlist{X} -> Powerlist{X}
eqbs(LE]) =[E]

eq bs(P zip Q) = bs(P) bm bs(Q)

endfm

---(Theorems about bs bi and bm [sorted-bs.itp]
1. sim?(P, Q) & sorted(P) & sorted(Q) => sorted(P bm Q).
2. sorted(bs(P))
3. elts(P) = elts(bs(P))

Reference:
Section 5.3.4, Theorem Z (Zero-One Principle) in The Art of Computer
Programming Volume 3 discusses why one can show a particular type of

sorting routine sorts arbitrary types iff it sorts Booleans correctly.
)

load bit

fmod POWERLIST-BIT-SORT is
protecting BATCHER-SORT{Bit<=}

* (sort Elt{Bit<=} to Elt,
sort Scalar{Bit<=} to Scalar,
sort NsPowerlist{Bit<=} to NsPowerlist,
sort Powerlist{Bit<=} to Powerlist,

sort NsPowerlist*{Bit<=} to NsPowerlist,

sort Powerlist*{Bit<=} to Powerlistx*)

224

var B : Bit

var P Q : Powerlist

--- Returns numbers of zeros in powerlist.
op zeros : Powerlist -> Nat

eq zeros(P zip Q) = zeros(P) + zeros(Q)

eq zeros([0 1) =1
0 .

eq zeros([1 1)

op sorted? : Powerlist -> Bool .
eq sorted?([B 1) = true .
eq sorted?(P zip Q)
= sorted?(P) and
sorted?(Q) and
(zeros(Q) <= =zeros(P)) and
(zeros(P) <= s zeros(Q))

endfm

C.3 sorted-bs.itp

load powerlist-sort
select ITP-TOOL .

loop init-itp(uiuc)

(goal sorted?-bs : POWERLIST-BIT-SORT
|- A{P:Powerlist}
((sorted?(bs(P))) = (true)) .)

load lem-sim-basics.itp
load lem-zip-sim.itp

load lem-zip-ctor.itp

(lem sim?-cong :
A{P*:Powerlist* ; Q*:Powerlist* ; R*:Powerlist*}

((sim?(P*, Q%)) = (true)

=> (sim?(P*, R¥)) = (sim?(Q*, Rx*))) .)
(cov-split* on sim?(P*, R*) split (sim?(P*, Qx*)) .)
--- 18.0
(a-inst hyp-2

with (Q*:Powerlist* <- VO#1*Powerlistx*) .)
(auto .)
--- 22.0
(a-inst hyp-5

with (Q*:Powerlist* <- VO#1xPowerlist*) .)
(auto .)

225

(disable def-zip-1 .)
(disable def-zip-2 .)

(lem sim?-min :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P min Q) : Powerlist
& (sim?(P min Q, R)) = (sim?(P , R))) .)
(cov-split* using zip on P min Q

split (bs(R)) ; (zeros(P)) ; (zeros(Q)) .)

(lem sim?-max :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P max Q) : Powerlist
& (sim?(P max Q, R)) = (sim?(P , R))) .)
(cov-split* using zip on P max Q
split (bs(R)) ; (zeros(P)) ; (zeros(Q)) .)

(lem sim?-bm :
A{P:Powerlist ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (P bm Q) : Powerlist
& (sim?(P bm Q, R)) = (sim?(P zip Q, R))) .)
(cov-split* using zip on P bm Q
split (bs(R)) ; (zeros(P)) ; (zeros(Q)) .)
---7.2.0
(a-inst lem-sim?-cong
with (P*:Powerlist* <- ([0 1)) ;
(Q*:Powerlistx <- ([1 1)) .)
(auto .)
---7.2.0
(a-inst lem-tie-r-sim*
with (P:Powerlist* <- (VO#O*Powerlist)) ;
(Q1:Powerlist* <- (VO#5*Powerlist)) ;
(Q2:Powerlist* <- (VO#3*Powerlist)) ;
(R:Powerlist* <- (VO#1*Powerlist)) .)
(auto .)

(lem sim?-bs :
A{P:Powerlist ; R:Powerlist}
((sim?(bs(P), R)) = (sim?(P, R))) .)
(cov-split* using zip on bs(P) split (bs(R)) .)

(lem zeros-max-sorted? :

A{P:Powerlist ; Q:Powerlist}

226

¢ (sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)

=> (zeros(P max Q)) = (min(zeros(P), zeros(Q)))) .)
(cov-split* using zip on P max Q
split (zeros(P)) ; (zeros(Q)) .)
--- 9.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1*Powerlist)
---9.1.0
(split on zeros(VO#2*Powerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-false->true-succ
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (s zeros(VO#3*Powerlist))) ;
(P:Nat <- (=zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#2*xPowerlist))) ;
(P:Nat <- (=zeros(VO#0*Powerlist))) .)
(a-inst lem-<=-two-+
with (M:Nat <- (=zeros(VO#0*Powerlist))) ;
(N:Nat <- (zeros(VO#1*Powerlist))) .)
(auto .)
--- 9.2.0
(a-inst lem-<=-false->true-succ
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (s zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist))) ;
(P:Nat <- (s zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (=zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#1*Powerlist))) ;
(P:Nat <- (zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-two-+
with (M:Nat <- (zeros(VO#2*Powerlist))) ;
(N:Nat <- (zeros(VO#3*Powerlist))) .)
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(auto .)
(auto .)

(lem zeros-min-sorted?

A{P:Powerlist ; Q:Powerlist}

227

¢ (sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)

=> (zeros(P min Q)) = (max(zeros(P), zeros(Q)))) .)
(cov-split* using zip on P min Q
split (zeros(P)) ; (zeros(Q)) .)
--- 9.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1*Powerlist)
---9.1.0
(split on zeros(VO#2*Powerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-false->true-succ
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (s zeros(VO#3*Powerlist))) ;
(P:Nat <- (=zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#2*xPowerlist))) ;
(P:Nat <- (=zeros(VO#0*Powerlist))) .)
(a-inst lem-<=-two-+
with (M:Nat <- (=zeros(VO#0*Powerlist))) ;
(N:Nat <- (=zeros(VO#1xPowerlist))) ;
(P:Nat <- (zeros(VO#2*Powerlist))) .)
(auto .)
--- 9.2.0
(a-inst lem-<=-false->true-succ
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (s zeros(VO#1*Powerlist))) ;
(N:Nat <- (=zeros(VO#0*Powerlist))) ;
(P:Nat <- (s zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (=zeros(VO#1xPowerlist))) ;
(P:Nat <- (zeros(VO#2*Powerlist))) .)
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(a-inst lem-<=-two-+
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (=zeros(VO#2*Powerlist))) .)
(auto .)
(auto .)

(lem sorted?-max :

228

A{P:Powerlist ; Q:Powerlist}

¢ (sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)

=> (sorted?(P max Q)) = (true)) .)
(cov-split* using zip on P max Q
split (zeros(P)) ; (zeros(Q)) .)
---9.1.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1*Powerlist)
---9.1.1.0
(split on zeros(VO#2*Powerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#O0*Powerlist))) ;
(N:Nat <- (zeros(VO#1xPowerlist))) ;
(P:Nat <- (s zeros(VO#3*Powerlist))) .)
(auto .)
--- 9.1.2.0
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(a-inst lem-<=-false->true
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (=zeros(VO#1*Powerlist))) ;
(N:Nat <- (=zeros(VO#0*Powerlist))) ;
(P:Nat <- (s zeros(VO#2*Powerlist))) .)
(auto .)
(auto .)
--- 9.2.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1xPowerlist)
--- 9.2.1.0
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-false->true
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#2*Powerlist))) ;
(P:Nat <- (zeros(VO#0*Powerlist))) .)
(auto .)
--- 9.2.2.0
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#2*Powerlist))) ;
(N:Nat <- (zeros(VO#3*Powerlist))) ;
(P:Nat <- (zeros(VO#1*Powerlist))) .)

229

(auto .)
(auto .)

(lem sorted?-min :
A{P:Powerlist ; Q:Powerlist}

¢ (sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)

=> (sorted?(P min Q)) = (true)) .)
(cov-split* using zip on P min Q
split (zeros(P)) ; (zeros(Q)) .)
--- 9.1.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1*Powerlist)
---9.1.1.0
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-false->true
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#2*Powerlist))) .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (s zeros(VO#3*Powerlist))) ;
(P:Nat <- (s zeros(VO#2*Powerlist))) .)
(auto .)
---9.1.2.0
(split on zeros(VO#2*Powerlist) <= zeros(VO#3*Powerlist)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#0*Powerlist))) ;
(N:Nat <- (s zeros(VO#2*Powerlist))) ;
(P:Nat <- (s zeros(VO#3*Powerlist))) .)
(auto .)
(auto .)
--- 9.2.0
(split on zeros(VO#0*Powerlist) <= zeros(VO#1xPowerlist)
---9.2.1.0
(split on zeros(VO#2*Powerlist) <= zeros(VO#3*Powerlist)
(auto .)
(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#2*Powerlist))) ;
(N:Nat <- (zeros(VO#O*Powerlist))) ;
(P:Nat <- (zeros(VO#1*Powerlist))) .)
(auto .)
--- 9.2.2.0
(split on zeros(VO#2xPowerlist) <= zeros(VO#3*Powerlist)
(a-inst lem-<=-false->true
with (M:Nat <- (zeros(VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist))) .)

230

(a-inst lem-<=-trans
with (M:Nat <- (zeros(VO#3*Powerlist))) ;
(N:Nat <- (zeros(VO#1x*Powerlist))) ;
(P:Nat <- (zeros(VO#0*Powerlist))) .)
(auto .)
(auto .)

(lem sorted?-bm :
A{P:Powerlist ; Q:Powerlist}
((sim?(P, Q)) = (true)
& (sorted?(P)) = (true)
& (sorted?(Q)) = (true)
=> (sorted?(P bm Q)) = (true)
& (zeros(P bm Q)) = (zeros(P) + zeros(Q))) .)
(cov-split* using zip on P bm Q
split (zeros(P)) ; (zeros(Q)) .)

--- First subcase
(split on
zeros (VO#0*Powerlist bm VO#3*Powerlist)
<= zeros(VO#2*Powerlist bm VO#1*Powerlist) .)
(auto .)
(a-inst lem-<=-false->true
with (M:Nat <- (zeros(VO#2*Powerlist bm VO#1*Powerlist))) ;
(N:Nat <- (zeros(VO#0*Powerlist bm VO#3*Powerlist))) .)
(auto .)
--- Second subcase
(split on
zeros (VO#0*Powerlist bm VO#3*Powerlist)
<= zeros(VO#2*Powerlist bm VO#1*Powerlist) .)
(auto .)
(auto .)
--- Third subcase
(split on
zeros (VO#0*Powerlist bm VO#3*Powerlist)
<= zeros(VO#2*Powerlist bm VO#1*Powerlist) .)

(auto .)
(auto .)
--- Main goal.

(cov* using zip on bs(P) .)

231

Appendix D

Adder scripts

D.1 powerlist-adder.maude

load powerlist
load bit

fth A-OP is

inc TRIV .

op _+_ : Elt E1lt -> Elt .

var X Y Z : Elt .

eq X+ (Y +2Z) = (X+Y)+ Z [nonexec].
endfth

view A-OP from TRIV to A-OP is endv

fmod PREFIX-SUM{X :: A-OP} is
protecting POWERLIST{A-OP}{X}

* (sort E1t{A-0P}{X} to E1t{X},
sort Scalar{A-OP}{X} to Scalar{X},
sort NsPowerlist{A-OP}{X} to NsPowerlist{X},
sort Powerlist{A-OP}{X} to Powerlist{X},
sort NsPowerlist*{A-OP}{X} to NsPowerlist*{X},
sort Powerlist*{A-OP}{X} to Powerlist*{X})

var E E’ : X$Elt .
var P Q : Powerlist{X} .

--- Apply + to all elements of powerlist.

op _+_ : X$E1t Powerlist{X} -> Powerlist{X} .
eq E+ (P tie Q) = (E + P) tie (E + Q)
eqE+ [E>]=[E+E]

--- Prefix sum.

op prefix : Powerlist{X} ~> Powerlist{X} .

eq prefix([E]1) =[E]

eq prefix(P tie Q) = prefix(P) tie (last(prefix(P)) + prefix(Q))

endfm

232

fmod CARRY is
protecting BIT .

sort Carry .
subsort Bit < Carry .

op p : -> Carry [ctor].

var B : Bit

var C : Carry .

--- Compute carry for two bits.
op carry : Bit Bit -> Carry .
eq carry(B, B) = B .

eq carry(0, 1) = p .

eq carry(1l, 0) = p .

--- Combines carry bits together.

op _!_ : Carry Carry -> Carry .
eqC!B=B.
eqC!p=2C.

endfm

view Carry from A-OP to CARRY is
sort Elt to Carry .
op _t+_ to _!

endv

--- Operations common to both ripple carry and carry lookahead

fmod POWERLIST-NAT-ENCODING is
protecting PREFIX-SUM{Carry}

* (sort Elt{Carry} to Elt,

sort Scalar{Carry} to Scalar,

sort NsPowerlist{Carry} to NsPowerlist,

sort Powerlist{Carry} to Powerlist,

sort NsPowerlist*{Carry} to NsPowerlist*,

sort Powerlist*{Carry} to Powerlist*,

op _+_ : Carry Powerlist{Carry} ~> Powerlist{Carry} to _!_)

sort E1t{Bit} NsPowerlist{Bit} Powerlist{Bit} .
subsort E1t{Bit} NsPowerlist{Bit} < Powerlist{Bit} .
subsort E1t{Bit} < Elt

subsort NsPowerlist{Bit} < NsPowerlist

subsort Powerlist{Bit} < Powerlist

var P Q : Powerlist{Bit} .

233

var N Val : Nat

op [_] : Bit -> E1t{Bit} [ctor ditto].
cmb P tie Q : NsPowerlist{Bit} if sim?(P, Q)

--- Returns least-significant bit of number.
op 1lsb : Nat -> Bit

eq 1sb(0) = 0 .

eq 1sb(1) =1

eq 1lsb(s s Val) = 1lsb(Val)

--- bv(N, Val) returns representation of Val in powerlist with 1gl N.

op bv : Nat Nat -> Powerlist{Bit} .

eq bv(0, Val) = [1lsb(Val)]

eq bv(s N, Val) = bv(N, Val) tie bv(N, Val >> 2 =~ N)
--- Expands powerlist into natural number.

op eval : Powerlist{Bit} -> Nat .

eq eval([0 1) =0 .

eqeval([1 1) =1

eq eval(P tie Q) = eval(P) + (eval(Q) << (2 ~ 1gl(P)))

endfm

fmod ADDER is
protecting POWERLIST-NAT-ENCODING .

sort AdderOutput .
op <_;_> : Bit Powerlist{Bit} -> AdderOutput [ctor].

var B B’ : Bit

var C C’ : Carry .

var P Q P1 P2 Q1 Q2 : Powerlist{Bit}
var NsPC : NsPowerlist

var PC QC : Powerlist .

op carry : AdderQutput -> Bit

eq carry(< B ; P >) =B .

op list : AdderOutput -> Powerlist{Bit} .
eq list(< B ; P >) =P .

--- Convert adder output to natural number.
op eval : AdderOutput -> Nat
eq eval(< B ; P >) = (eval([B]) << 2 ~ 1gl(P)) + eval(P)

--- Ripple-carry adder.

op rc : Bit Powerlist{Bit} Powerlist{Bit} ~> AdderQOutput
eqrc(0, [0]1, [OD <o0; [01>.

eqrc(0, [0]1, [1D <0; [11>.

eqrc(0, [11, [0 <0; [11]>.

1]

234

eqrc(0, [11, [11)=<1;T[01>.
eqrc(l, 0], [0])=<0; [1]>
eqrc(l, [01, [11)=<1;[01]>
eqrc(1, [1], [0])=<x1;[01]>
eqrc(1, [1], [1D)=<1;[1]>

eq rc(B, P1 tie P2, Q1 tie Q2)
= < carry(rc(carry(rc(B, P1, Q1)), P2, Q2)) ;
list(rc(B, P1, Q1)) tie list(rc(carry(rc(B, P1, Q1)), P2, Q2)) > .

--- Computes carry values for two powerlists.

--- carry = \bullet in adam’s paper.

op carry : Powerlist{Bit} Powerlist{Bit} ~> Powerlist .

eq carry([B'1, [B> 1) = [carry(B, B’)]

eq carry(P1 tie P2, Q1 tie Q2) = carry(P1, Q1) tie carry(P2, Q2)

--- Sums powerlist.

op sum : Powerlist{Bit} Powerlist ~> Powerlist{Bit} .
eq sum(P tie Q, PC tie QC) = sum(P, PC) tie sum(Q, QC)
eq sun([B], [B> 1) = [B]

eq sum([L 01, [p D [11]

eq sum([11, [p D [o]

--- Shifts powerlist to right by one by inserting carry.
op rsh : Carry Powerlist "> Powerlist .

eqrsh(C, [C> 1) =[C]

eq rsh(C, PC tie QC) = rsh(C, PC) tie rsh(last(PC), QC)

--- Carry lookahead adder.

op cl : Bit Powerlist{Bit} Powerlist{Bit} ~> AdderQOutput .

eq c1(B, P, Q

= < last(prefix(rsh(B, carry(P, Q)))) ! last(carry(P, Q)) ;
sum(prefix(rsh(B, carry(P, Q))), carry(P, Q) > .

endfm

---(Theorems:
1. [lem-eval-bv.itp]
eval(bv(N, Val)) = Val rem 2 =~ (2 =~ N).
2. [rc.itp]
sim?(P,Q)
=> rc(B,P,Q) = < bv(0, eval(B) + eval(P) + eval(Q) >> 2 ~ 1gl(P)) ;
bv(1lgl(P), eval(B) + eval(P) + eval(Q))>
3: [rc-cl.itp]
rc(B,P,Q) = cl(B,P,C)

235

D.2 lem-adder.itp

(lem 1gl-bv-powerlist :
A{N:Nat ; Val:Nat}
((1gl(pv(N, Val))) = (N)) .)
(cov* on bv(N, Val) .)

(lem eval-1sb :
A{V:Nat}
(Ceval([1sb(V) 1))
(cov* on 1sb(V) .)

(V rem 2)) .)

(lem eval-bv :
A{N:Nat ; Val:Nat}
((eval(bv(N, Val)))
(cov* on bv(N, Val) .)

(Val rem 2 ~ (2 =~ N))))

(lem rc-powerlist :
A{B:Bit ; P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim?(P, Q)) = (true)
=> (rc(B, P, Q)) : AdderOutput
& (sim?(list(rc(B, P, Q)), P)) = (true)) .)
(cov* on rc(B, P, Q) .)

D.3 rc.itp

load powerlist-adder
select ITP-TOOL .

loop init-itp(uiuc) .

(goal rc : ADDER
|- A{B:Bit ; P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim?(P, Q)) = (true)
=> (rc(B, P, Q))
= (< lsb(eval([B 1) + eval(P) + eval(Q) >> 2 ~ 1gl(P)) ;
bv(1gl(P), eval([B]) + eval(P) + eval(Q))>)) .)

load lem-sim-basics.itp
load lem-zip-sim.itp
load lem-1gl.itp

load lem-adder.itp

(lem 1sb-2N :

236

A{N:Nat}
((Lsb(N + M) = (0)) .)

(ind* on N .)

(lem 1sb-s-2N :
A{N:Nat}
((Asb(s(N + N))) = (1)) .)
(ind* on N .)

(lem 1lsb-sd-ss :
A{M:Nat ; N:Nat}
((1sb(sdM, s s N))) = (Isb(sdM, M))) .)
(cov-split* on sd(M, N) split (1sb(M)) ; (1sb(N)) .)

(lem 1sb-sd-+2 :
A{M:Nat ; N:Nat}
((1sb(sd(M, N + N))) = (1sb(M)) .)
(ind* on N .)

(lem 1sb-M-N+N :
A{M:Nat ; N:Nat}
((1sb(M + N + N)) = (1sb(M))) .)
(cov* on 1sb(M) .)

(lem bv-N-sd-2"2"P :
A{M:NzNat ; N:Nat ; P:Nat}
(M * 2~ (2" P) <=N) = (true)
=> (bv(P, sd(N, M x 2 ~ (2 ~ P)))) = (bv(P, N))) .)
(cov* on bv(P, N) .)

(lem bv-N-shl-2-P :
A{M:Nat ; N:Nat ; P:Nat}
((bv(P, M + (N << 2 =~ P))) = (bv(P, M))) .)
(cov* on bv(P, M) .)

(lem eval-leqg-bit :
A{B:Bit}
((2 <= eval([B 1)) = (false)) .)
(cov* on eval([B 1) .)

(lem eval-leg-p :

237

A{P:Powerlist‘{Bit‘}}
((2 ~ (2 =~ 1gl(P)) <= eval(P)) = (false)) .)
(covx on eval(P) .)
--- Induction case 3:
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#O*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- VO#1xPowerlist‘{Bit‘}) .)
(auto .)

(lem eval-leq-p-general :
A{P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim?(P, Q)) = (true)
=> (2 ~ (2 7 1g1(Q)) <= eval(P)) = (false)) .)
(cns .)
(a-inst lem-sim-1gl
with (P:Powerlist <- Q*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- P*Powerlist‘{Bit‘}) .)
(auto .)

--- Main theorem
(cov* on rc(B, P, Q) .)
--- Last goal:
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#2*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- VO#1xPowerlist‘{Bit‘}) .)
(a-inst lem-sim-1gl
with (P:Powerlist <- VO#3*Powerlist‘{Bit‘}) ;
(Q:Powerlist <- VO#1xPowerlist‘{Bit‘}) .)
(auto .)

D.4 rc-cl.itp

load powerlist-adder
select ITP-TOOL .

loop init-itp(uiuc)

(goal rc-cl : ADDER
|- A{B:Bit ; P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘}}
((sim?(P,Q)) = (true)
=> (rc(B,P,Q)) = (c1(B,P,Q))) .)

load lem-sim-basics.itp

load lem-adder.itp

(lem last-bit
A{P:Powerlist‘{Bit‘}}

238

((last(P)) : Bit) .)
(cov* on last(P) .)

(lem !-left-assoc :
A{C1:Carry ; C2:Carry ; C3:Carry}
((C1 t (C2 ! C3)) = ((C1 ! C2) ! C3)) .)
(eq-split* on C2 ! C3 .)

(lem B!-bit :
A{B:Bit ; C:Carry}
(B! C) : Bit) .)
(eg-split* on B ! C .)

(lem carry-powerlist :
A{P:Powerlist‘{Bit‘} ; Q:Powerlist‘{Bit‘} ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (carry(P, Q)) : Powerlist
& (sim?(carry(P, Q), R)) = (sim?(P, R))) .)
(cov-split* on carry(P, Q) split (sim?(P, R)) .)

(lem sum-powerlist :
A{P:Powerlist‘{Bit‘} ; Q:Powerlist ; R:Powerlist}
((sim?(P, Q)) = (true)
=> (sum(P, Q)) : Powerlist‘{Bit‘}
& (sim?(sum(P, Q), R)) = (sim?(P, R))) .)
(cov-split* on sum(P, Q) split (sim?(P, R)) .)

(lem elt-list-!-sim? :
A{C:Carry ; P:Powerlist ; R:Powerlist}
((C ! P) : Powerlist
& (sim?(C ! P, R)) = (sim?(P, R))) .)
(cov-split* on C ! P split (sim?(P, R)) .)

(lem B!-powerlist :

A{B:Bit ; P:Powerlist}

239

((B ' P) : Powerlist‘{Bit‘}) .)

(covk on B! P .)

(lem !-left-assoc-list :
A{C:Carry ; C’:Carry ; P:Powerlist}
(cr (@ tp))=crcH e D
(cov-split* on C’> ! P split (C ! C?) .)

(lem last-!
A{C:Carry ; P:Powerlist}
((Qast(C ! P)) = (C ! last(P))) .)

(covk on C ! P .)

(lem prefix-sim? :
A{P:Powerlist ; R:Powerlist}
((prefix(P)) : Powerlist
& (sim?(prefix(P), R)) = (sim?(P, R))) .)
(cov-split* on prefix(P) split (sim?(P, R)) .)

(lem rsh-sim? :
A{C:Carry ; P:Powerlist ; R:Powerlist}
((rsh(C, P)) : Powerlist
& (sim?(rsh(C, P), R)) = (sim?(P, R))) .)
(cov-split* on rsh(C, P) split (sim?(P, R)) .)

(lem 1f-rsh-powerlist :
A{B:Bit ; P:Powerlist}
((prefix(rsh(B, P))) : Powerlist‘{Bit‘}) .)

(cov* on prefix(P) .)

(lem last-prefix-rsh :
A{C:Carry ; C’:Carry ; P:Powerlist}
((C ' last(prefix(rsh(C’, P)))) = (last(prefix(rsh(C ! C’, P))))) .)

(covk on C ! P .)

(lem prefix-rsh :
A{C:Carry ; C’:Carry ; P:Powerlist}
((C ! prefix(rsh(C’, P))) = (prefix(rsh(C ! C’, P)))) .)

(covk on C ! P .)

--- Main lemma

(covx on rc(B, P, Q) .)

240

References

1

2]

13l

4]

5]

[6]

7]

18]

19]

[10]

William Adams. Verifying adder circuits using powerlists. Technical re-
port, University of Texas at Austin, Department of Computer Science,
Austin, TX, USA, 1994.

Gul Agha. Actors: a model of concurrent computation in distributed sys-
tems. MIT Press, 1986.

Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87-106, 1987.

Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Cheva-
lier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille
Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mddersheim,
David von Oheimb, Michaél Rusinowitch, Judson Santiago, Mathieu Tu-
ruani, Luca Vigano, and Laurent Vigneron. The AVISPA tool for the
automated validation of internet security protocols and applications. In
Kousha Etessami and Sriram K. Rajamani, editors, Proc. of CAV’05, vol-
ume 3576 of Lecture Notes in Computer Science, pages 281-285. Springer,
2005.

Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free lan-
guages and pushdown automata. In Grzegorz Rozenberg and Arto Salo-
maa, editors, Handbook of Formal Languages, volume 1, Word Language
Grammar, chapter 3, pages 111-174. Springer, 1997.

Franz Baader and Tobias Nipkow. Term rewriting and All That. Cam-
bridge University Press, 1998.

Franz Baader and Wayne Snyder. Unification theory. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 8, pages 445-532. Elsevier, 2001.

Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and
Antoine Reilles. Tom: Piggybacking rewriting on Java. In Franz Baader,
editor, Proc. of RTA’07, volume 4533 of Lecture Notes in Computer Sci-
ence, pages 36-47. Springer, 2007.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Hol-
ger Hermanns, editors, Proc. CAV’07, volume 4590 of Lecture Notes in
Computer Science, pages 298-302. Springer, 2007.

Kenneth E. Batcher. Sorting networks and their applications. In Spring
Joint Computer Conference, AFIPS Proc., volume 32, pages 307-314,
1968.

241

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

22]

23]

Narjes Berregeb, Adel Bouhoula, and Michaél Rusinowitch. SPIKE-AC:
A system for proofs by induction in associative-commutative theories. In
Harald Ganzinger, editor, Proc. of RTA-96, volume 1103 of Lecture Notes
in Computer Science, pages 428-431. Springer, 1996.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer, 2004. URL
http://www.labri.fr/publications/13a/2004/BC04.

Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-
Carbonell, and Albert Rubio. The Barcelogic SMT solver. In Aarti Gupta
and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes in Com-
puter Science, pages 294-298. Springer, 2008.

Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Automatic
verification of security protocols using approximations. technical report
RR-5727, INRIA, October 2005.

Peter Borovansky, Claude Kirchner, Héléne Kirchner, and Pierre-Etienne
Moreau. ELAN from a rewriting logic point of view. Theoretical Computer
Science, 285(2):155-185, 2002.

Alexandre Boudet. Unification in order-sorted algebras with overloading.
In Deepak Kapur, editor, Proc. of CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 193-207. Springer, 1992.

Gérard Boudol. Computational semantics of term rewriting systems. Al-
gebraic methods in semantics, pages 169-236, 1986.

Adel Bouhoula and Florent Jacquemard. Automatic verification of suf-
ficient completeness for conditional constrained term rewriting systems.
Technical Report LSC-05-17, ENS de Cachan, 2006. Available at: http:
//www.lsv.ens-cachan.fr/Publis/.

Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification
and proof in membership equational logic. Theoretical Computer Science,
236:35-132, 2000.

Robert Stephen Boyer and J Strother Moore. A Computational Logic.
Academic Press, 1979.

Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Mer-
ijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier,
Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser. The
ASF+SDF meta-environment: a component-based language development
environment. Electronic Notes Theoretical Computer Science, 44(2), 2001.

Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting with
equivalence relations in ACL2. Journal of Automated Reasoning, 40
(4):293-306, 2008. ISSN 0168-7433. doi: http://dx.doi.org/10.1007/
s10817-007-9095-9.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In Aarti Gupta
and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes in Com-
puter Science, pages 299-303. Springer, 2008.

242

24]

[25]

[26]

27]

(28]

29]

(30]

31]

32]

33]

[34]

[35]

[36]

Anne-Cécile Caron, Hubert Comon, Jean-Luc Coquidé, Max Dauchet, and
Florent Jacquemard. Pumping, cleaning and symbolic constraints solving.
In Serge Abiteboul and Eli Shamir, editors, Proc. of ICALP, volume 820
of Lecture Notes in Computer Science, pages 436-449. Springer, 1994.

Manuel Clavel, Francisco Duran, Steven Eker, José Meseguer, and Mark-
Oliver Stehr. Maude as a formal meta-tool. In Jeannette M. Wing, Jim
Woodcock, and Jim Davies, editors, World Congress on Formal Methods,
volume 1709 of Lecture Notes in Computer Science, pages 1684—-1703.
Springer, 1999.

Manuel Clavel, José Meseguer, and Miguel Palomino. Reflection in mem-
bership equational logic, many-sorted equational logic, horn logic with
equality, and rewriting logic. FElectronic Notes Theoretical Computer Sci-
ence, 71, 2002.

Manuel Clavel, Miguel Palomino, and Adrian Riesco. Introducing the
ITP tool: a tutorial. Journal of Universal Computer Science, 12(11):
1618-1650, 2006.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer, and Carolyn Talcott. All About Maude, vol-
ume 4350 of Lecture Notes in Computer Science. Springer, 2007.

Manuel Clavel, Francisco Duran, Joe Hendrix, Salvador Lucas, José
Meseguer, and Peter Csaba Olveczky. The Maude formal tool environ-
ment. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen, edi-
tors, Proc. of CALCO, volume 4624 of Lecture Notes in Computer Science,
pages 173-178. Springer, 2007.

Hubert Comon. Completion of rewrite systems with membership con-
straints. part I: Deduction rules. Journal of Symbolic Computation, 25(4):
397-419, 1998.

Hubert Comon. Completion of rewrite systems with membership con-
straints. part II: Constraint solving. Journal of Symbolic Computation, 25
(4):421-453, 1998.

Hubert Comon and Florent Jacquemard. Ground reducibility is EXP-
TIME-complete. Information and Computation, 187(1):123-153, 2003.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Sophie Tison, and Marc Tommasi. Tree automata techniques and
applications. Available at: http://www.grappa.univ-1ille3.fr/tata,
1997.

Hubert Comon-Lundh, Florent Jacquemard, and Nicolas Perrin. Tree
automata with memory, visibility and structural constraints. In Helmut
Seidl, editor, Proc. of FoSSaCS 2007, volume 4423 of Lecture Notes in
Computer Science, pages 168-182. Springer, 2007.

Evelyne Contejean and Claude Marché. CiME: Completion modulo E. In
Harald Ganzinger, editor, Proc. of RTA-96, volume 1103 of Lecture Notes
in Computer Science, pages 416-419. Springer, 1996.

Evelyne Contejean, Claude Marché, Benjamin Monate, and Xavier Ur-
bain. The CiME 2 system, 2000. Available at http://cime.lri.fr/.

243

37]

[38]

[39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Math. Comput., 19:297-301, 1965.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Sematics, pages 243-320. Elsevier and MIT Press,
1990.

Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 9, pages 535-610. Elsevier, 2001.

Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite,
rewrite, rewrite, rewrite, rewrite, Theoretical Computer Science, 83
(1):71-96, 1991.

Philippe Devienne, Jean-Marc Talbot, and Sophie Tison. Solving classes
of set constraints with tree automata. In Gert Smolka, editor, Proc. of
CP97, volume 1330 of Lecture Notes in Computer Science, pages 62—76.
Springer, 1997.

Francisco Duran and José Meseguer. The Maude specification of Full
Maude. Technical report, SRI International, 1999. Available at: http:
//maude.cs.uiuc.edu/papers/.

Francisco Duran, Salvador Lucas, José Meseguer, Claude Marché, and
Xavier Urbain. Proving termination of membership equational programs.
In Nevin Heintze and Peter Sestoft, editors, Proc. of PEPM, pages 147—
158. ACM, 2004.

Francisco Duran, Salvador Lucas, Claude Marché, José Meseguer, , and
Xavier Urbain. Proving operational termination of membership equational
programs. Higher-Order and Symbolic Computation, 21(1-2):59-88, 2008.

Bruno Dutertre and Leonardo Mendonga de Moura. System description:
Yices 1.0. Submitted to SMT-COMP 2006, 2006. Available at http:

//yices.csl.sri.com/.

Santiago Escobar. Refining weakly outermost-needed rewriting and nar-
rowing. In Proc. of PPDP, pages 113-123. ACM, 2003.

Santiago Escobar. Strategies and Analysis Techniques for Functional Pro-
gram Optimization. PhD thesis, Departamento de Sistemas Informaticos
y Computacion, Universidad Politécnica de Valencia, Valencia, Spain, Oct
2003.

Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-
based inference system for the NRL protocol analyzer and its meta-logical
properties. Theoretical Computer Science, 367(1-2):162-202, 2006.

Santiago Escobar, Joe Hendrix, Catherine Meadows, and José Meseguer.
Diffie-Hellman cryptographic reasoning in the Maude-NRL protocol ana-
lyzer. In Proc. of SecRet 2007, 2007.

Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reach-
ability analysis over term rewriting systems. J. Autom. Reasoning, 33
(3-4):341-383, 2004.

244

[51]

[52]

53]

[54]

[55]

[56]

[57]

58]

[59]

[60]

[61]

(62]

(63]

[64]

(65]

Kokichi Futatsugi and Razvan Diaconescu. CafeOBJ Report. World Sci-
entific, AMAST Series, 1998.

Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and José
Meseguer. Principles of OBJ2. In Brian Reid, editor, Proc. of POPL
1985, pages 52-66. ACM Press, 1985.

John P. Gallagher and Germén Puebla. Abstract interpretation over non-
deterministic finite tree automata for set-based analysis of logic programs.
In Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Proc. of
PADL 2002, volume 2257 of Lecture Notes in Computer Science, pages
243-261. Springer, 2002.

Jean Gallier and Tomas Isakowitz. Order-sorted rigid E-unification. Tech-
nical Report STERN IS-91-40, Stern School of Business at New York Uni-
versity, 1991. Available at http://hdl.handle.net/2451/14397.

Ruben Gamboa. The correctness of the fast fourier transform: A struc-
tured proof in ACL2. Formal Methods in System Design, 20(1):91-106,
2002.

Ruben Gamboa. A formalization of powerlist algebra in ACL2. Journal
of Automated Reasoning, 2008. Submitted.

Ruben Gamboa. Defthms about zip and tie: Reasoning about powerlists in
ACL2. Technical Report TR87-02, University of Texas Computer Science,
1997.

Ruben Gamboa and John R. Cowles. Theory extension in ACL2(r). Jour-
nal of Automated Reasoning, 38(4):273-301, 2007.

Thomas Genet and Francis Klay. Rewriting for cryptographic protocol
verification. In David A. McAllester, editor, Proc. of CADE-17, volume
1831 of Lecture Notes in Computer Science, pages 271-290. Springer, 2000.

Jirgen Giesl and Aart Middeldorp. Transformation techniques for
context-sensitive rewrite systems. Journal of Functional Programming,
14(4):379-427, 2004.

Jiirgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2:
Automatic termination proofs in the dependency pair framework. In Ul-
rich Furbach and Natarajan Shankar, editors, Proc. of IJCAR, volume
4130 of Lecture Notes in Computer Science, pages 281-286. Springer, 2006.

Seymore Ginsburg and Edwin H. Spanier. Semiground, Presburger for-
mulas and languages. Pacific Journal of Mathematics, 16:285-296, 1966.

Joseph Goguen and Razvan Diaconescu. An Oxford survey of order sorted
algebra. Mathematical Structures in Computer Science, 4(3):363-392,
1994.

Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217-273, 1992.

Michael J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge Univer-
sity Press, 1993. URL http://www.dcs.glasgow.ac.uk/ tfm/HOLbook.
html.

245

(6]

(67]

[68]

(69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

John V. Guttag. The Specification and Application to Programming of
Abstract Data Types. PhD thesis, University of Toronto, 1975. Computer
Science Department, Report CSRG-59.

John V. Guttag and James J. Horning. The algebraic specification of
abstract data types. Acta Informatica, 10:27-52, 1978.

John V. Guttag, James J. Horning, Stephen J. Garland, and K.D. Jones.
Larch: Languages and Tools for Formal Specification. Springer, 1993.

Joe Hendrix. CETA: A library for equational tree automata, 2008. Soft-
ware available under GPL license at http://texas.cs.uiuc.edu/ceta/.

Joe Hendrix and José Meseguer. On the completeness of context-sensitive
order-sorted specifications. In Franz Baader, editor, Proc. of RTA’07, vol-
ume 4533 of Lecture Notes in Computer Science, pages 229-245. Springer,
2007.

Joe Hendrix and José Meseguer. Order-sorted equational unification re-
visited. In Giinter Kniesel and Jorge Sousa Pinto, editors, Preproceedings
of RULE’08, To appear in Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2008.

Joe Hendrix and Hitoshi Ohsaki. Combining equational tree automata
over AC and ACI theories. In Andrei Voronkov, editor, Proc. of RTA 08,
volume 5117 of Lecture Notes in Computer Science, pages 142-156.
Springer, 2008.

Joe Hendrix, Manuel Clavel, and José Meseguer. A sufficient completeness
reasoning tool for partial specifications. In Jiirgen Giesl, editor, Proc. of
RTA’05, volume 3467 of Lecture Notes in Computer Science, pages 165—
174. Springer, 2005.

Joe Hendrix, Hitoshi Ohsaki, and José Meseguer. Sufficient completeness
checking with propositional tree automata. Technical Report UTUCDCS-
R-2005-2635, University of Illinois, 2005. Available at: http://maude.
cs.uiuc.edu/tools/scc/.

Joe Hendrix, José Meseguer, and Hitoshi Ohsaki. A sufficient completeness
checker for linear order-sorted specifications modulo axioms. In Ulrich
Furbach and Natarajan Shankar, editors, Proc. of IJCAR, volume 4130 of
Lecture Notes in Computer Science, pages 151-155. Springer, 2006.

Joe Hendrix, Hitoshi Ohsaki, and Mahesh Viswanathan. Propositional
tree automata. In Frank Pfenning, editor, Proc. of RTA’06, volume 4098
of Lecture Notes in Computer Science, pages 165-174. Springer, 2006.

John Edward Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

Mark W. Hopkins and Dexter Kozen. Parikh’s theorem in commutative
Kleene algebra. In Proc. of LICS 1999, pages 394-401. IEEE Computer
Society, 1999.

Haruo Hosoya, Jéréme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In Martin Odersky and Philip Wadler, editors, Proc.
of ICFP, pages 11-22, New York, NY, USA, 2000. ACM Press.

246

[80]

(81]

(82]

(83]

[84]

[85]

[86]

[87]

(83

[89]

90]

[91]

92]

93]

94]

Florent Jacquemard, Michaél Rusinowitch, and Laurent Vigneron. Tree
automata with equality constraints modulo equational theories. In Ulrich
Furbach and Natarajan Shankar, editors, Proc. of IJCAR, volume 4130 of
Lecture Notes in Computer Science, pages 557-571. Springer, 2006.

Jean-Pierre Jouannaud and Héléne Kirchner. Completion of a set of rules
modulo a set of equations. STAM Journal on Computing, 15(4):1155-1194,
1986.

Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by
induction in theories without constructors. Information and Computation,
82(1):1-33, 1989.

Deepak Kapur. An automated tool for analyzing completeness of equa-
tional specifications. In ISSTA, pages 28-43, 1994.

Deepak Kapur. Constructors can be partial too. In Robert Veroff, editor,
Automated Reasoning and its Applications: FEssays in Honor of Larry
Wos, pages 177-210. MIT Press, 1997.

Deepak Kapur and Mahadevan Subramaniam. Automated reasoning
about parallel algorithms using powerlists. In Vangalur S. Alagar and
Maurice Nivat, editors, Proc. of AMAST 95, volume 936 of Lecture Notes
in Computer Science, pages 416-430. Springer, 1995.

Deepak Kapur and Mahadevan Subramaniam. New uses of linear arith-
metic in automated theorem proving by induction. Journal of Automated

Reasoning, 16(1-2):39-78, 1996.

Deepak Kapur and Mahadevan Subramaniam. Mechanical verification of
adder circuits using Rewrite Rule Laboratory. Formal Methods in System
Design, 13(2):127-158, 1998.

Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Labora-
tory (RRL). Journal of Computer and Mathematics with Applications, 29
(2):91-114, 1995.

Deepak Kapur, Paliath Narendran, and Hantao Zhang. On sufficient-com-
pleteness and related properties of term rewriting systems. Acta Informat-
ica, 24(4):395-415, 1987.

Deepak Kapur, Paliath Narendran, Daniel Rosenkrantz, and Hantao
Zhang. Sufficient-completeness, ground-reducibility and their complexity.
Acta Informatica, 28(4):311-350, 1991.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Press, 2000.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computa-
tional Learning Theory. MIT Press, 1994.

Claude Kirchner. Order-sorted equational unification. Presented at the
fifth International Conference on Logic Programming (Seattle, USA), Au-
gust 1988. Also as rapport de recherche INRIA 954, Dec. 88.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Manual.
BRICS, Department of Computer Science, University of Aarhus, January
2001. Notes Series NS-01-1. Available from http://www.brics.dk/mona/.
Revision of BRICS NS-98-3.

247

195]

[96]

97]

98]

9]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Donald Ervin Knuth. Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Edition). Addison-Wesley Professional, 1997.

Jacob Kornerup. Data Structures for Parallel Recursion. PhD thesis, The
University of Texas at Austin, December 1997.

Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.
Journal of the ACM, 27(4):831-838, 1980.

Xavier Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In J. Gregory Morrisett and Simon
L. Peyton Jones, editors, Proc. of POPL 2006, pages 42-54. ACM, 2006.
ISBN 1-59593-027-2.

Hanbing Liu and J Strother Moore. Executable JVM model for analytical
reasoning: A study. Sci. Comput. Program., 57(3):253-274, 2005.

Salvador Lucas. Transfinite rewriting semantics for term rewriting sys-
tems. In Aart Middeldorp, editor, Proc. of RTA 01, volume 2051 of Lecture
Notes in Computer Science, pages 216-230. Springer, 2001.

Salvador Lucas. Context-sensitive rewriting strategies. Information and

Computation, 178(1):294-343, 2002.

Salvador Lucas. Proving termination of context-sensitive rewriting by
transformation. Information and Computation, 204(12):1782-1846, 2006.

Salvador Lucas. Context-sensitive computations in functional and func-
tional logic programs. Journal of Functional and Logic Programming, 1998
(1), 1998.

Salvador Lucas. MU-TERM: A tool for proving termination of context-
sensitive rewriting. In Vincent van Qostrom, editor, Proc. of RTA 04, vol-
ume 3091 of Lecture Notes in Computer Science, pages 200-209. Springer,
2004.

Denis Lugiez. Multitree automata that count. Theoretical Computer Sci-
ence, 333(1-2):225-263, 2005.

Denis Lugiez and J. L. Moysset. Tree automata help one to solve equa-
tional formulae in AC-theories. Journal of Symbolic Computation, 18(4):
297-318, 1994.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Trans. Program. Lang. Syst., 4(2):258-282, 1982.

Theodore McCombs. Maude 2.0 primer. Available at: http://maude.cs.
uiuc.edu/primer/, August 2003.

José Meseguer. Conditioned rewriting logic as a united model of concur-
rency. Theoretical Computer Science, 96(1):73-155, 1992.

José Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Proc. of Marktoberdorf 1997, volume 165 of
NATO ASI Series F: Computer and Systems Sciences, pages 347-398.
NATO Advanced Study Institute, Springer-Verlag, 1998.

248

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

José Meseguer. Membership algebra as a logical framework for equational
specification. In Francesco Parisi-Presicce, editor, Proc. of WADT 97,
volume 1376 of Lecture Notes in Computer Science, pages 18-61. Springer,
1997.

José Meseguer, Joseph A. Goguen, and Gert Smolka. Order-sorted unifi-
cation. Journal of Symbolic Computation, 8:383—-413, 1989.

Jayadev Misra. Powerlist: a structure for parallel recursion. ACM Trans-
actions on Programming Languages and Systems, 16(6):1737-1767, 1994.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Engineering
DPLL(T) + saturation. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, Proc. of IJCAR, volume 5195 of Lecture Notes
in Computer Science. Springer, 2008. To appear.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Efficient E-matching
for SMT solvers. In Frank Pfenning, editor, Proc. of CADE-21, volume
4603 of Lecture Notes in Computer Science, pages 183-198. Springer, 2007.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337-340. Springer, 2008.

Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada.
XML access control using static analysis. ACM Trans. Inf. Syst. Secur.,
9(3):292-324, 2006.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245-257, 1979.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 7, pages 371-443. Elsevier, 2001.

Tobias Nipkow and Gerhard Weikum. A decidability result about suf-
ficient-completeness of axiomatically specified abstract data types. In
Armin B. Cremers and Hans-Peter Kriegel, editors, Proc. of Theoreti-
cal Computer Science, volume 145 of Lecture Notes in Computer Science,
pages 257—-268. Springer, 1982.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer, 2002.

Enno Ohlebusch. Advanced topics in term rewriting. Springer-Verlag,
London, UK, 2002.

Hitoshi Ohsaki. Beyond regularity: Equational tree automata for asso-
ciative and commutative theories. In Laurent Fribourg, editor, Proc. of
CSL, volume 2142 of Lecture Notes in Computer Science, pages 539-553.
Springer, 2001.

Hitoshi Ohsaki and Hiroyuki Seki. Languages modulo normalization.
In Jaime G. Carbonell and Jorg Siekmann, editors, Proc. of FroCoS
2007, volume 4720 of Lecture Notes in Computer Science, pages 221-236.
Springer, 2007.

249

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Hitoshi Ohsaki and Toshinori Takai. Decidability and closure properties of
equational tree languages. In Sophie Tison, editor, Proc. of RTA’02, vol-
ume 2378 of Lecture Notes in Computer Science, pages 114-128. Springer,
2002.

Hitoshi Ohsaki and Toshinori Takai. ACTAS : A system design for associa-
tive and commutative tree automata theory. Electronic Notes Theoretical
Computer Science, 124(1):97-111, 2005.

Hitoshi Ohsaki, Jean-Marc Talbot, Sophie Tison, and Yves Roos. Mono-
tone AC-tree automata. In Geoff Sutcliffe and Andrei Voronkov, editors,
Proc. of LPAR 2005, volume 3835 of Lecture Notes in Computer Science,
pages 337-351. Springer, 2005.

Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, Proc. of CADE-11, volume
607 of Lecture Notes in Computer Science, pages 748-752. Springer, 1992.

Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):
570-581, 1966. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321356.
321364.

Gordon Plotkin. Building-in equational theories. Machine Intelligence, 7:
73-90, 1972.

David M. Rusinoff. A mechanically checked proof of IEEE compliance of
the floating point multiplication, division and square root algorithms of
the AMD-K7™ processor. LMS Journal of Computation and Mathemat-
ics, 1:148-200, 1998.

Ralf Sasse and José Meseguer. Java+ITP: A verification tool based on
hoare logic and algebraic semantics. FElectronic Notes Theoretical Com-
puter Science, 176(4):29-46, 2007.

Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Numerical docu-
ment queries. In Proc. of PODS, pages 155-166. ACM Press, 2003.

Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1-12, 1984.

Giora Slutzki. Alternating tree automata. Theoretical Computer Science,
41:305-318, 1985.

Kumar Neeraj Verma. Two-way equational tree automata for AC-like
theories: Decidability and closure properties. In Robert Nieuwenhuis, ed-
itor, Proc. of RTA’03, volume 2706 of Lecture Notes in Computer Science,
pages 180-196. Springer, 2003.

Kumar Neeraj Verma. On closure under complementation of equational
tree automata for theories extending AC. In Moshe Y. Vardi and Andrei
Voronkov, editors, Proc. of LPAR 2003, volume 2850 of Lecture Notes in
Computer Science, pages 183-197. Springer, 2003.

Kumar Neeraj Verma and Jean Goubault-Larrecq. Alternating two-way
AC-tree automata. Information and Computation, 205(6):817-869, 2007.

Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the
complexity of equational horn clauses. In Robert Nieuwenhuis, editor,
Proc. of CADE-20, volume 3632 of Lecture Notes in Computer Science,
pages 337-352. Springer, 2005.

250

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Patrick Viry. Equational rules for rewriting logic. Theoretical Computer
Science, 285(2):487-517, 2002.

Christoph Walther. Many-sorted unification. Journal of the ACM, 35
(1):1-17, 1988. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/42267.
45071.

Christoph Weidenbach. Unification in sort theories and its applications.
Annals of Mathematics and Artificial Intelligence, 18:261-293, 1996.

Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600
of Lecture Notes in Computer Science, 2006. Springer.

Isao Yagi, Yoshiaki Takata, and Hiroyuki Seki. A static analysis using tree
automata for XML access control. In Doron Peled and Yih-Kuen Tsay,
editors, Proc. of ATVA 2005, volume 3707 of Lecture Notes in Computer
Science, pages 234-247. Springer, 2005.

Hans Zantema. Termination of context-sensitive rewriting. In Hubert
Comon, editor, Proc. of RTA-97, volume 1232 of Lecture Notes in Com-
puter Science, pages 172—186. Springer, 1997.

Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mech-
anizable induction principle for equational specifications. In Ewing Lusk
and Ross Overbeek, editors, Proc. of CADE-9, volume 310 of Lecture
Notes in Computer Science, pages 162-181. Springer, 1988.

251

Author’s Biography

Joe Hendrix was born in Houston, Texas in 1978. He graduated from the Uni-
versity of Texas with bachelor degrees in Plan IT Honors and Computer Science
in December 2000. After working for various companies, he enrolled in the Ph.D.
program at the University of Illinois in 2002. During his six years at Illinois,
he has had internships as NASA Ames and Microsoft Research, and a visiting

position in Amagasaki, Japan.

252

