Difference between revisions of "Applications"

From The Maude System
Jump to: navigation, search
 
Line 19: Line 19:
 
* Logical framework applications to prototype logics and build and interoperate theorem provers: Barendregt’s lambda-cube ([https://link.springer.com/chapter/10.1007/978-3-540-39993-3_16 SM04]), linear logic ([https://link.springer.com/chapter/10.1007/978-94-017-0464-9_1 MM02]), modal logics ([https://link.springer.com/chapter/10.1007/978-3-319-99840-4_7 OPR18]), computational algebraic geometry, Maude’s Church-Rosser Checker and Inductive ([https://www.sciencedirect.com/science/article/pii/S1567832611001147 DM12], [https://doi.org/10.1016/j.jlamp.2019.100513 DMR20]) and Reachability Logic ([https://link.springer.com/chapter/10.1007/978-3-319-94460-9_12 SSM17]), theorem provers, HOL-to-Nuprl translator ([https://link.springer.com/chapter/10.1007/3-540-44755-5_23 NSM01]), integration of logic and deep-learning, etc.  These applications use meta-level, search, and symbolic features.
 
* Logical framework applications to prototype logics and build and interoperate theorem provers: Barendregt’s lambda-cube ([https://link.springer.com/chapter/10.1007/978-3-540-39993-3_16 SM04]), linear logic ([https://link.springer.com/chapter/10.1007/978-94-017-0464-9_1 MM02]), modal logics ([https://link.springer.com/chapter/10.1007/978-3-319-99840-4_7 OPR18]), computational algebraic geometry, Maude’s Church-Rosser Checker and Inductive ([https://www.sciencedirect.com/science/article/pii/S1567832611001147 DM12], [https://doi.org/10.1016/j.jlamp.2019.100513 DMR20]) and Reachability Logic ([https://link.springer.com/chapter/10.1007/978-3-319-94460-9_12 SSM17]), theorem provers, HOL-to-Nuprl translator ([https://link.springer.com/chapter/10.1007/3-540-44755-5_23 NSM01]), integration of logic and deep-learning, etc.  These applications use meta-level, search, and symbolic features.
  
Please, help us to complete this page. If you know of applications that should be in this list, let us know about it.
+
Please, help us to complete this page. If you know of applications that should be in this list, email us to duran(at)lcc(dot)uma(dot)es.

Latest revision as of 16:08, 22 December 2020

Maude and its formal tools have been used in many pioneering applications:

  • Browser security: uncovering 12 kinds of unknown attacks on Internet Explorer (CMSWW07), and design and verification of the secure-by-construction Illinois’s IBOS browser (SKMT12, SMR20).
  • Cryptographic protocol analysis: Maude-NPA has analyzed many protocols and crypto-APIs modulo algebraic properties, like Yubikey&YubiHSM (GAEMM18), IBM’s CCA (GSEMM14), and PCKS#11 (GSEMM15), using unification and symbolic reachability. Tamarin at ETH, resp. AKISS at INRIA, use Maude’s unification to analyze protocols like 5G-AKA (DC18), resp. RFID (GK17).
  • Cloud transaction system formalization and analysis: Cassandra (LNGRG15), Google’s Megastore (GO14), P-Store (O17), etc. (Betal18), using SMC.
  • Analysis of real-time and cyber-physical systems: CASH scheduling (OC06), sensor (OT09) and MANET (LOM16) networks, timed security protocols (AEMMS20), PALS transformation from synchronous to correct distributed real-time systems (MO12, BMO12) enables model checking of complex models such as AADL and Ptolemy models (BOM14) and distributed control of airplane maneuvers (BKMO12).
  • Models of cell signaling used to explain drug effects, identify pathogen attack surfaces, etc. (Pathway Logic)
  • Specification and analysis of models of Concurrency: Petri Nets (SMO01), CCS, pi-Calculus (S00), Actors (M93), REO (MSA), Orc (AM15).
  • Logical framework applications to prototype logics and build and interoperate theorem provers: Barendregt’s lambda-cube (SM04), linear logic (MM02), modal logics (OPR18), computational algebraic geometry, Maude’s Church-Rosser Checker and Inductive (DM12, DMR20) and Reachability Logic (SSM17), theorem provers, HOL-to-Nuprl translator (NSM01), integration of logic and deep-learning, etc. These applications use meta-level, search, and symbolic features.

Please, help us to complete this page. If you know of applications that should be in this list, email us to duran(at)lcc(dot)uma(dot)es.