Specifying, programming, and verifying in Maude

Narciso Martí-Oliet

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid
narciso@sip.ucm.es

Río Cuarto, Argentina, RIO 2007
Summary

Maude is a high-level language and high-performance system supporting both equational and rewriting computation for a wide range of applications. In this course we provide an introduction to equational specification and rule-based programming in Maude 2, showing the difference between equations and rules. We use typical data structures (stacks, queues, lists, binary trees) and well-known mathematical games and puzzles to illustrate the features and expressive power of Maude, emphasizing the full generality with which membership equational logic and rewriting logic are supported.
Indeed, the expressive version of equational logic in which Maude is based, namely membership equational logic, allows the faithful specification of types (like sorted lists or search trees) whose data are defined not only by means of constructors, but also by the satisfaction of additional properties. Moreover, exploiting the fact that rewriting logic is reflective, a key distinguishing feature of Maude is its systematic and efficient use of reflection, a feature that makes Maude remarkably extensible and powerful, and that allows many advanced metaprogramming and metalanguage applications.
http://maude.cs.uiuc.edu

- Maude is a high-level language and high-performance system.
- It supports both equational and rewriting logic computation.
- Membership equational logic improves order-sorted algebra.
- Rewriting logic is a logic of concurrent change.
- It is a flexible and general semantic framework for giving semantics to a wide range of languages and models of concurrency.
- It is also a good logical framework, i.e., a metalogic in which many other logics can be naturally represented and implemented.
- Moreover, rewriting logic is reflective.
- This makes possible many advanced metaprogramming and metalanguage applications.
Contents

1 Introduction
2 Functional modules
 - Many-sorted equational specifications
 - Order-sorted equational specifications
 - Equational attributes
 - Membership equational logic specifications
3 Parameterization
 - Theories and views
 - Data structures
4 System modules
 - Rewriting logic
 - Playing with Maude
 - Lambda calculus
Contents

5 Full Maude
 • Object-oriented systems

6 Search and abstraction

7 Model checking
 • LTL and Kripke structures
 • Mutual exclusion
 • Crossing the river

8 Reflection
 • Maude’s metalevel
 • Descent functions
 • Internal strategies

9 Metaprogramming
 • Order-sorted unification
 • Instrumentation
Many-sorted equational specifications

- Algebraic specifications are used to declare different kinds of data together with the operations that act upon them.
- It is useful to distinguish two kinds of operations:
 - constructors, used to construct or generate the data, and
 - the remaining operations, which in turn can also be classified as modifiers or observers.
- The behavior of operations is described by means of (possibly conditional) equations.
- We start with the simplest many-sorted equational specifications and incrementally add more sophisticated features.
Signatures

- The first thing a specification needs to declare are the types (or sorts) of the data being defined and the corresponding operations.
- A many-sorted signature \((S, \Sigma)\) consists of
 - a sort set \(S\), and
 - an \(S^* \times S\)-sorted family

\[
\Sigma = \{\Sigma_{\bar{s}, s} \mid \bar{s} \in S^*, s \in S\}
\]

of sets of operation symbols.
- When \(f \in \Sigma_{\bar{s}, s}\), we write \(f : \bar{s} \to s\) and say that \(f\) has rank \(\langle \bar{s}, s \rangle\), arity (or argument sorts) \(\bar{s}\), and coarity (or value sort, or range sort) \(s\).
- The symbol \(\epsilon\) denotes the empty sequence in \(S^*\).
Terms

- With the declared operations we can construct terms to denote the data being specified.
- Terms are typed and can have variables.
- Given a many-sorted signature \((S, \Sigma)\) and an \(S\)-sorted family \(X = \{X_s \mid s \in S\}\) of variables, the \(S\)-sorted set of terms

\[
T_\Sigma(X) = \{T_{\Sigma,s}(X) \mid s \in S\}
\]

is inductively defined by the following conditions:

1. \(X_s \subseteq T_{\Sigma,s}(X)\) for \(s \in S\);
2. \(\Sigma_{\varepsilon,s} \subseteq T_{\Sigma,s}(X)\) for \(s \in S\);
3. If \(f \in \Sigma_{\bar{s},s}\) and \(t_i \in T_{\Sigma,s_i}(X)\) \((i = 1, \ldots, n)\), where \(\bar{s} = s_1 \ldots s_n \neq \varepsilon\), then \(f(t_1, \ldots, t_n) \in T_{\Sigma,s}(X)\).
Equations

- A Σ-equation is an expression

$$(\bar{x} : \bar{s}) l = r$$

where
- $\bar{x} : \bar{s}$ is a (finite) set of variables, and
- l and r are terms in $T_{\Sigma, s}(\bar{x} : \bar{s})$ for some sort s.

- A conditional Σ-equation is an expression

$$(\bar{x} : \bar{s}) l = r \text{ if } u_1 = v_1 \land \ldots \land u_n = v_n$$

where $(\bar{x} : \bar{s}) l = r$ and $(\bar{x} : \bar{s}) u_i = v_i \ (i = 1, \ldots, n)$ are Σ-equations.

- A many-sorted specification (S, Σ, E) consists of:
 - a signature (S, Σ), and
 - a set E of (conditional) Σ-equations.
Semantics

- A many-sorted \((S, \Sigma)\)-algebra \(A\) consists of:
 - a carrier set \(A_s\) for each sort \(s \in S\), and
 - a function \(A^s_f : A^\bar{s} \to A_s\) for each operation symbol \(f \in \Sigma^\bar{s}, s\).
- The meaning \([t]_A\) of a term \(t\) in an algebra \(A\) is inductively defined.
- An algebra \(A\) satisfies an equation \((\bar{x} : \bar{s}) \cdot l = r\) when both terms have the same meaning: \([l]_A = [r]_A\).
- An algebra \(A\) satisfies a conditional equation
 \[(\bar{x} : \bar{s}) \cdot l = r \quad \text{if} \quad u_1 = v_1 \land \ldots \land u_n = v_n\]
 when satisfaction of all the conditions \((\bar{x} : \bar{s}) \cdot u_i = v_i\) \((i = 1, \ldots, n)\)
 implies satisfaction of \((\bar{x} : \bar{s}) \cdot l = r\)
Semantics

- The loose semantics of a many-sorted specification \((S, \Sigma, E)\) is defined as the set of all \((S, \Sigma)\)-algebras that satisfy all the (conditional) equations in \(E\).
- But we are usually interested in the so-called initial semantics given by a particular algebra in this class (up to isomorphism).
- A concrete representation \(T_{\Sigma,E}\) of such an initial algebra is obtained by imposing a congruence relation on the term algebra \(T_{\Sigma}\) whose carrier sets are the sets of ground terms, that is, terms without variables.
- Two terms are identified by this congruence if and only if they have the same meaning in all algebras in the loose semantics.
Maude functional modules

fmod BOOLEAN is
 sort Bool .

 op true : -> Bool [ctor] .
 op false : -> Bool [ctor] .

 op not_ : Bool -> Bool .
 op _and_ : Bool Bool -> Bool .
 op _or_ : Bool Bool -> Bool .

 var A : Bool .

 eq not true = false .
 eq not false = true .
 eq true and A = A .
 eq false and A = false .
 eq true or A = true .
 eq false or A = A .
endfm
Matching

- Given an S-sorted family of variables X for a signature (S, Σ), a (ground) substitution is a sort-preserving map
 \[
 \sigma : X \rightarrow T_\Sigma
 \]
- Such a map extends uniquely to terms
 \[
 \sigma : T_\Sigma(X) \rightarrow T_\Sigma
 \]
- Given a term $t \in T_\Sigma(X)$, the pattern, and a subject ground term $u \in T_\Sigma$, we say that t matches u if there is a substitution σ such that $\sigma(t) \equiv u$, that is, $\sigma(t)$ and u are syntactically equal terms.
Rewriting and equational simplification

- In a Σ-equation $\langle \bar{x} : \bar{s} \rangle \ l = r$ all variables in the righthand side r must appear among the variables of the lefthand side l.
- A term t rewrites to a term t' using such an equation if
 1. there is a subterm $t|_p$ of t at a given position p of t such that l matches $t|_p$ via a substitution σ, and
 2. t' is obtained from t by replacing the subterm $t|_p \equiv \sigma(l)$ with the term $\sigma(r)$.
- We denote this step of equational simplification by $t \rightarrow_E t'$.
Confluence and termination

- A set of equations E is **confluent** (or **Church-Rosser**) when any two rewritings of a term can always be unified by further rewriting: if $t \rightarrow^*_{E} t_1$ and $t \rightarrow^*_{E} t_2$, then there exists a term t' such that $t_1 \rightarrow^*_{E} t'$ and $t_2 \rightarrow^*_{E} t'$.

- A set of equations E is **terminating** when there is no infinite sequence of rewriting steps $t_0 \rightarrow^*_{E} t_1 \rightarrow^*_{E} t_2 \rightarrow^*_{E} \ldots$
Confluence and termination

- If E is both confluent and terminating, a term t can be reduced to a unique **canonical form** $t \downarrow_E$, that is, to a term that can no longer be rewritten.

- Therefore, in order to check **semantic equality** of two terms $t = t'$, it is enough to check that their respective canonical forms are equal, $t \downarrow_E = t' \downarrow_E$, but, since canonical forms cannot be rewritten anymore, the last equality is just syntactic coincidence: $t \downarrow_E \equiv t' \downarrow_E$.

- Functional modules in Maude are assumed to be confluent and terminating, and their operational semantics is **equational simplification**, that is, rewriting of terms until a canonical form is obtained.
Natural numbers

```coq
fmod UNARY-NAT is
  sort Nat .
  
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  op _+_: Nat Nat -> Nat .

  vars N M : Nat .

  eq 0 + N = N .
  eq s(M) + N = s(M + N) .

endfm

• Can we add the equation
  
  eq M + N = N + M .

  expressing commutativity of addition?
```
Modularization

- **protecting M**.
 Importing a module M into M' in protecting mode intuitively means that no junk and no confusion are added to M when we include it in M'.

- **extending M**.
 The idea is to allow junk, but to rule out confusion.

- **including M**.
 No requirements are made in an including importation: there can now be junk and/or confusion.

```plaintext
fmod NAT3 is
  including UNARY-NAT .
  var N : Nat .
  eq s(s(s(N))) = N .
endfm
```
Operations on natural numbers

fmod NAT+OPS is
 protecting BOOLEAN .
 protecting UNARY-NAT .

 ops _*-_ -__: Nat Nat -> Nat .
 ops _<=$>$_$: Nat Nat -> Bool .

 vars N M : Nat .
 eq 0 * N = 0 .
 eq s(M) * N = (M * N) + N .
 eq 0 - N = 0 .
 eq s(M) - 0 = s(M) .
 eq s(M) - s(N) = M - N .
 eq 0 <= N = true .
 eq s(M) <= 0 = false .
 eq s(M) <= s(N) = M <= N .
 eq M > N = not (M <= N) .
endfm
Conditional equations

- **Equational conditions** in conditional equations are made up of individual equations \(t = t' \).

- A condition can be either a single equation or a conjunction of equations using the binary conjunction connective \(\land \) which is assumed associative.

- Furthermore, the concrete syntax of equations in conditions has three variants:
 - ordinary equations \(t = t' \),
 - matching equations \(t := t' \), and
 - abbreviated Boolean equations of the form \(t \), with \(t \) a term of sort \(\text{Bool} \), abbreviating the equation \(t = \text{true} \).

- The Boolean terms appearing most often in abbreviated Boolean equations are terms using the built-in equality \(_\equiv_ \) and inequality \(_=/=_ \) predicates (from predefined module \(\text{BOOL} \)).
Functional modules Many-sorted equational specifications

Integers

fmod INTEGERS is
 sort Int .

 op 0 : -> Int [ctor] .
 op s : Int -> Int [ctor] .

 op _+_: Int Int -> Int .
 op _-_ : Int Int -> Int .
 op _*_ : Int Int -> Int .
 op _-_ : Int -> Int .
 op _<=_ : Int Int -> Bool .

 vars N M : Int .

 eq s(p(N)) = N .
 eq p(s(N)) = N .
Integers

\begin{eqnarray*}
\text{eq } 0 + N &=& N . \\
\text{eq } s(M) + N &=& s(M + N) . \\
\text{eq } p(M) + N &=& p(M + N) . \\
\text{eq } N - 0 &=& N . \\
\text{eq } M - s(N) &=& p(M - N) . \\
\text{eq } M - p(N) &=& s(M - N) . \\
\text{eq } -N &=& 0 - N . \\
\text{eq } 0 \times N &=& 0 . \\
\text{eq } s(M) \times N &=& (M \times N) + N . \\
\text{eq } p(M) \times N &=& (M \times N) - N . \\
\end{eqnarray*}

\begin{eqnarray*}
\text{eq } s(M) &\leq& N = M \leq p(N) . \\
\text{eq } p(M) &\leq& N = M \leq s(N) . \\
\text{eq } 0 &\leq& 0 = \text{true} . \\
\text{eq } 0 &\leq& p(0) = \text{false} . \\
\text{ceq } 0 &\leq& s(M) = \text{true if } 0 \leq M . \\
\text{ceq } 0 &\leq& p(M) = \text{false if not}(0 \leq M) . \\
\text{endfm}
\end{eqnarray*}
Cardinality of finite sets

fmod NAT< is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s_ : Nat -> Nat [ctor] .
 op _<_ : Nat Nat -> Bool .

 vars N N' : Nat .

 eq N < 0 = false .
 eq 0 < s N = true .
 eq s N < s N' = N < N' .
endfm

fmod CARDINAL is
 protecting NAT< .
 sort Set .
 op emptySet : -> Set [ctor] .
 op _-_ : Nat Set -> Set [ctor] . *** add element
 op # : Set -> Nat . *** count elements
Cardinality of finite sets

vars N N' : Nat .
var S : Set .

*** idempotency
*** commutativity

eq #(emptySet) = 0 .
eq #(N . emptySet) = s 0 .
eq #(0 . s N . emptySet) = s s 0 .
eq #(s N . s N' . emptySet) = #(N . N' . emptySet) .

ceq #(N . N' . S) = s s #(S)
 if #(N . N' . emptySet) = s s 0
 /
 #(N . S) = s #(S)
 /
 #(N' . S) = s #(S) .

dfm
Order-sorted equational specifications

- There are operations that are not defined for some values, like division on natural numbers.
- We can often avoid the possibility of considering partial functions by extending many-sorted equational logic to order-sorted equational logic.
- We can define subsorts corresponding to the domain of definition of a function, whenever such subsorts can be specified by means of constructors.
- An order-sorted signature adds a partial order relation to the set of sorts S, such that $s \leq s'$ is interpreted semantically by the subset inclusion $A_s \subseteq A_{s'}$ between the corresponding carrier sets in the algebras.
- Moreover, operations can be overloaded:
 - subsort overloading: addition both on natural numbers and on integers,
 - ad-hoc overloading: the same symbol can be used in unrelated sorts.
Preregularity and sort-decreasingness

- A term can have several different sorts.
- **Preregularity** requires each term to have a **least sort** that can be assigned to it.
- Maude assumes that modules are preregular, and generates warnings when a module is loaded if the property does not hold.
- Another important property is **sort-decreasingness**.
- Assuming E is confluent and terminating, the canonical form $t \downarrow_E$ of a term t by the equations E should have the **least sort possible** among the sorts of all the terms equivalent to it by the equations E; and it should be possible to compute this least sort from the canonical form itself, using only the operator declarations.
- By a **Church-Rosser and terminating theory** (Σ, E) we precisely mean one that is confluent, terminating, and sort-decreasing.
Natural numbers division

fmod NAT-DIV is
 sorts Nat NzNat .
 subsort NzNat < Nat .

 op 0 : -> Nat [ctor] .
 op s : Nat -> NzNat [ctor] .
 op _+_ : Nat Nat -> Nat .
 op _*_ : Nat Nat -> Nat .
 op ___- : Nat Nat -> Nat .
 op _<=_: Nat Nat -> Bool .
 op _>_ : Nat Nat -> Bool .
 op _div_ : Nat NzNat -> Nat .
 op _mod_ : Nat NzNat -> Nat .

 vars M N : Nat .
 var P : NzNat .
Natural numbers division

\[
\text{eq } 0 + N = N . \\
\text{eq } s(M) + N = s(M + N) . \\
\text{eq } 0 \times N = 0 . \\
\text{eq } s(M) \times N = (M \times N) + N . \\
\text{eq } 0 - N = 0 . \\
\text{eq } s(M) - 0 = s(M) . \\
\text{eq } s(M) - s(N) = M - N . \\
\text{eq } 0 <= N = \text{true} . \\
\text{eq } s(M) <= 0 = \text{false} . \\
\text{eq } s(M) <= s(N) = M <= N . \\
\text{eq } N > M = \text{not } (N <= M) . \\
\text{ceq } N \text{ div } P = 0 \text{ if } P > N . \\
\text{ceq } N \text{ div } P = s((N - P) \text{ div } P) \text{ if } P <= N . \\
\text{ceq } N \text{ mod } P = N \text{ if } P > N . \\
\text{ceq } N \text{ mod } P = (N - P) \text{ mod } P \text{ if } P <= N . \\
\text{endfm}
\]
Predefined modules
Lists of natural numbers

fmod NAT-LIST-CONS is
 protecting NAT .

 sorts NeList List .
 subsort NeList < List .

 op [] : -> List [ctor] . *** empty list
 op _:_ : Nat List -> NeList [ctor] . *** cons
 op tail : NeList -> List .
 op head : NeList -> Nat .
 op _++_ : List List -> List . *** concatenation
 op length : List -> Nat .
 op reverse : List -> List .
 op take_from_ : Nat List -> List .
 op throw_from_ : Nat List -> List .

 vars N M : Nat .
 vars L L’ : List .
Lists of natural numbers

eq tail(N : L) = L .
eq head(N : L) = N .
eq [] ++ L = L .
eq (N : L) ++ L’ = N : (L ++ L’) .
eq length([]) = 0 .
eq length(N : L) = 1 + length(L) .
eq reverse([]) = [] .
eq reverse(N : L) = reverse(L) ++ (N : []) .
eq take 0 from L = [] .
eq take N from [] = [] .
eq take s(N) from (M : L) = M : take N from L .
eq throw 0 from L = L .
eq throw N from [] = [] .
eq throw s(N) from (M : L) = throw N from L .
endfm
Equational attributes

- **Equational attributes** are a means of declaring certain kinds of equational axioms in a way that allows Maude to use these equations efficiently in a built-in way.

- Currently Maude supports the following equational attributes:
 - `assoc` (**associativity**),
 - `comm` (**commutativity**),
 - `idem` (**idempotency**),
 - `id: ⟨Term⟩` (**identity**, with the corresponding term for the identity element),
 - `left id: ⟨Term⟩` (**left identity**, with the corresponding term for the left identity element), and
 - `right id: ⟨Term⟩` (**right identity**, with the corresponding term for the right identity element).

- These attributes are only allowed for **binary** operators satisfying some appropriate requirements that depend on the attributes.
Matching and simplification modulo

- In the Maude implementation, rewriting modulo A is accomplished by using a matching modulo A algorithm.
- More precisely, given an equational theory A, a term t (corresponding to the lefthand side of an equation) and a subject term u, we say that t matches u modulo A if there is a substitution σ such that $\sigma(t) =_A u$, that is, $\sigma(t)$ and u are equal modulo the equational theory A.
- Given an equational theory $A = \bigcup_i A_{f_i}$ corresponding to all the attributes declared in different binary operators, Maude synthesizes a combined matching algorithm for the theory A, and does equational simplification modulo the axioms A.
A hierarchy of data types

- **nonempty binary trees**, with elements only in their leaves, built with a free binary constructor, that is, a constructor with no equational axioms,
- **nonempty lists**, built with an associative constructor,
- **lists**, built with an associative constructor and an identity,
- **multisets** (or bags), built with an associative and commutative constructor and an identity,
- **sets**, built with an associative, commutative, and idempotent constructor and an identity.
Basic natural numbers

fmod BASIC-NAT is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .
 op _+_: Nat Nat -> Nat .
 op max : Nat Nat -> Nat .

 vars N M : Nat .
 eq 0 + N = N .
 eq s(M) + N = s(M + N) .
 eq max(0, M) = M .
 eq max(N, 0) = N .
 eq max(s(N), s(M)) = s(max(N, M)) .
endfm
Nonempty binary trees

fmod NAT-TREES is
 protecting BASIC-NAT .

sorts Tree .
subsort Nat < Tree .
op __ : Tree Tree -> Tree [ctor] .
op depth : Tree -> Nat .
op width : Tree -> Nat .

var N : Nat .
vars T T' : Tree .

eq depth(N) = s(0) .
eq depth(T T') = s(max(depth(T), depth(T'))) .
eq width(N) = s(0) .
eq width(T T') = width(T) + width(T') .
endfm
Nonempty binary trees

- An expression such as $s(\emptyset) \ 0 \ s(\emptyset)$ is ambiguous because it can be parsed in two different ways, and parentheses are necessary to disambiguate $(s(\emptyset) \ 0) \ s(\emptyset)$ from $s(\emptyset) \ (0 \ s(\emptyset))$.
- These two different terms correspond to the following two different trees:
Nonempty lists

fmod NAT-NE-LISTS is
 protecting BASIC-NAT .

 sort NeList .
 subsort Nat < NeList .
 op length : NeList -> Nat .
 op reverse : NeList -> NeList .

 var N : Nat .
 var L L' : NeList .

 eq length(N) = s(0) .
 eq length(L L') = length(L) + length(L') .
 eq reverse(N) = N .
 eq reverse(L L') = reverse(L') reverse(L) .
endfm
Lists

fmod NAT-LISTS is
 protect BACIC-NAT .

sorts NeList List .
subsorts Nat < NeList < List .
op nil : -> List [ctor] .
op tail : NeList -> List .
op head : NeList -> Nat .
op length : List -> Nat .
op reverse : List -> List .

var N : Nat .
var L : List .

eq tail(N L) = L .
eq head(N L) = N .
Lists

\[
\begin{align*}
eq \text{length}(\text{nil}) &= 0 . \\
eq \text{length}(N \; L) &= s(\emptyset) + \text{length}(L) . \\
eq \text{reverse}(\text{nil}) &= \text{nil} . \\
eq \text{reverse}(N \; L) &= \text{reverse}(L) \; N . \\
\end{align*}
\]
endfm

- The alternative equation \(\text{length}(L \; L') = \text{length}(L) + \text{length}(L') \)
 (with \(L \) and \(L' \) variables of sort List) causes problems of
 nontermination.
- Consider the instantiation with \(L' \mapsto \text{nil} \) that gives
 \[
 \text{length}(L \; \text{nil}) = \text{length}(L) + \text{length}(\text{nil})
 = \text{length}(L \; \text{nil}) + \text{length}(\text{nil})
 = (\text{length}(L) + \text{length}(\text{nil})) + \text{length}(\text{nil})
 = \ldots
 \]
 because of the identification \(L = L \; \text{nil} \).
Multisets

fmod NAT-MSETS is
 protecting BASIC-NAT.
 sort Mset.
 subsorts Nat < Mset.
 op empty-mset : -> Mset [ctor].
 op __ : Mset Mset -> Mset [ctor assoc comm id: empty-mset].
 op size : Mset -> Nat.
 op mult : Nat Mset -> Nat.
 op __in__ : Nat Mset -> Bool.

 vars N N' : Nat.
 var S : Mset.

 eq size(empty-mset) = 0.
 eq size(N S) = s(0) + size(S).
 eq mult(N, empty-mset) = 0.
 eq mult(N, N S) = s(0) + mult(N, S).
 ceq mult(N, N' S) = mult(N, S) if N /= N'.
 eq N in S = (mult(N, S) /= 0).
endfm
Multisets with otherwise

fmod NAT-MSETS-OWISE is
 protecting BASIC-NAT .
sort Mset .
subsorts Nat < Mset .
 op size : Mset -> Nat .
 op mult : Nat Mset -> Nat .
 op __in__ : Nat Mset -> Bool .

 vars N N' : Nat .
 var S : Mset .

 eq size(empty-mset) = 0 .
 eq size(N S) = s(0) + size(S) .
 eq N in N S = true .
 eq N in S = false [owise] .
 eq mult(N, N S) = s(0) + mult(N, S) .
 eq mult(N, S) = 0 [owise] .
endfm
Sets

fmod NAT-SETS is
 protecting BASIC-NAT .
 sort Set .
 subsorts Nat < Set .
 op empty-set : -> Set [ctor] .
 op __ : Set Set -> Set [ctor assoc comm id: empty-set] .

 vars N N' : Nat .
 vars S S' : Set .

 eq N N = N .

The idempotency equation is stated only for singleton sets, because stating it for arbitrary sets in the form $S \cdot S = S$ would cause nontermination due to the identity attribute:

$$\text{empty-set} = \text{empty-set} \text{empty-set} \rightarrow \text{empty-set} ...$$
Sets

\begin{verbatim}

op _in_ : Nat Set -> Bool .
op delete : Nat Set -> Set .
op card : Set -> Nat .

eq N in empty-set = false .
eq N in (N’ S) = (N == N’) or (N in S) .
eq delete(N, empty-set) = empty-set .
eq delete(N, N S) = delete(N, S) .
ceq delete(N, N’ S) = N’ delete(N, S) if N /= N’ .
eq card(empty-set) = 0 .
eq card(N S) = s(0) + card(delete(N,S)) .
endfm

\end{verbatim}

- The equations for \texttt{delete} and \texttt{card} make sure that further occurrences of \texttt{N} in \texttt{S} on the righthand side are also deleted or not counted, respectively, because we cannot rely on the order in which equations are applied.
- The operations \texttt{_in_} and \texttt{delete} can also be defined with \texttt{owise}.
Membership equational logic specifications

- In order-sorted equational specifications, subsorts must be defined by means of constructors, but it is not possible to have a subsort of sorted lists, for example, defined by a property over lists.
- There is also a different problem of a more syntactic character. In the example of natural numbers division, the term
 \[s(s(s(0))) \div (s(s(0)) - s(0)) \]
is not even well formed.
- The subterm \(s(s(0)) - s(0) \) has least sort \(\text{Nat} \), while the \(\text{div} \) operation expects its second argument to be of sort \(\text{ NzNat } < \text{Nat} \).
- This is too restrictive and makes most (really) order-sorted specifications useless, unless there is a mechanism that gives at parsing time the benefit of the doubt to this kind of terms.
- Membership equational logic solves both problems, by introducing sorts as predicates and allowing subsort definition by means of conditions involving equations and/or sort predicates.
Membership equational logic

- A signature in membership equational logic is a triple $\Omega = (K, \Sigma, S)$ where K is a set of kinds, (K, Σ) is a many-kinded signature, and $S = \{S_k\}_{k \in K}$ is a K-kinded set of sorts.
- An Ω-algebra is then a (K, Σ)-algebra A together with the assignment to each sort $s \in S_k$ of a subset $A_s \subseteq A_k$.
- Atomic formulas are either Σ-equations, or membership assertions of the form $t : s$, where the term t has kind k and $s \in S_k$.
- General sentences are Horn clauses on these atomic formulas, quantified by finite sets of K-kinded variables.

$$\forall X \ (t = t' \text{ if } \bigwedge_i u_i = v_i \land \bigwedge_j w_j : s_j)$$

$$\forall X \ (t : s \text{ if } \bigwedge_i u_i = v_i \land \bigwedge_j w_j : s_j).$$
Maude functional modules are membership equational specifications and their semantics is given by the corresponding initial membership algebra in the class of algebras satisfying the specification.

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.

Kinds are not declared explicitly, and correspond to the connected components of the subsort relation.

The kind corresponding to a sort s is denoted $[s]$.

If $\text{NzNat} < \text{Nat}$, then $[\text{NzNat}] = [\text{Nat}]$.
Membership equational logic in Maude

• An operator declaration like

 \[
 \text{op } _\text{div}_\text{--} : \text{Nat } \text{NzNat } \to \text{Nat} .
 \]

 can be understood as a declaration at the kind level

 \[
 \text{op } _\text{div}_\text{--} : [\text{Nat}] [\text{Nat}] \to [\text{Nat}] .
 \]

 together with the conditional membership axiom

 \[
 \text{cmb } N \text{ div } M : \text{Nat } \text{if } N : \text{Nat } \text{and } M : \text{NzNat} .
 \]

• A subsort declaration \(\text{NzNat} < \text{Nat} \) can be understood as the conditional membership axiom

 \[
 \text{cmb } N : \text{Nat } \text{if } N : \text{NzNat} .
 \]
Multiples of 3

fmod 3*NAT is
 sorts Zero Nat .
 subsort Zero < Nat .

 op 0 : -> Zero [ctor] .
 op s_ : Nat -> Nat [ctor] .

 sort 3*Nat .
 subsorts Zero < 3*Nat < Nat .

 var M3 : 3*Nat .

 mb (s s s M3) : 3*Nat .
endfm
Palindromes

fmod PALINDROME is
 protecting QID .
 sorts Word Pal .
 subsort Qid < Pal < Word .

 op nil : -> Pal [ctor] .

 var I : Qid .
 var P : Pal .

 mb I P I : Pal .
 endfm
Sorted lists

fmod NAT-SORTED-LIST is
 protecting NAT-LIST-CONS .

sorts SortedList NeSortedList .
subsort NeSortedList < SortedList NeList < List .

op insertion-sort : List -> SortedList .
op insert-list : SortedList Nat -> SortedList .

op mergesort : List -> SortedList .

op quicksort : List -> SortedList .
op leq-elems : List Nat -> List .
op gr-elems : List Nat -> List .

vars N M : Nat .
vars L L' : List .
vars OL OL' : SortedList .
var NEOL : NeSortedList .
Sorted lists

\[
\begin{align*}
\text{mb} \ [\] & : \text{SortedList} . \\
\text{mb} \ N : \ [\] & : \text{NeSortedList} . \\
\text{cmb} \ N : \text{NEOL} & : \text{NeSortedList} \text{ if } N <= \text{head}(ext{NEOL}) .
\end{align*}
\]

\[
\begin{align*}
\text{eq} \ \text{insertion-sort}([[]]) & = [[]] . \\
\text{eq} \ \text{insertion-sort}(N : L) & = \text{insert-list}(ext{insertion-sort}(L), N) .
\end{align*}
\]

\[
\begin{align*}
\text{eq} \ \text{insert-list}([[]], M) & = M : [[]] . \\
\text{ceq} \ \text{insert-list}(N : \text{OL}, M) & = M : N : \text{OL} \text{ if } M <= N . \\
\text{ceq} \ \text{insert-list}(N : \text{OL}, M) & = N : \text{insert-list}(\text{OL}, M) \text{ if } M > N .
\end{align*}
\]

\[
\begin{align*}
\text{eq} \ \text{mergesort}([[]]) & = [[]] . \\
\text{eq} \ \text{mergesort}(N : []) & = N : [[]] . \\
\text{ceq} \ \text{mergesort}(L) & = \\
& \quad \text{merge}(\text{mergesort}(\text{take} \ (\text{length}(L) \ \text{quo} \ 2) \ \text{from} \ L), \\
& \quad \ \text{mergesort}(\text{throw} \ (\text{length}(L) \ \text{quo} \ 2) \ \text{from} \ L)) \\
& \quad \text{if } \text{length}(L) > \text{s}(0) .
\end{align*}
\]
Sorted lists

\[
\begin{align*}
\text{eq } & \text{merge}(\text{OL}, []) = \text{OL} . \\
\text{ceq } & \text{merge}(N : \text{OL}, M : \text{OL'}) = N : \text{merge}(\text{OL}, M : \text{OL'}) \text{ if } N \leq M . \\
\text{eq } & \text{quicksort}([]) = []. \\
\text{eq } & \text{quicksort}(N : \text{L}) \\
& = \text{quicksort}(\text{leq-elems}(\text{L,N})) ++ (N : \text{quicksort}(\text{gr-elems}(\text{L,N}))) . \\
\text{eq } & \text{leq-elems}([], M) = []. \\
\text{ceq } & \text{leq-elems}(N : \text{L}, M) = N : \text{leq-elems}(\text{L}, M) \text{ if } N \leq M . \\
\text{ceq } & \text{leq-elems}(N : \text{L}, M) = \text{leq-elems}(\text{L}, M) \text{ if } N > M . \\
\text{eq } & \text{gr-elems}([], M) = []. \\
\text{ceq } & \text{gr-elems}(N : \text{L}, M) = \text{gr-elems}(\text{L}, M) \text{ if } N \leq M . \\
\text{ceq } & \text{gr-elems}(N : \text{L}, M) = N : \text{gr-elems}(\text{L}, M) \text{ if } N > M . \\
\end{align*}
\]
endfm
Partial constructors: powerlists

- A powerlist must be of length 2^n for some $n \in \mathbb{N}$.

```latex
fmod POWERLIST is
  protecting NAT .

  sort Pow .

  op [] : Nat -> Pow [ctor] .
  op _|_ : [Pow] [Pow] -> [Pow] [assoc] .
  op len : Pow -> Nat .

  var I : Nat .
  vars P Q : Pow .

  cmb P | Q : Pow if len(P) = len(Q) .

  eq len([I]) = 1 .
  eq len(P | Q) = len(P) + len(Q) .
endfm
```
Partial constructors: paths

\[
\begin{align*}
n_1 & \xrightarrow{a} n_2 & n_1 & \xrightarrow{f} n_2 \\
& b & d & e \\
n_3 & \xrightarrow{c} n_4 & n_4 & \xrightarrow{g} n_6 \\
& n_5
\end{align*}
\]

fmod A-GRAPH is

 sorts Edge Node .
 ops n1 n2 n3 n4 n5 n6 : -> Node [ctor] .
 ops a b c d e f g : -> Edge [ctor] .
 ops source target : Edge -> Node .
 eq source(a) = n1 . eq target(a) = n2 .
 eq source(b) = n1 . eq target(b) = n3 .
 eq source(c) = n3 . eq target(c) = n4 .
 eq source(d) = n4 . eq target(d) = n2 .
 eq source(e) = n2 . eq target(e) = n5 .
 eq source(f) = n2 . eq target(f) = n1 .
 eq source(g) = n2 . eq target(f) = n6 .

endfm
Paths

fmod PATH is
 protecting NAT .
 protecting A-GRAPH .
 sorts Path .
 subsorts Edge < Path .
 op _;_ : [Path] [Path] -> [Path] [assoc] .
 ops source target : Path -> Node .
 op length : Path -> Nat .

 var E : Edge .
 var P : Path .
 cmb (E ; P) : Path if target(E) == source(P) .

 eq source(E ; P) = source(E) .
 eq target(P ; E) = target(E) .
 eq length(E) = 1 .
 eq length(E ; P) = 1 + length(P) .
endfm
Parameterization: theories

- Parameterized datatypes use theories to specify the requirements that the parameter must satisfy.
- A (functional) theory is a membership equational specification whose semantics is loose.
- Equations in a theory are not used for rewriting or equational simplication and, thus, they need not be confluent or terminating.
- Simplest theory only requires existence of a sort:

```fth
fth TRIV is
  sort Elt .
endfth```
Order theories

- Theory requiring a strict total order over a given sort:

```plaintext
fth STOSET is
 protecting BOOL .
 sort Elt .
 op _<_ : Elt Elt -> Bool .
 vars X Y Z : Elt .
 eq X < X = false [nonexec label irreflexive] .
 ceq X < Z = true if X < Y \ Y < Z [nonexec label transitive] .
 ceq X = Y if X < Y \ Y < X [nonexec label antisymmetric] .
 ceq X = Y if X < Y = false \ Y < X = false [nonexec label total] .
endfth
```
Order theories

- Theory requiring a nonstrict total order over a given sort:

```plaintext
fth TOSET is
 including STOSET.
 op _<=_ : Elt Elt -> Bool.
 vars X Y : Elt.
 eq X <= X = true [nonexec].
 ceq X <= Y = true if X < Y [nonexec].
 ceq X = Y if X <= Y \ X < Y = false [nonexec].
endfth
```
Parameterization: views

- Theories are used in a parameterized module expression such as

  \[ \text{fmod } \text{LIST}\{X :: TRIV\} \text{ is } ... \text{ endfm} \]

  to make explicit the requirements over the argument module.

- A view shows how a particular module satisfies a theory, by mapping sorts and operations in the theory to sorts and operations in the target module, in such a way that the induced translations on equations and membership axioms are provable in the module.

- Each view declaration has an associated set of proof obligations, namely, for each axiom in the source theory it should be the case that the axiom’s translation by the view holds true in the target. This may in general require inductive proof techniques.

- In many simple cases it is completely obvious:

  \[ \text{view } \text{Nat from TRIV to NAT is } \]
  \[ \text{sort Elt to Nat . } \]
  \[ \text{endv} \]
Parameterization: instantiation

- A module expression such as \texttt{LIST\{Nat\}} denotes the \textit{instantiation} of the parameterized module \texttt{LIST\{X :: TRIV\}} by means of the previous view \texttt{Nat}.

\[
\begin{align*}
\text{TRIV} & \quad \text{Nat} & \quad \text{NAT} \\
\downarrow & \quad & \downarrow \\
\text{LIST\{X :: TRIV\}} & \quad \longrightarrow & \quad \text{LIST\{Nat\}}
\end{align*}
\]

- Views can also go from theories to theories, meaning an instantiation that is still parameterized.

\begin{verbatim}
view ToSet from TRIV to TOSET is
  sort Elt to Elt .
endv
\end{verbatim}

- It is possible to have more than one view from a theory to a module or to another theory.
Parameterized modules: Simple example

```plaintext
fmod MAYBE{X : TRIV} is
 sort Maybe{X} .
 subsort X$Elt < Maybe{X} .
 op maybe : -> Maybe{X} [ctor] .
endfm
```

- The sort `Maybe{X}` is declared as a supersort of the sort `Elt` coming from the parameter theory.
- We add a “new” constant `maybe` to this sort `Maybe{X}`.
- This technique is useful to declare a partial function as a total function, so that `maybe` represents the undefined value.
Predefined parameterized modules

Parameterization Theories and views

LIST-AND-SET

LIST*    LIST    SET    SET*

NAT     X :: TRIV

Narciso Martí-Oliet (UCM) Specifying, programming, and verifying in Maude Río Cuarto, Argentina, RIO 2007 69 / 270
Stacks

fmod STACK\{X :: TRIV\} is
    sorts NeStack\{X\} Stack\{X\} .
    subsort NeStack\{X\} < Stack\{X\} .
    op empty : -> Stack\{X\} [ctor] .
    op push : X$Elt Stack\{X\} -> NeStack\{X\} [ctor] .
    op pop : NeStack\{X\} -> Stack\{X\} .
    op top : NeStack\{X\} -> X$Elt .
    op isEmpty : Stack\{X\} -> Bool .

    var S : Stack\{X\} .
    var E : X$Elt .

    eq pop(push(E,S)) = S .
    eq top(push(E,S)) = E .
    eq isEmpty(empty) = true .
    eq isEmpty(push(E,S)) = false .
endfm
Stacks

view Int from TRIV to INT is
  sort Elt to Int .
endv

fmod STACK-TEST is
  protecting STACK{Int} .
endfm

Maude> red top(push(4,push(5,empty))) .
result NzNat : 4
Queues

\[
\text{fmod QUEUE\{X :: TRIV\}} \text{ is}
\]
\[
\text{sort NeQueue\{X\} Queue\{X\} .}
\]
\[
\text{subsort NeQueue\{X\} < Queue\{X\} .}
\]
\[
\text{op empty : \to Queue\{X\} [ctor] .}
\]
\[
\text{op enqueue : Queue\{X\} X$Elt \to NeQueue\{X\} [ctor] .}
\]
\[
\text{op dequeue : NeQueue\{X\} \to Queue\{X\} .}
\]
\[
\text{op first : NeQueue\{X\} \to X$Elt .}
\]
\[
\text{op isEmpty : Queue\{X\} \to Bool .}
\]

\[
\text{var Q : Queue\{X\} .}
\]
\[
\text{var E : X$Elt .}
\]

\[
\text{eq dequeue(enqueue(\text{empty},E)) = empty .}
\]
\[
\text{ceq dequeue(enqueue(Q,E)) = enqueue(dequeue(Q),E) if Q \neq empty .}
\]
\[
\text{eq first(enqueue(\text{empty},E)) = E .}
\]
\[
\text{ceq first(enqueue(Q,E)) = first(Q) if Q \neq empty .}
\]
\[
\text{eq isEmpty(\text{empty}) = true .}
\]
\[
\text{eq isEmpty(enqueue(Q,E)) = false .}
\]
\[
\text{endfm}
\]
Priority queues

\[
\text{fmod PRIORITY-QUEUE}\{X::\text{TOSET}\}\ is
\begin{align*}
\text{sort NePQueue}\{X\} & \text{ PQueue}\{X\} . \\
\text{subsort NePQueue}\{X\} & < \text{PQueue}\{X\} . \\
\text{op empty} : & \to \text{PQueue}\{X\} . \\
\text{op insert} : & \text{PQueue}\{X\} \times \text{Elt} \to \text{NePQueue}\{X\} . \\
\text{op deleteMin} : & \text{NePQueue}\{X\} \to \text{PQueue}\{X\} . \\
\text{op findMin} : & \text{NePQueue}\{X\} \to \text{Elt} . \\
\text{op isEmpty} : & \text{PQueue}\{X\} \to \text{Bool} . \\
\end{align*}
\]

\[
\begin{align*}
\text{var PQ} : & \text{PQueue}\{X\} . \\
\text{vars E F} : & \text{Elt} . \\
\end{align*}
\]
Priority queues

```plaintext
eq \text{insert}(\text{insert}(PQ,E),F) = \text{insert}(\text{insert}(PQ,F),E) \ [\text{nonexec}] .
\text{eq} \ \text{deleteMin}(\text{insert}(\text{empty},E)) = \text{empty} .
\text{ceq} \ \text{deleteMin}(\text{insert}(\text{insert}(PQ,E),F)) =
\text{insert}(\text{deleteMin}(\text{insert}(PQ,E)),F)
\text{if} \ \text{findMin}(\text{insert}(PQ,E)) \leq F .
\text{ceq} \ \text{deleteMin}(\text{insert}(\text{insert}(PQ,E),F)) = \text{insert}(PQ,E)
\text{if} \ \text{findMin}(\text{insert}(PQ,E)) > F .
\text{eq} \ \text{findMin}(\text{insert}(\text{empty},E)) = E .
\text{ceq} \ \text{findMin}(\text{insert}(\text{insert}(PQ,E),F)) = \text{findMin}(\text{insert}(PQ,E))
\text{if} \ \text{findMin}(\text{insert}(PQ,E)) \leq F .
\text{ceq} \ \text{findMin}(\text{insert}(\text{insert}(PQ,E),F)) = F
\text{if} \ \text{findMin}(\text{insert}(PQ,E)) > F .
\text{eq} \ \text{isEmpty}(\text{empty}) = \text{true} .
\text{eq} \ \text{isEmpty}(\text{insert}(PQ,E)) = \text{false} .
\text{endfm}
```
Priority queues

view IntAsToSet from TOSET to INT is
    sort Elt to Int .
endv

fmod PRIORITY-QUEUE-TEST is
    protecting PRIORITY-QUEUE{IntAsToSet} .
endfm

Maude> red findMin(insert(insert(empty,4),5)) .
result NzNat: 4
Parameterized lists

\[
\text{fmod LIST-CONS}\{X : \text{TRIV}\} \text{ is}
\]
\[\text{protecting NAT .}\]
\[
\text{sorts NeList}\{X\} \text{ List}\{X\} .
\]
\[\text{subsort NeList}\{X\} < \text{List}\{X\} .\]
\[
\text{op} \ [\] : \rightarrow \text{List}\{X\} \ [\text{ctor}] .
\]
\[\text{op} \ _:\_ : X\text{Elt} \text{ List}\{X\} \rightarrow \text{NeList}\{X\} \ [\text{ctor}] .
\]
\[\text{op} \text{tail} : \text{NeList}\{X\} \rightarrow \text{List}\{X\} .
\]
\[\text{op} \text{head} : \text{NeList}\{X\} \rightarrow X\text{Elt} .\]
\[
\text{var} \ E : X\text{Elt} .
\]
\[\text{var} \ N : \text{Nat} .
\]
\[\text{vars} \ L \ L' : \text{List}\{X\} .\]
\[
\text{eq} \text{tail}(E : L) = L .
\]
\[\text{eq} \text{head}(E : L) = E .\]
Parameterized lists

op _++_ : List{X} List{X} -> List{X} .
op length : List{X} -> Nat .
op reverse : List{X} -> List{X} .
op take_from_ : Nat List{X} -> List{X} .
op throw_from_ : Nat List{X} -> List{X} .

eq [] ++ L = L .
eq (E : L) ++ L’ = E : (L ++ L’) .
eq length([]) = ∅ .
eq length(E : L) = 1 + length(L) .
eq reverse([]) = [] .
eq reverse(E : L) = reverse(L) ++ (E : []) .
eq take 0 from L = [] .
eq take N from [] = [] .
eq take s(N) from (E : L) = E : take N from L .
eq throw 0 from L = L .
eq throw N from [] = [] .
eq throw s(N) from (E : L) = throw N from L .
endfm
Parameterized sorted lists

```
view Toset from TRIV to TOSET is
 sort Elt to Elt .
endv

fmod SORTED-LIST{X :: TOSET} is
 protecting LIST-CONS{Toset}{X} .

 sorts SortedList{X} NeSortedList{X} .
 subsorts NeSortedList{X} < SortedList{X} < List{Toset}{X} .
 subsort NeSortedList{X} < NeList{Toset}{X} .

 vars N M : X$Elt .
 vars L L' : List{Toset}{X} .
 vars OL OL' : SortedList{X} .
 var NEOL : NeSortedList{X} .
```
Parameterized sorted lists

mb [] : SortedList{X} .
mb (N : []) : NeSortedList{X} .
cmb (N : NEOL) : NeSortedList{X} if N <= head(NEOL) .

op insertion-sort : List{Toset}{X} -> SortedList{X} .
op insert-list : SortedList{X} X$Elt -> SortedList{X} .

op mergesort : List{Toset}{X} -> SortedList{X} .
op merge : SortedList{X} SortedList{X} -> SortedList{X} [comm] .

op quicksort : List{Toset}{X} -> SortedList{X} .
op leq-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .
op gr-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .

*** equations as before
endfm
Parameterized sorted lists

view NatAsToSet from TOSET to NAT is
    sort Elt to Nat .
endv

fmod SORTED-LIST-TEST is
    protecting SORTED-LIST{NatAsToSet} .
endfm

Maude> red insertion-sort(5 : 4 : 3 : 2 : 1 : 0 : []) .
result NeSortedList{NatAsToSet}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red mergesort(5 : 3 : 1 : 0 : 2 : 4 : []) .
result NeSortedList{NatAsToSet}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red quicksort(0 : 1 : 2 : 5 : 4 : 3 : []) .
result NeSortedList{NatAsToSet}: 0 : 1 : 2 : 3 : 4 : 5 : []
Parameterized multisets

fmod MULTISET{X :: TRIV} is
    protecting NAT .
    sort Mset{X} .
    subsort X$Elt < Mset{X} .
    op empty : -> Mset{X} [ctor] .
    op _ _ : Mset{X} Mset{X} -> Mset{X} [ctor assoc comm id: empty] .

vars E E’ : X$Elt .
vars S S’ : Mset{X} .

op isEmpty : Mset{X} -> Bool .
eq isEmpty(empty) = true .
eq isEmpty(E S) = false .
op size : Mset{X} -> Nat .
eq size(empty) = 0 .
eq size(E S) = 1 + size(S) .
op mult : X$Elt Mset{X} -> Nat .
eq mult(E, E S) = 1 + mult(E, S) .
eq mult(E, S) = 0 [owise] .
Parameterized multisets

\begin{verbatim}
op isIn : X$Elt Mset{X} -> Bool.
eq isIn(E, E S) = true.
eq isIn(E, S) = false [owise].

op delete : X$Elt Mset{X} -> Mset{X}.
eq delete(E, E S) = delete(E, S).
eq delete(E, S) = S [owise].
op delete1 : X$Elt Mset{X} -> Mset{X}.
eq delete1(E, E S) = S.
eq delete1(E, S) = S [owise].

op intersection : Mset{X} Mset{X} -> Mset{X}.
eq intersection(E S, E S') = E intersection(S, S').
eq intersection(S, S') = empty [owise].
op difference : Mset{X} Mset{X} -> Mset{X}.
eq difference(E S, E S') = difference(S, S').
eq difference(S, S') = S [owise].
endfm
\end{verbatim}
Binary trees

fmod BIN-TREE{X :: TRIV} is
  protecting LIST-CONS{X} .

sorts NeBinTree{X} BinTree{X} .
subsort NeBinTree{X} < BinTree{X} .

op empty : -> BinTree{X} [ctor] .
op _[_]_ : BinTree{X} X$Elt BinTree{X} -> NeBinTree{X} [ctor] .
ops left right : NeBinTree{X} -> BinTree{X} .
op root : NeBinTree{X} -> X$Elt .

var E : X$Elt .
vars L R : BinTree{X} .
vars NEL NER : NeBinTree{X} .

eq left(L [E] R) = L .
eq right(L [E] R) = R .
eq root(L [E] R) = E .
Binary trees

op depth : BinTree\{X\} -> Nat.
ops leaves preorder inorder postorder : BinTree\{X\} -> List\{X\}.

eq depth(empty) = 0.
eq depth(L [E] R) = 1 + \max(depth(L), depth(R)).
eq leaves(empty) = \[].
eq leaves(empty [E] empty) = E : \[].
eq leaves(NEL [E] R) = leaves(NEL) ++ leaves(R).
eq leaves(L [E] NER) = leaves(L) ++ leaves(NER).

eq preorder(empty) = \[].
eq preorder(L [E] R) = E : (preorder(L) ++ preorder(R)).
eq inorder(empty) = \[].
eq inorder(L [E] R) = inorder(L) ++ (E : inorder(R)).
eq postorder(empty) = \[].
eq postorder(L [E] R)
    = postorder(L) ++ (postorder(R) ++ (E : \[])).
Binary search trees

- Search trees, like dictionaries, contain in the nodes pairs formed by a key and its associated contents.
- The search tree structure is with respect to a strict total order on keys, but contents can be over an arbitrary sort.
- When we insert a pair \( \langle K, C \rangle \) and the key \( K \) already appears in the tree in a pair \( \langle K, C' \rangle \), insertion takes place by combining the contents \( C' \) and \( C \).
- As part of the requirement parameter theory for the contents we will have an associative binary operator combine on the sort \( \text{Contents} \).

```plaintext
fth CONTENTS is
 sort Contents .
 op combine : Contents Contents -> Contents [assoc] .
endfth
```
Binary search trees

- The module for search trees will be imported in the specifications of AVL and red-black trees.
- It is important to be able to add new information in the nodes: for AVL trees, the depth of the tree hanging in each node, and for red-black trees the appropriate node color.
- A record is defined as a collection (with an associative and commutative union operator denoted by _, _) of pairs consisting of a field name and an associated value.

```plaintext
fmod RECORD is
 sorts Record .
 op null : -> Record [ctor] .
 op _,_ : Record Record -> Record [ctor assoc comm id: null] .
endfm

view Record from TRIV to RECORD is
 sort Elt to Record .
endv
```
Binary search trees

```plaintext
fmod SEARCH-TREE{X :: STOSET, Y :: CONTENTS} is
 extending BIN-TREE{Record} .
 protecting MAYBE{Contents}{Y} * (op maybe to not-found) .

sort SearchRecord{X, Y} .
subsort SearchRecord{X, Y} < Record .

sortsSearchTree{X, Y} NeSearchTree{X, Y} .
subsorts NeSearchTree{X, Y} < SearchTree{X, Y} < BinTree{Record} .
subsort NeSearchTree{X, Y} < NeBinTree{Record} .

--- Search records, used as nodes in search trees.
var Rec : [Record] .
var K : X$Elt .
var C : Y$Contents .
```
Binary search trees

```ml
op key: : X$Elt -> Record [ctor] .
op key : Record ^ X$Elt .
op numKeys : Record -> Nat .
eq numKeys(key: K, Rec) = 1 + numKeys(Rec) .
eq numKeys(Rec) = 0 [owise] .
ceq key(Rec, key: K) = K if numKeys(Rec, key: K) = 1 .

eq numContents(contains: C, Rec) = 1 + numContents(Rec) .
eq numContents(Rec) = 0 [owise] .
ceq contains(Rec, contains: C) = C
 if numContents(Rec, contains: C) = 1 .

cmb Rec : SearchRecord{X, Y}
 if numContents(Rec) = 1 \ numKeys(Rec) = 1 .
```
Binary search trees

--- Definition of binary search trees.

ops min max : NeSearchTree{X, Y} -> SearchRecord{X, Y} .
var SRec : SearchRecord{X, Y} .
vars L R : SearchTree{X, Y} .
vars L' R' : NeSearchTree{X, Y} .
var C' : Y$Contents .
eq\min(\text{empty} [\text{SRec}] R) = \text{SRec} .
eq\min(L' [\text{SRec}] R) = \min(L') .
eq\max(L [\text{SRec}] \text{empty}) = \text{SRec} .
eq\max(L [\text{SRec}] R') = \max(R') .

mb empty : SearchTree{X, Y} .
mb empty [SRec] empty : NeSearchTree{X, Y} .
cmb L' [SRec] empty : NeSearchTree{X, Y}
   if key(\max(L')) < key(SRec) .
cmb empty [SRec] R' : NeSearchTree{X, Y}
   if key(SRec) < key(\min(R')) .
cmb L' [SRec] R' : NeSearchTree{X, Y}
   if key(\max(L')) < key(SRec) \land key(SRec) < key(\min(R'))) .
Binary search trees

--- Operations for binary search trees.
op insert : SearchTree{X, Y} X$Elt Y$Contents -> SearchTree{X, Y} .
op lookup : SearchTree{X, Y} X$Elt -> Maybe{Contents}{Y} .
op delete : SearchTree{X, Y} X$Elt -> SearchTree{X, Y} .
op find : SearchTree{X, Y} X$Elt -> Bool .

eq insert(empty, K, C) = empty [key: K, contents: C] empty .
   if numKeys(Rec) = 0 \/ numContents(Rec) = 0 .
ceq insert(L [SRec] R, K, C) = insert(L, K, C) [SRec] R
   if K < key(SRec) .
   if key(SRec) < K .

eq lookup(empty, K) = not-found .
ceq lookup(L [SRec] R, K) = C
   if key(SRec) = K \/ C := contents(SRec) .
ceq lookup(L [SRec] R, K) = lookup(L, K) if K < key(SRec) .
ceq lookup(L [SRec] R, K) = lookup(R, K) if key(SRec) < K .
Binary search trees

\begin{verbatim}
eq delete(empty, K) = empty .  
\text{ceq delete}(L \, [\text{SRec}] \, R, K) = \text{delete}(L, K) \, [\text{SRec}] \, R  
\text{  if } K < \text{key}(\text{SRec}) .  
\text{ceq delete}(L \, [\text{SRec}] \, R, K) = L \, [\text{SRec}] \, \text{delete}(R, K)  
\text{  if } \text{key}(\text{SRec}) < K .  
\text{ceq delete}(\text{empty} \, [\text{SRec}] \, R, K) = R \text{ if } \text{key}(\text{SRec}) = K .  
\text{ceq delete}(L \, [\text{SRec}] \, \text{empty}, K) = L \text{ if } \text{key}(\text{SRec}) = K .  
\text{ceq delete}(L' \, [\text{SRec}] \, R', K)  
= L' \, [\text{min}(R')] \, \text{delete}(R', \text{key}(\text{min}(R')))  
\text{  if } \text{key}(\text{SRec}) = K .  
\text{eq find}(\text{empty}, K) = \text{false} .  
\text{ceq find}(L \, [\text{SRec}] \, R, K) = \text{true} \text{ if } \text{key}(\text{SRec}) = K .  
\text{ceq find}(L \, [\text{SRec}] \, R, K) = \text{find}(L, K) \text{ if } K < \text{key}(\text{SRec}) .  
\text{ceq find}(L \, [\text{SRec}] \, R, K) = \text{find}(R, K) \text{ if } \text{key}(\text{SRec}) < K .  
\text{endfm}
\end{verbatim}
Binary search trees

view StringAsContents from CONTENTS to STRING is
    sort Contents to String .
    op combine to _+_.
endv

view IntAsStoset from STOSET to INT is
    sort Elt to Int .
endv

fmod SEARCH-TREE-TEST is
    protecting SEARCH-TREE{IntAsStoset, StringAsContents} .
endfm

Maude> red insert(insert(empty, 1, "a"), 2, "b") .
result NeSearchTree{IntAsStoset, StringAsContents}:
    empty[key: 1, contents: "a"](empty[key: 2, contents:"b"]empty)

Maude> red lookup(insert(insert(insert(empty, 1, "a"),
    2, "b"), 1, "c"), 1) .
result String: "ac"
AVL trees

- AVL trees are binary search trees satisfying the additional constraint in each node that the difference between the depth of both children is at most one.
- Then the depth of the tree is always logarithmic with respect to the number of nodes.
- We obtain a logarithmic cost for the operations of search, lookup, insertion, and deletion, assuming that the last two are implemented in such a way that they keep the properties of the balanced tree.
- In our presentation we add a depth field to the search records used to hold the information in the nodes of binary search trees.
AVL trees

fmod AVL{X :: STOSET, Y :: CONTENTS} is
  extending SEARCH-TREE{X, Y}.

  --- Add depth to search records.
  var N : Nat.
  var Rec : Record.

  sort AVLRecord{X, Y}.
  subsort AVLRecord{X, Y} < SearchRecord{X, Y}.
  op depth: _ : Nat -> Record [ctor].
  op numDepths : Record -> Nat.
  op depth : Record '-> Nat.
  eq numDepths(depth: N, Rec) = 1 + numDepths(Rec).
  eq numDepths(Rec) = 0 [owise].
  ceq depth(Rec, depth: N) = N if numDepths(Rec) = 0.

  var SRec : SearchRecord{X, Y}.
  cmb SRec : AVLRecord{X, Y} if numDepths(SRec) = 1.
AVL trees

sorts NeAVL\{X, Y\} AVL\{X, Y\} .
subsorts NeAVL\{X, Y\} < AVL\{X, Y\} < SearchTree\{X, Y\} .
subsorts NeAVL\{X, Y\} < NeSearchTree\{X, Y\} .
vars AVLRec AVLRec’ AVLRec’’ : AVLRecord\{X, Y\} .
vars L R L’ R’ RL RR LR LL T1 T2 : AVL\{X, Y\} .
var ST : NeSearchTree\{X, Y\} .

mb empty : AVL\{X, Y\} .
cmb ST : NeAVL\{X, Y\}
    if L [AVLRec] R := ST \/ sd(depth(L), depth(R)) <= 1
    \/ 1 + max(depth(L), depth(R)) = depth(AVLRec) .
AVL trees

\begin{verbatim}
op insertAVL : AVL\{X, Y\} X$Elt Y$Contents -> NeAVL\{X, Y\} .
op deleteAVL : X$Elt AVL\{X, Y\} -> AVL\{X, Y\} .
op depthAVL : AVL\{X, Y\} -> Nat .
op buildAVL : AVL\{X, Y\} Record AVL\{X, Y\} \textasciitilde AVL\{X, Y\} .
op join : AVL\{X, Y\} Record AVL\{X, Y\} \textasciitilde AVL\{X, Y\} .
op lRotate : AVL\{X, Y\} AVLRecord\{X, Y\} AVL\{X, Y\} \textasciitilde AVL\{X, Y\} .
op rRotate : AVL\{X, Y\} AVLRecord\{X, Y\} AVL\{X, Y\} \textasciitilde AVL\{X, Y\} .

vars K K' : X$Elt .
vars C C' : Y$Contents .

*** EQUATIONS NOT SHOWN

endfm
\end{verbatim}
AVL trees
AVL trees

fmod AVL-TEST is
    protecting AVL{IntAsStoset, StringAsContents} .
endfm

Maude> red insertAVL(insertAVL(insertAVL(insertAVL(
        insertAVL(insertAVL(empty, 1, "a"), 2, "b"), 3, "c"),
        4, "d"), 5, "e"), 6, "f") .
result NeAVL{IntAsStoset, StringAsContents}:
    ((empty[key: 1,contents: "a",depth: 1]empty)
     [key: 2,contents: "b",depth: 2]
     (empty[key: 3,contents: "c",depth: 1]empty))
    [key: 4,contents: "d",depth:3]
     (empty
     [key: 5,contents: "e",depth: 2]
     (empty[key: 6,contents: "f",depth: 1]empty))
AVL trees
2-3-4 trees

Parameterization Data structures
2-3-4 trees

op empty234 : -> 234Tree{T} [ctor] .
op _[~]_ : 234Tree?{T} T$Elt 234Tree?{T} -> Ne234Tree?{T} [ctor] .
op _<<>_<<>_ : 234Tree?{T} T$Elt 234Tree?{T} T$Elt 234Tree?{T} -> Ne234Tree?{T} [ctor] .
op _{~}~{~}~{~}~ : 234Tree?{T} T$Elt 234Tree?{T} T$Elt 234Tree?{T} -> Ne234Tree?{T} [ctor] .

cmb TL [ N ] TR : Ne234Tree{T}
   if greaterKey(N, TL) \ smallerKey(N, TR)
   \ depth(TL) = depth(TR) .
cmb TL < N1 > TC < N2 > TR : Ne234Tree{T}
   if N1 < N2
      \ greaterKey(N1, TL) \ smallerKey(N1, TC)
      \ greaterKey(N2, TC) \ smallerKey(N2, TR)
      \ depth(TL) = depth(TC) \ depth(TC) = depth(TR) .
cmb TL { N1 } TLM { N2 } TRM { N3 } TR : Ne234Tree{T}
   if N1 < N2 \ N2 < N3
      \ greaterKey(N1, TL) \ smallerKey(N1, TLM)
      \ greaterKey(N2, TLM) \ smallerKey(N2, TRM)
      \ greaterKey(N3, TRM) \ smallerKey(N3, TR)
      \ depth(TL) = depth(TLM) \ depth(TL) = depth(TRM)
      \ depth(TL) = depth(TR) .
2-3-4 trees

eq \text{find}(M, \text{empty}234) = \text{false} .
 ceq \text{find}(M, T1 \ [N1] \ T2) = \text{find}(M, T1) \text{ if } M < N1 .
 eq \text{find}(M, T1 \ [M] \ T2) = \text{true} .
 ceq \text{find}(M, T1 \ [N1] \ T2) = \text{find}(M, T2) \text{ if } N1 < M .
 ceq \text{find}(M, T1 < N1 > T2 < N2 > T3) = \text{find}(M, T1) \text{ if } M < N1 .
 eq \text{find}(M, T1 < M > T2 < N2 > T3) = \text{true} .
 ceq \text{find}(M, T1 < N1 > T2 < N2 > T3) = \text{find}(M, T2)
     \text{ if } N1 < M \ \backslash \ M < N2 .
 eq \text{find}(M, T1 < N1 > T2 < M > T3) = \text{true} .
 ceq \text{find}(M, T1 < N1 > T2 < N2 > T3) = \text{find}(M, T3) \text{ if } N2 < M .
 ceq \text{find}(M, T1 \ [N1] \ T2 \ [N2] \ T3 \ [N3] \ T4) = \text{find}(M, T1)
     \text{ if } M < N1 .
 eq \text{find}(M, T1 \ [M] \ T2 \ [N2] \ T3 \ [N3] \ T4) = \text{true} .
 ceq \text{find}(M, T1 \ [N1] \ T2 \ [N2] \ T3 \ [N3] \ T4) = \text{find}(M, T2)
     \text{ if } N1 < M \ \backslash \ M < N2 .
 eq \text{find}(M, T1 \ [N1] \ T2 \ [M] \ T3 \ [N3] \ T4) = \text{true} .
 ceq \text{find}(M, T1 \ [N1] \ T2 \ [N2] \ T3 \ [N3] \ T4) = \text{find}(M, T3)
     \text{ if } N2 < M \ \backslash \ M < N3 .
 eq \text{find}(M, T1 \ [N1] \ T2 \ [N2] \ T3 \ [M] \ T4) = \text{true} .
 ceq \text{find}(M, T1 \ [N1] \ T2 \ [N2] \ T3 \ [N3] \ T4) = \text{find}(M, T4)
     \text{ if } N3 < M .

Red-black trees

sorts NeRBTree\{X, Y\} RBTree\{X, Y\} .
subsort NeRBTree\{X, Y\} < RBTree\{X, Y\} < SearchTree\{X, Y\} .
subsort NeRBTree\{X, Y\} < NeSearchTree\{X, Y\} .

var RBRec : RBRecord\{X, Y\} .
vars ST RBTL? RBTR? : SearchTree\{X, Y\} .

mb empty : RBTree\{X, Y\} .
cmb ST : NeRBTree\{X, Y\}
  if RBTL? [RBRec] RBTR? := ST /\ color(RBRec) = b
  /\ blackDepth(RBTR?) = blackDepth(RBTR?)
  /\ blackBalance(RBTL?) /\ blackBalance(RBTR?)
  /\ not twoRed(RBTL?) /\ not twoRed(RBTR?) .

--- Auxiliary operations
op blackDepth : BinTree\{Record\} -> Nat .
op blackBalance : BinTree\{Record\} -> Bool .
op twoRed : BinTree\{Record\} -> Bool .
Rewriting logic

- We arrive at the main idea behind rewriting logic by dropping symmetry and the equational interpretation of rules.
- We interpret a rule $t \rightarrow t'$ computationally as a local concurrent transition of a system, and logically as an inference step from formulas of type $t$ to formulas of type $t'$.
- Rewriting logic is a logic of becoming or change, that allows us to specify the dynamic aspects of systems.
- Representation of systems in rewriting logic:
  - The static part is specified as an equational theory.
  - The dynamics is specified by means of possibly conditional rules that rewrite terms, representing parts of the system, into others.
  - The rules need only specify the part of the system that actually changes: the frame problem is avoided.
Rewriting logic

- A rewriting logic **signature** is an equational specification \((\Omega, E)\) that makes explicit the set of equations in order to emphasize that rewriting will operate on congruence classes of terms modulo \(E\).
- Sentences are **rewrites** of the form \([t]_E \rightarrow [t']_E\).
- A rewriting logic specification \(\mathcal{R} = (\Omega, E, L, R)\) consists of:
  - a signature \((\Omega, E)\),
  - a set \(L\) of labels, and
  - a set \(R\) of labelled rewrite rules \(r : [t]_E \rightarrow [t']_E\)
    where \(r\) is a label and \([t]_E, [t']_E\) are congruence classes of terms in \(T_{\Omega,E}(X)\).
- The most general form of a rewrite rule is **conditional**:

\[
r : t \rightarrow t' \quad \text{if} \quad \left( \bigwedge_i u_i = v_i \right) \land \left( \bigwedge_j w_j : s_j \right) \land \left( \bigwedge_k p_k \rightarrow q_k \right)
\]
System modules

- **System modules** in Maude correspond to rewrite theories in rewriting logic.
- A rewrite theory has both rules and equations, so that rewriting is performed *modulo* such equations.
- The equations are divided into
  - a set $A$ of **structural axioms**, for which matching algorithms exist in Maude, and
  - a set $E$ of equations that are Church-Rosser and terminating *modulo* $A$;
  that is, the equational part must be equivalent to a functional module.
System modules

- The rules $R$ in the module must be coherent with the equations $E$ modulo $A$, allowing us to intermix rewriting with rules and rewriting with equations without losing rewrite computations by failing to perform a rewrite that would have been possible before an equational deduction step was taken.

- A simple strategy available in these circumstances is to always reduce to canonical form using $E$ before applying any rule in $R$.
- In this way, we get the effect of rewriting modulo $E \cup A$ with just a matching algorithm for $A$. 
Transition systems

\[
\begin{array}{c}
\text{n}_1 \quad \text{a} \quad \text{n}_2 \\
\text{ } \quad \text{b} \quad \text{ } \\
\text{n}_3 \quad \text{c} \quad \text{n}_4 \\
\text{ } \quad \text{ } \quad \text{d} \quad \text{n}_5 \\
\text{ } \quad \text{e} \quad \text{f} \quad \text{n}_6 \\
\end{array}
\]

mod A-TRANSITION-SYSTEM is

\[
\begin{array}{c}
sort \text{State} .  \\
\text{ops n1 n2 n3 n4 n5 n6 : -> State [ctor]} .  \\
\text{r1 [a] : n1 -> n2} .  \\
\text{r1 [b] : n1 -> n3} .  \\
\text{r1 [c] : n3 -> n4} .  \\
\text{r1 [d] : n4 -> n2} .  \\
\text{r1 [e] : n2 -> n5} .  \\
\text{r1 [f] : n2 -> n1} .  \\
\text{r1 [g] : n2 -> n6} .  \\
\end{array}
\]

endm

- **not** confluent: there are, for example, two transitions out of \text{n2} that are not joinable
- **not** terminating: there are cycles creating infinite computations
A vending machine

\[
\text{fmod VENDING-MACHINE-SIGNATURE is}
\]
\[
\text{sorts Coin Item State .}
\]
\[
\text{subsorts Coin Item < State .}
\]
\[
\text{op \_\_ : State State -> State [assoc comm] .}
\]
\[
\text{op $ : -> Coin [format (r! o)] .}
\]
\[
\text{op q : -> Coin [format (r! o)] .}
\]
\[
\text{op a : -> Item [format (b! o)] .}
\]
\[
\text{op c : -> Item [format (b! o)] .}
\]
\[
\text{endfm}
\]

\[
\text{mod VENDING-MACHINE is}
\]
\[
\text{including VENDING-MACHINE-SIGNATURE .}
\]
\[
\text{var M : State .}
\]
\[
\text{rl [add-q] : M => M q .}
\]
\[
\text{rl [add-$] : M => M $ .}
\]
\[
\text{rl [buy-c] : $ => c .}
\]
\[
\text{rl [buy-a] : $ => a q .}
\]
\[
\text{rl [change]}: q q q q => $ .
\]
\[
\text{endm}
\]
A vending machine

• The top-down rule-fair rewrite command (abbreviated rew) applies rules on the top operator (___ in this case) in a fair way; in this example, it tries to apply add-\( q \), add-\( \$ \), and change in this order.

Maude> rew [20] $ $ q q .
rewrites: 20 in 0ms cpu (0ms real) (~ rewrites/second)
result State: $ $ $ $ $ $ $ $ $ $ $ q q q

• The frewrite command (abbreviated frew) uses a depth-first position-fair strategy that makes it possible for some rules to be applied that could be “starved” using the rewrite command.

Maude> frew [20] $ $ q q .
rewrites: 20 in 0ms cpu (1ms real) (~ rewrites/second)
result (sort not calculated):
   c (q a) ($ q) ($ $) c $ q q q q q q q a c
A vending machine

- With the search command we can look for different ways to use a dollar and three quarters to buy an apple and two cakes. First we ask for one solution, and then use the bounded continue command to see another solution.

Maude> search [1] in VENDING-MACHINE : $ q q q =>+ a c c M .

Solution 1 (state 108)
states: 109  rewrites: 1857 in 20ms cpu (57ms real)
  (928500 rewrites/second)
M --> q q q q

Maude> cont 1 .

Solution 2 (state 160)
states: 161  rewrites: 1471 in 20ms cpu (76ms real)
  (73550 rewrites/second)
M --> q q q q q
A vending machine

![Diagram of a vending machine]

- **System modules Rewriting logic**
- **A vending machine**

- **Buy-c**
- **Buy-a**
- **Change**

- **Add-$**
- **Add-q**

- **$**

- Transition from **Buy-c** and **Buy-a** to **Change**
- Transition from **Change** to **Add-q**

- Transition from **Add-$** to **Buy-c** and **Buy-a**

- **C**
- **A**
- **Q**

- **4**
Petri nets

Consider a Petri net modelling a small library, where a token represents a book, that can be in several different states: just bought \((j)\), available \((a)\), borrowed \((b)\), requested \((r)\), and not available \((n)\). The possible transitions are the following:

- **buy**: When there are four accumulated requests, the library places an order to buy two copies of each requested book (here we do not distinguish among different books or copies of the same book).
- **file**: A book just bought is filed, making it available.
- **borr**: An available book can be borrowed.
- **ret**: A borrowed book can be returned.
- **lose**: A borrowed book can become lost, and thus no longer available.
- **disc**: An available book is discarded because of its bad condition, and thus it is no longer available either.
- **req1**: A user may place a request to buy a non available book, but only when there are two accumulated requests these are honored.
- **req2**: The library may decide to buy a new book, thus creating a new token in the system.
Petri nets

```
file a disc
 ^ ^ ^
 | | |
 | | |
 v v v
ret b borr

j

8

b

lose

n

2

buy

r

4

req1

2

req2
```
Petri nets as system modules

- A **marking** on a Petri net is a **multiset** over its set of places, denoting the available resources in each place.
- A **transition** goes from the marking representing the resources it consumes to the marking representing the resources it produces.

```plaintext
mod LIBRARY-PETRI-NET is
 sorts Place Marking .
 subsort Place < Marking .
 op 1 : -> Marking [ctor] .
 op __ : Marking Marking -> Marking [ctor assoc comm id: 1] .
 ops a b n r j : -> Place [ctor] .
 var M : Marking .
 rl [buy] : r r r r => j j j j j j j j .
 rl [disc] : a => n .
 rl [req2] : M => M r .
endm
```
Petri nets as system modules

- Computations may be nonterminating, for example, because a book can be forever in the borrow-return cycle.
- This particular net happens to be confluent by chance.
- Starting in the empty marking and using the rewrite command, the system keeps adding requests until there are enough to buy a book, and then repeats the same process, like in the following sequence of 10 rewrites.

  rewrites: 10 in 20ms cpu (54ms real) (500 rewrites/second)
  result Marking: j j j j j j j j j j

- The frewrite command uses a fair strategy where other rules are applied.

  rewrites: 10 in 0ms cpu (19ms real) (~ rewrites/second)
  result (sort not calculated): a (r j) a (r j) a j j j
Blocks world

- A generalization of Petri net computations is provided by conjunctive planning problems, where the states are described by means of some kind of conjunction of propositions describing basic facts.
- A typical example is the blocks world; here we have a table on top of which there are blocks, which can be moved only by means of a robot arm.
Blocks world

mod BLOCKS-WORLD is
  protecting QID .
sorts BlockId Prop State .
subsort Qid < BlockId .
subsort Prop < State .

op table : BlockId -> Prop [ctor] .*** block is on the table
op on : BlockId BlockId -> Prop [ctor] .*** block A is on block B
op clear : BlockId -> Prop [ctor] .*** block is clear
op hold : BlockId -> Prop [ctor] .*** robot arm holds block
op empty : -> Prop [ctor] .*** robot arm is empty

op 1 : -> State [ctor] .
Blocks world

vars X Y : BlockId .

rl [pickup] : empty & clear(X) & table(X) => hold(X) .
rl [putdown] : hold(X) => empty & clear(X) & table(X) .
rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) .
endm

If we just ask for a sequence of rewrites starting from the initial state $I$, it gets very boring as the robot arm, after picking up the block $b$ keeps stacking and unstacking it on $c$; we show a sequence of 5 rewrites:

Maude> rew [5] empty & clear('c) & clear('b) & table('a) &
    table('b) & on('c,'a) .
rewrite [5] in BLOCKS-WORLD : empty & clear('c) & clear('b) &
    table('a) & table('b) & on('c,'a) .
rewrites: 5 in Øms cpu (42ms real) (~ rewrites/second)
result State: table('a) & clear('c) & hold('b) & on('c, 'a)
Blocks world

To see that it is possible to go from state \( I \) to state \( F \) we can use the `search` command as follows:

```
Maude> search empty & clear('c) & clear('b) & table('a) &
 table('b) & on('c,'a)
 =>* empty & clear('a) & table('c) & on('a,'b) & on('b,'c).
```

Solution 1 (state 21)
empty substitution

No more solutions.

```
Maude> show path labels 21 .
unstack
putdown
pickup
stack
pickup
stack
```
Hopping rabbits

- **Initial** configuration (for 3 rabbits in each team):

  ![Initial configuration image]

- **Final** configuration:

  ![Final configuration image]

- **X-rabbits** move to the right.
- **O-rabbits** move to the left.
- A rabbit is allowed to advance one position if that position is empty.
- A rabbit can jump over a rival if the position behind it is free.
Hopping rabbits

mod RABBIT-HOP is

*** each rabbit is represented as a constant
*** a special rabbit for the empty position

sort Rabbit .
ops x o free : -> Rabbit .

*** a game state is represented
*** as a nonempty list of rabbits

sort RabbitList .
subsort Rabbit < RabbitList .
op __ : RabbitList RabbitList -> RabbitList [assoc] .
Hopping rabbits

*** rules (transitions) for game moves

rl [xAdvances] : x free => free x .
rl [xJumps] : x o free => free o x .
rl [oAdvances] : free o => o free .
rl [oJumps] : free x o => o x free .

*** auxiliary operation to build initial states

protecting NAT .

op initial : Nat -> RabbitList .
var N : Nat .
eq initial(Ø) = free .
eq initial(s(N)) = x initial(N) o .
endm
Hopping rabbits

Maude> search initial(3) =>* o o o free x x x .

Solution 1 (state 71)
empty substitution

No more solutions.

Maude> show path labels 71 .
xAdvances oJumps oAdvances
xJumps xJumps xAdvances
oJumps oJumps oJumps
xAdvances xJumps xJumps
oAdvances oJumps xAdvances

Maude> show path 71 .
state 0, RabbitList: x x x free o o o
=== [ rl x free => free x [label xAdvances] . ] ===>
state 1, RabbitList: x x free x o o o
...
The Josephus problem

- Flavius Josephus was a famous Jewish historian who, during the Jewish-Roman war in the first century, was trapped in a cave with a group of 40 Jewish soldiers surrounded by Romans.
- Legend has it that, preferring death to being captured, the Jews decided to gather in a circle and rotate a dagger around so that every third remaining person would commit suicide.
- Apparently, Josephus was too keen to live and quickly found out the safe position.
- The circle representation becomes a (circular) list once the beginning position is chosen, with the dagger implicitly at position 1.
- The idea then consists in continually taking the first two elements in the list and moving them to the end of it while “killing” the third one.
- The dagger remains always implicitly located at the beginning of the list.
The Josephus problem

mod JOSEPHUS is
  protecting NAT .
sorts Morituri Circle .
subsort NzNat < Morituri .
op __ : Morituri Morituri -> Morituri [assoc] .
op {} : Morituri -> Circle .
op initial : NzNat -> Morituri .

var M : Morituri .
vars I1 I2 I3 N : NzNat .

eq initial(1) = 1 .
eq initial(s(N)) = initial(N) s(N) .

rl [kill>3] : { I1 I2 I3 M } => { M I1 I2 } .
rl [kill3] : { I1 I2 I3 } => { I1 I2 } .
  --- Rule kill3 is necessary because M cannot be empty
rl [kill2] : { I1 I2 } => { I2 } .
endm
The Josephus problem

- In this problem, transitions are deterministic: only one of the three can be applied each time, depending on the numbers of elements remaining in the list.
- Search can be used, but it is not necessary.
- The command `rewrite` provides directly the solution:

  ```
 Maude> rewrite { initial(41) } .
 result Circle: {31}
  ```
The generalized Josephus problem

- It is easy to generalize the program so that every *i*-th person commits suicide, where *i* is a parameter.
- The idea is the same, but because of the parameter now it is necessary to *explicitly* represent the dagger.
- For that, we use the constructor

```
dagger : NzNat NzNat -> Morituri .
```
whose second argument stores the value of *i* while the first one acts as a counter.
- Each time an element is moved from the beginning of the list to the end, the first argument is decreased by one; once it reaches 1, the element that is currently the head of the list is “killed,” i.e., removed from the list.
The generalized Josephus problem

mod JOSEPHUS-GENERALIZED is
  protecting NAT .
  sorts Morituri Circle .
  subsort NzNat < Morituri .
  op dagger : NzNat NzNat -> Morituri .
  op __ : Morituri Morituri -> Morituri [assoc] .
  op {} : Morituri -> Circle .
  op initial : NzNat NzNat -> Morituri .

  var M : Morituri .
  vars I I1 I2 N : NzNat .
  eq initial(1, I) = dagger(I, I) 1 .
  eq initial(s(N), I) = initial(N, I) s(N) .

  rl [kill] : { dagger(1, I) I1 M } => { dagger(I, I) M } .
  rl [next] : { dagger(s(N), I) I1 M } => { dagger(N, I) M I1 } .
  rl [last] : { dagger(N, I) I1 } => { I1 } .

  --- The last one throws the dagger away!

endm
The three basins puzzle

- We have three basins with capacities of 3, 5, and 8 gallons.
- There is an unlimited supply of water.
- The goal is to get 4 gallons in any of the basins.
- Practical application: in the movie *Die Hard: With a Vengeance*, McClane and Zeus have to deactivate a bomb with this system.
- A basin is represented with the constructor `basin`, having two natural numbers as arguments: the first one is the basin capacity and the second one is how much it is filled.
- We can think of a basin as an object with two attributes.
- This leads to an object-based style of programming, where objects change their attributes as result of interacting with other objects.
- Interactions are represented as rules on configurations that are nonempty multisets of objects.
The three basins puzzle

mod DIE-HARD is
   protecting NAT .

*** objects
sort Basin .
op basin : Nat Nat -> Basin . *** capacity / content

*** configurations / multisets of objects
sort BasinSet .
subsort Basin < BasinSet .

*** auxiliary operation to represent initial state
op initial : -> BasinSet .
eq initial = basin(3, 0) basin(5, 0) basin(8,0) .
The three basins puzzle

*** possible moves as four rules
vars M1 N1 M2 N2 : Nat .

rl [empty] : basin(M1, N1) => basin(M1, 0) .

rl [fill] : basin(M1, N1) => basin(M1, M1) .

crl [transfer1] : basin(M1, N1) basin(M2, N2) => basin(M1, 0) basin(M2, N1 + N2)
  if N1 + N2 <= M2 .

crl [transfer2] : basin(M1, N1) basin(M2, N2) => basin(M1, sd(N1 + N2, M2)) basin(M2, M2)
  if N1 + N2 > M2 .

*** sd is symmetric difference in predefined NAT
endm
The three basins puzzle


Solution 1 (state 75)
B:BasinSet --> basin(3, 3) basin(8, 3)
N:Nat --> 5

Maude> show path 75 .
state 0, BasinSet: basin(3, 0) basin(5, 0) basin(8, 0)
===[ rl ... fill ]====>
state 2, BasinSet: basin(3, 0) basin(5, 5) basin(8, 0)
===[ crl ... transfer2 ]====>
state 9, BasinSet: basin(3, 3) basin(5, 2) basin(8, 0)
===[ crl ... transfer1 ]====>
state 20, BasinSet: basin(3, 0) basin(5, 2) basin(8, 3)
===[ crl ... transfer1 ]====>
state 37, BasinSet: basin(3, 2) basin(5, 0) basin(8, 3)
===[ rl ... fill ]====>
state 55, BasinSet: basin(3, 2) basin(5, 5) basin(8, 3)
===[ crl ... transfer2 ]====>
state 75, BasinSet: basin(3, 3) basin(5, 4) basin(8, 3)
Crossing the bridge

- The four components of U2 are in a tight situation. Their concert starts in 17 minutes and in order to get to the stage they must first cross an old bridge through which only a maximum of two persons can walk over at the same time.

- It is already dark and, because of the bad condition of the bridge, to avoid falling into the darkness it is necessary to cross it with the help of a flashlight. Unfortunately, they only have one.

- Knowing that Bono, Edge, Adam, and Larry take 1, 2, 5, and 10 minutes, respectively, to cross the bridge, is there a way that they can make it to the concert on time?
Crossing the bridge

- The current state of the group can be represented by a multiset (a term of sort Group below) consisting of performers, the flashlight, and a watch to keep record of the time.
- The flashlight and the performers have a Place associated to them, indicating whether their current position is to the left or to the right of the bridge.
- Each performer, in addition, also carries the time it takes him to cross the bridge.
- In order to change the position from left to right and vice versa, we use an auxiliary operation changePos.
- The traversing of the bridge is modeled by two rewrite rules: the first one for the case in which a single person crosses it, and the second one for when there are two.
System modules Playing with Maude

Crossing the bridge

mod U2 is
  protecting NAT .

  sorts Performer Object Group Place .
  subsorts Performer Object < Group .

  ops left right : -> Place .
  op flashlight : Place -> Object .
  op watch : Nat -> Object .
  op performer : Nat Place -> Performer .

  op changePos : Place -> Place .

  eq changePos(left) = right .
  eq changePos(right) = left .
Crossing the bridge

```
op initial : -> Group .
eq initial
 = watch(∅) flashlight(left) performer(1, left)
 performer(2, left) performer(5, left) performer(10, left) .

var P : Place .
vars M N N1 N2 : Nat .

rl [one-crosses] :
 watch(M) flashlight(P) performer(N, P)
 => watch(M + N) flashlight(changePos(P))
 performer(N, changePos(P)) .

crl [two-cross] :
 watch(M) flashlight(P) performer(N1, P) performer(N2, P)
 => watch(M + N1) flashlight(changePos(P))
 performer(N1, changePos(P))
 performer(N2, changePos(P))
 if N1 > N2 .
endm
```
System modules

Playing with Maude

Crossing the bridge

- A solution can be found by looking for a state in which all performers and the flashlight are to the right of the bridge.
- The search command is invoked with a such that clause that allows to introduce a condition that solutions have to fulfill, in our example, that the total time is less than or equal to 17 minutes:

  \[
  \text{Maude}\succ \text{search } [1] \text{ initial}
  \succ \quad \Rightarrow^* \text{flashlight(right) watch(N:Nat)}
  \quad \text{performer(1, right) performer(2, right)}
  \quad \text{performer(5, right) performer(10, right)}
  \quad \text{such that N:Nat} \leq 17 .
  \]

Solution 1 (state 402)

N \rightarrow 17
Crossing the bridge

- The solution takes exactly 17 minutes (a happy ending after all!) and the complete sequence of appropriate actions can be shown with the command
  
  Maude> show path 402 .

- After sorting out the information, it becomes clear that Bono and Edge have to be the first to cross. Then Bono returns with the flashlight, which gives to Adam and Larry. Finally, Edge takes the flashlight back to Bono and they cross the bridge together for the last time.

- Note that, in order for the search command to stop, we need to tell Maude to look only for one solution. Otherwise, it will continue exploring all possible combinations, increasingly taking a larger amount of time, and it will never end.
The Khun Phan puzzle

- Can we move the big square to where the small ones are?
- Can we reach a completely symmetric configuration?
The Khun Phan puzzle

mod KHUN-PHAN is
   protecting NAT .
   sorts Piece Board .
   subsort Piece < Board .

*** each piece carries the coordinates of its upper left corner
ops empty bigsq smallsq hrect vrect : Nat Nat -> Piece .

*** board is nonempty multiset of pieces
op __ : Board Board -> Board [assoc comm] .

op initial : -> Board .

eq initial
   = vrect(1, 1)  bigsq(2, 1)  vrect(4, 1)
   empty(1, 3)   hrect(2, 3)  empty(4, 3)
   vrect(1, 4)   smallsq(2, 4) smallsq(3, 4) vrect(4, 4)
   smallsq(2, 5) smallsq(3, 5) .
The Khun Phan puzzle

vars X Y : Nat .

rl [sqr] : smallsq(X, Y) empty(s(X), Y) => empty(X, Y) smallsq(s(X), Y) .
rl [sql] : smallsq(s(X), Y) empty(X, Y) => empty(s(X), Y) smallsq(X, Y) .
rl [sqa] : smallsq(X, s(Y)) empty(X, Y) => empty(X, s(Y)) smallsq(X, Y) .
rl [sqd] : smallsq(X, Y) empty(X, s(Y)) => empty(X, Y) smallsq(X, s(Y)) .

rl [Sqr] : bigsq(X, Y) empty(s(s(X)), Y) empty(s(s(X)), s(Y)) => empty(X, Y) empty(X, s(Y)) bigsq(s(X), Y) .
rl [Sql] : bigsq(s(X), Y) empty(X, Y) empty(X, s(Y)) => empty(s(s(X)), Y) empty(s(s(X)), s(Y)) bigsq(X, Y) .
rl [Squ] : bigsq(X, s(Y)) empty(X, Y) empty(s(X), Y) => empty(X, s(s(Y))) empty(s(X), s(s(Y))) bigsq(X, Y) .
rl [Sqd] : bigsq(X, Y) empty(X, s(s(Y))) empty(s(X), s(s(Y))) => empty(X, Y) empty(s(X), Y) bigsq(X, s(s(Y))) .
The Khun Phan puzzle

rl [hrectr] : hrect(X, Y) empty(s(s(X)), Y)
  => empty(X, Y) hrect(s(X), Y).
rl [hrectl] : hrect(s(X), Y) empty(X, Y)
  => empty(s(s(X)), Y) hrect(X, Y).
rl [hrectu] : hrect(X, s(Y)) empty(X, Y) empty(s(X), Y)
  => empty(X, s(Y)) empty(s(X), s(Y)) hrect(X, Y).
rl [hrectd] : hrect(X, Y) empty(X, s(Y)) empty(s(X), s(Y))
  => empty(X, Y) empty(s(X), Y) hrect(X, s(Y)).

rl [vrectr] : vrect(X, Y) empty(s(X), Y) empty(s(X), s(Y))
  => empty(X, Y) empty(X, s(Y)) vrect(s(X), Y).
rl [vrectl] : vrect(s(X), Y) empty(X, Y) empty(X, s(Y))
  => empty(s(X), Y) empty(s(X), s(Y)) vrect(X, Y).
rl [vrectu] : vrect(X, s(Y)) empty(X, Y)
  => empty(X, s(s(Y))) vrect(X, Y).
rl [vrectd] : vrect(X, Y) empty(X, s(s(Y)))
  => empty(X, Y) vrect(X, s(Y)).
endm
The Khun Phan puzzle

• With the following command we get all possible 964 final configurations to the game:
  
  Maude> search initial =>* B:Board bigsq(2, 4).

• The final state used, B:Board bigsq(2,4), represents any final situation such that the upper left corner of the big square is at coordinates (2,4).

• The search command does not enumerate the different ways of reaching the same configuration.

• The shortest path leading to the final configuration, due to the breadth-first search, reveals that it consists of 112 moves:
  
  Maude> show path labels 23721.
The Khun Phan puzzle

- The following command shows that it is **not** possible to reach a position symmetric to the initial one.

```
Maude> search initial
 =>* vrect(1, 1) smallsq(2, 1) smallsq(3, 1) vrect(4, 1)
 smallsq(2, 2) smallsq(3, 2)
 empty(1, 3) hrect(2, 3) empty(4, 3)
 vrect(1, 4) bigsq(2, 4) vrect(4, 4).
```

No solution.
Black or white

- In an 8 × 8 board the four corners are colored white and all the others are black.
- Is it possible to make all the squares white by recoloring rows and columns?
- Recoloring is the operation of changing the colors of all the squares in a row or column.
- The board is represented as a multiset of squares.
- Each square has three arguments: the first two are its column and row, and the last one its color, either black (b) or white (w).
- A predicate allWhite? checks whether all the squares are white.
Black or white

mod RECOLORING is
  protecting NAT .
sorts Place Board Color .
subsort Place < Board .
ops w b : -> Color .
op sq : Nat Nat Color -> Place .
op ___ : Board Board -> Board [assoc comm] .

op recolor : Color -> Color .
op allWhite? : Board -> Bool .

vars I J : Nat .
vars C1 C2 C3 C4 C5 C6 C7 C8 : Color .
var B : Board .

eq recolor(b) = w .
eq recolor(w) = b .
eq allWhite?(sq(I,J,b) B) = false .
eq allWhite?(B) = true [owise] .
Black or white

op initial : -> Board.
eq initial = sq(1,1,b) sq(1,2,w) ...... sq(8,7,w) sq(8,8,b) .

rl [recolor-column] : sq(I,1,C1) sq(I,2,C2) sq(I,3,C3) sq(I,4,C4)
    sq(I,5,C5) sq(I,6,C6) sq(I,7,C7) sq(I,8,C8)
=> sq(I,1,recolor(C1)) sq(I,2,recolor(C2))
    sq(I,3,recolor(C3)) sq(I,4,recolor(C4))
    sq(I,5,recolor(C5)) sq(I,6,recolor(C6))
    sq(I,7,recolor(C7)) sq(I,8,recolor(C8)) .

rl [recolor-row] : sq(1,J,C1) sq(2,J,C2) sq(3,J,C3) sq(4,J,C4)
    sq(5,J,C5) sq(6,J,C6) sq(7,J,C7) sq(8,J,C8)
=> sq(1,J,recolor(C1)) sq(2,J,recolor(C2))
    sq(3,J,recolor(C3)) sq(4,J,recolor(C4))
    sq(5,J,recolor(C5)) sq(6,J,recolor(C6))
    sq(7,J,recolor(C7)) sq(8,J,recolor(C8)) .

endm
Black or white

The command

    Maude> search initial =>* B:Board
        such that allWhite?(B:Board) .

No solution.

proves that it is not possible to get a configuration with all the squares colored white from the initial configuration.
The game is not over

- Mr. Smith and his wife invited four other couples to have dinner at their house. When they arrived, some people shook hands with some others (of course, nobody shook hands with their spouse or with the same person twice), after which Mr. Smith asked everyone how many times they had shaken hands. The answers, it turned out, were different in all cases. How many people did Mrs. Smith shake hands with?
The game is not over

- The numbers 25 and 36 are written on a blackboard. At each turn, a player writes on the board the (positive) difference between two numbers already on the blackboard—if this number does not already appear on it. The loser is the player who cannot write a number. Prove that the second player will always win.

- A $3 \times 3$ table is filled with numbers. It is allowed to increase simultaneously all the numbers in any $2 \times 2$ square by 1. Is it possible, using these operations, to obtain the table $(4, 9, 5), (10, 18, 12), (6, 13, 7)$ from a table initially filled with zeros?
Untyped lambda calculus

fth VAR is
    protecting BOO L.
sorts Var VarSet.
subsort Var < VarSet.
    *** singleton sets
op empty-set : -> VarSet.
    *** empty set
    *** set union
            *** membership test
op _in_ : Var VarSet -> Bool.
    *** set difference
op _\_ : VarSet VarSet -> VarSet.
    *** new variable
op new : VarSet -> Var.

vars E E’ : Var.
vars S S’ : VarSet.

    eq E U E = E .
    eq E in empty-set = false .
    eq E in E’ U S = (E == E’) or (E in S) .
    eq empty-set \ S = empty-set .
    eq (E U S) \ S’ = if E in S’ then S \ S’ else E U (S \ S’) fi .
    eq new(S) in S = false [nonexec] .
endfth
Untyped lambda calculus

fmod LAMBDA{X :: VAR} is
  sort Lambda{X}.          *** variables
  subsort X$Var < Lambda{X}. *** lambda abstraction
  op \_._ : X$Var Lambda{X} -> Lambda{X} [ctor].
  op __ : Lambda{X} Lambda{X} -> Lambda{X} [ctor]. *** application
  op [_/_] : Lambda{X} Lambda{X} X$Var -> Lambda{X}. *** substitution
  op fv : Lambda{X} -> X$VarSet. *** free variables

vars X Y : X$Var.
vars M N P : Lambda{X}.

*** Free variables
  eq fv(X) = X.
  eq fv(\ X . M) = fv(M) \ X.
  eq fv(M N) = fv(M) U fv(N).
  eq fv(M [N / X]) = (fv(M) \ X) U fv(N).
Untyped lambda calculus

*** Substitution equations

\[ eq \ X \ [N \ / \ X] = N . \]
\[ ceq \ Y \ [N \ / \ X] = Y \ if \ X =/= Y . \]
\[ eq \ (M \ N) [P \ / \ X] = (M [P \ / \ X])(N [P \ / \ X]) . \]
\[ eq \ (\ \ X \ . \ M) [N \ / \ X] = \ \ X \ . \ M . \]
\[ ceq \ (\ \ Y \ . \ M) [N \ / \ X] = \ \ Y \ . \ (M [N \ / \ X]) \]
\[ \quad \ if \ X =/= Y \ \ and \ \ (not(Y \ \ in \ \ fv(N)) \ or \ not(X \ \ in \ \ fv(M))) . \]
\[ ceq \ (\ \ Y \ . \ M) [N \ / \ X] \]
\[ \quad = \ \ (new(fv(M \ N))) \ . \ ((M [new(fv(M \ N)) \ / \ Y])[N \ / \ X]) \]
\[ \quad \ if \ X =/= Y \ \ (Y \ \ in \ \ fv(N)) \ \ (X \ \ in \ \ fv(M)) . \]

*** Alpha conversion

\[ ceq \ \ X \ . \ M = \ \ Y \ . \ (M \ [Y \ / \ X]) \ \ if \ not(Y \ \ in \ \ fv(M)) \ [nonexec] . \]
endfm
Untyped lambda calculus

mod BETA-ETA\{X :: VAR\} is
  including LAMBDA\{X\} .
  var X : X$Var .
  vars M N : Lambda\{X\} .
  crl [eta] : \ X . (M X) => M if not(X in fv(M)) .
endm

view Nat from TRIV to NAT is
  sort Elt to Nat .
endv
Untyped lambda calculus

```ml
fmod NAT-SET-MAX is
 protecting (SET * (op _,_ to _U_)){Nat} .
 op max : Set{Nat} -> Nat .
 var N : Nat .
 var S : Set{Nat} .
 eq max(empty) = 0 .
 eq max(N U S) = if N > max(S) then N else max(S) fi .
endfm

view VarNat from VAR to NAT-SET-MAX is
 sort Var to Nat .
 sort VarSet to Set{Nat} .
 var S : VarSet .
 op empty-set to empty .
 op new(S) to term max(S) + 1 .
endv

mod UNTYPED-LAMBDA-CALCULUS is
 protecting BETA-ETA{VarNat} .
endm```
Untyped lambda calculus

Maude> set trace on .
Maude> set trace eqs off .
Maude> rew [2] \ 1 . (1 1)\ 1 . (1 1) .
rewrite [2] in UNTYPED-LAMBDA-CALCULUS : \ 1 . (1 1) \ 1 . (1 1) .
*********** rule
rl (\ X: Nat . M: Lambda{VarNat}) N: Lambda{VarNat}
 => M: Lambda{VarNat}[N: Lambda{VarNat} / X: Nat] [label beta] .
X: Nat --> 1
M: Lambda{VarNat} --> 1 1
N: Lambda{VarNat} --> \ 1 . (1 1)
 (\ 1 . (1 1)) \ 1 . (1 1)
--->
(1 1)[\ 1 . (1 1) / 1]
*********** rule
rl (\ X: Nat . M: Lambda{VarNat}) N: Lambda{VarNat}
 => M: Lambda{VarNat}[N: Lambda{VarNat} / X: Nat] [label beta] .
X: Nat --> 1
M: Lambda{VarNat} --> 1 1
N: Lambda{VarNat} --> \ 1 . (1 1)
 (\ 1 . (1 1)) \ 1 . (1 1)
--->
(1 1)[\ 1 . (1 1) / 1]
rewrites: 8 in 10ms cpu (31ms real) (800 rewrites/second)
result Lambda{VarNat}: (\ 1 . (1 1)) \ 1 . (1 1)
Untyped lambda calculus

Maude> set trace on.
Maude> set trace eqs off.
Maude> rew (\ 1 . (\ 2 . 2))(\ 1 . (1 1))(\ 1 . (1 1)).

rewrite in UNTYPED-LAMBDA-CALCULUS:
(\ 1 . \ 2 . 2) ((\ 1 . (1 1)) \ 1 . (1 1)).

************ rule
rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}
 => M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .
X:Nat --> 1
M:Lambda{VarNat} --> \ 2 . 2
N:Lambda{VarNat} --> (\ 1 . (1 1)) \ 1 . (1 1)
(\ 1 . \ 2 . 2) ((\ 1 . (1 1)) \ 1 . (1 1))
 -->
(\ 2 . 2)[(\ 1 . (1 1)) \ 1 . (1 1) / 1]
rewrites: 36 in Oms cpu (Oms real) (~ rewrites/second)
result Lambda{VarNat}: \ 2 . 2
Object-oriented systems

- An object in a given state is represented as a term
 \[< 0 : C \mid a1 : v1, \ldots, an : vn > \]
 where 0 is the object’s name, belonging to a set 0id of object identifiers, C is its class, the ai’s are the names of the object’s attributes, and the vi’s are their corresponding values.

- Messages are defined by the user for each application.

- In a concurrent object-oriented system the concurrent state, which is called a configuration, has the structure of a multiset made up of objects and messages that evolves by concurrent rewriting (modulo the multiset structural axioms) using rules that describe the effects of communication events between some objects and messages.

- We can regard the special syntax reserved for object-oriented modules as syntactic sugar, because each object-oriented module can be translated into a corresponding system module.
Object-oriented rules

- General form of rules in object-oriented systems:

\[
M_1 \ldots M_n \langle O_1 : F_1 \mid atts_1 \rangle \ldots \langle O_m : F_m \mid atts_m \rangle \\
\rightarrow \langle O_{i_1} : F'_{i_1} \mid atts'_{i_1} \rangle \ldots \langle O_{i_k} : F'_{i_k} \mid atts'_{i_k} \rangle \\
\langle Q_1 : D_1 \mid atts''_1 \rangle \ldots \langle Q_p : D_p \mid atts''_p \rangle \\
M'_1 \ldots M'_q
if \ C
\]

- By convention, the only object attributes made explicit in a rule are those relevant for that rule:
 - the attributes mentioned only in the lefthand side of the rule are preserved unchanged,
 - the original values of attributes mentioned only in the righthand side of the rule do not matter, and
 - all attributes not explicitly mentioned are left unchanged.
Another puzzle

\[
\begin{array}{ccc}
7 & 1 & 2 \\
6 & 8 & \\
5 & 4 & 3 \\
\end{array}
\quad
\begin{array}{ccc}
7 & 8 & 1 \\
6 & 2 & \\
5 & 4 & 3 \\
\end{array}
\]

eq initial
\[
\begin{array}{l}
< (1, 1) : \text{Tile} \mid \text{value} : 7 > < (1, 2) : \text{Tile} \mid \text{value} : 1 > \\
< (1, 3) : \text{Tile} \mid \text{value} : 2 > < (2, 1) : \text{Tile} \mid \text{value} : 6 > \\
< (2, 2) : \text{Tile} \mid \text{value} : \text{blank} > < (2, 3) : \text{Tile} \mid \text{value} : 8 > \\
< (3, 1) : \text{Tile} \mid \text{value} : 5 > < (3, 2) : \text{Tile} \mid \text{value} : 4 > \\
< (3, 3) : \text{Tile} \mid \text{value} : 3 > .
\end{array}
\]
eq final
\[
\begin{array}{l}
< (1, 1) : \text{Tile} \mid \text{value} : 7 > < (1, 2) : \text{Tile} \mid \text{value} : 8 > \\
< (1, 3) : \text{Tile} \mid \text{value} : 1 > < (2, 1) : \text{Tile} \mid \text{value} : 6 > \\
< (2, 2) : \text{Tile} \mid \text{value} : \text{blank} > < (2, 3) : \text{Tile} \mid \text{value} : 2 > \\
< (3, 1) : \text{Tile} \mid \text{value} : 5 > < (3, 2) : \text{Tile} \mid \text{value} : 4 > \\
< (3, 3) : \text{Tile} \mid \text{value} : 3 > .
\end{array}
\]
Another puzzle

(module 8-PUZZLE is
 sorts NumValue Value Coordinate .
 subsort NumValue < Value .
 ops 1 2 3 4 : -> Coordinate [ctor] .
 ops 1 2 3 4 5 6 7 8 : -> NumValue [ctor] .
 op blank : -> Value [ctor] .

 op s_ : Coordinate -> Coordinate .
 eq s 1 = 2 .
 eq s 2 = 3 .
 eq s 3 = 4 .
 eq s 4 = 4 .

 op `(__)` : Coordinate Coordinate -> Oid .
 class Tile | value : Value .
 msgs left right up down : -> Msg .

 vars N M R : Coordinate .
 var P : NumValue .
Another puzzle

\[
\text{crl [r]} : \ \text{right} \\
\text{\hspace{1cm}} \langle (N, R) : \text{Tile} \mid \text{value} : \text{blank} \rangle \longrightarrow \langle (N, M) : \text{Tile} \mid \text{value} : P \rangle \text{ if } R == \text{s M}.
\]

\[
\text{crl [l]} : \ \text{left} \\
\text{\hspace{1cm}} \langle (N, R) : \text{Tile} \mid \text{value} : \text{blank} \rangle \longrightarrow \langle (N, M) : \text{Tile} \mid \text{value} : P \rangle \text{ if } s R == M.
\]

\[
\text{crl [u]} : \ \text{up} \\
\text{\hspace{1cm}} \langle (R, M) : \text{Tile} \mid \text{value} : \text{blank} \rangle \longrightarrow \langle (N, M) : \text{Tile} \mid \text{value} : P \rangle \text{ if } s R == N.
\]

\[
\text{crl [d]} : \ \text{down} \\
\text{\hspace{1cm}} \langle (R, M) : \text{Tile} \mid \text{value} : \text{blank} \rangle \longrightarrow \langle (N, M) : \text{Tile} \mid \text{value} : P \rangle \text{ if } R == \text{s N}.
\]

\[
\text{ops initial final} : \rightarrow \text{Configuration}.
\]

\[
\text{eq initial} = \ldots.
\]

\[
\text{eq final} = \ldots.
\]

\[
\text{endom}
\]
Another puzzle

Maude > (search up left down right initial
 =>* C:Configuration
 such that C:Configuration == final .)
rewrites: 974 in 50ms cpu (68ms real) (19480 rewrites/second)

Solution 1
C:Configuration -->
 < (1, 1) : Tile | value : 7 > < (1, 2) : Tile | value : 8 >
 < (1, 3) : Tile | value : 1 > < (2, 1) : Tile | value : 6 >
 < (2, 2) : Tile | value : blank > < (2, 3) : Tile | value : 2 >
 < (3, 1) : Tile | value : 5 > < (3, 2) : Tile | value : 4 >
 < (3, 3) : Tile | value : 3 >

No more solutions.
An object-oriented blocks world

eq initial
= < 'a : Block | under : 'c, on : table >
 < 'c : Block | under : clear, on : 'a >
 < 'b : Block | under : clear, on : table > .

eq final
= < 'a : Block | under : clear, on : 'b >
 < 'b : Block | under : 'a, on : 'c >
 < 'c : Block | under : 'b, on : table > .
An object-oriented blocks world

(mod oo-BLOCKS-WORLD is
 protecting QID .

 sorts BlockId Up Down .
 subsorts Qid < BlockId < Oid .
 subsorts BlockId < Up Down .

 op clear : -> Up [ctor] .
 op table : -> Down [ctor] .

 class Block | under : Up, on : Down .
 msg move : Oid Oid Oid -> Msg .
 msgs unstack stack : Oid Oid -> Msg .

 vars X Y Z : BlockId .

An object-oriented blocks world

\begin{verbatim}
rl [move] : move(X, Z, Y)
 < X : Block | under : clear, on : Z >
 < Z : Block | under : X > < Y : Block | under : clear >
 => < X : Block | on : Y >
 < Z : Block | under : clear > < Y : Block | under : X > .

rl [unstack] : unstack(X,Z)
 < X : Block | under : clear, on : Z >
 < Z : Block | under : X >
 => < X : Block | on : table > < Z : Block | under : clear > .

rl [stack] : stack(X, Z)
 < X : Block | under : clear, on : table >
 < Z : Block | under : clear >
 => < X : Block | on : Z > < Z : Block | under : X > .

ops initial final : -> Configuration .
eq initial =
eq final =
endom
\end{verbatim}
An object-oriented blocks world

Maude > (search unstack('c','a) stack('b','c) stack('a','b)
 initial
 =>* C:Configuration
 such that C:Configuration == final .)
rewrites: 1318 in 20ms cpu (107ms real) (65900 rewrites/second)

Solution 1
C:Configuration --> < 'a : Block | on : 'b, under : clear >
 < 'b : Block | on : 'c, under : 'a >
 < 'c : Block | on : table, under : 'b >

No more solutions.
Colored blocks

(omod 00-BLOCKS-WORLD+COLOR is
 including 00-BLOCKS-WORLD .
sort Color .
ops red blue yellow : -> Color [ctor] .
class ColoredBlock | color : Color .
subclass ColoredBlock < Block .
endom)

Maude> (rewrite unstack('c, 'a)
 < 'a : Block | color : red, under : 'c, on : table >
 < 'c : Block | color : blue, under : clear, on : 'a >
 < 'b : Block | color : yellow, under : clear, on : table > .)
Result Configuration :
 < 'a : Block | on : table , under : clear , color : red >
 < 'c : Block | on : table , under : clear , color : blue >
 < 'b : Block | on : table , under : clear , color : yellow >
Readers and writers

mod READERS–WRITERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor iter] .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

• mutual exclusion: readers and writers never access the resource simultaneously: only readers or only writers can do so at any given time.

• one writer: at most one writer will be able to access the resource at any given time.
Invariant checking through bounded search

• We represent the invariants implicitly by representing their negations through patterns.

• The negation of the first invariant corresponds to the simultaneous presence of both readers and writers: $< s(N:\text{Nat}), s(M:\text{Nat}) >$.

• The negation of the fact that zero or at most one writer should be present at any given time is captured by $< N:\text{Nat}, s(s(M:\text{Nat})) >$.

Maude> search [1, 100000] in READERS–WRITERS :
 $< 0, 0 >$ =>* $< s(N:\text{Nat}), s(M:\text{Nat}) >$.
No solution.
states: 100002 rewrites: 200001 in 610ms cpu (1298ms real)
 (327870 rews/sec)

Maude> search [1, 100000] in READERS–WRITERS :
 $< 0, 0 >$ =>* $< N:\text{Nat}, s(s(M:\text{Nat})) >$.
No solution.
states: 100002 rewrites: 200001 in 400ms cpu (1191ms real)
 (500002 rews/sec)
Abstraction by adding equations

mod READERS-WRITERS-PREDs is
 protecting READERS-WRITERS .
 sort NewBool .
 ops mutex one-writer : Config -> NewBool [frozen] .
 eq mutex(< s(N:Nat), s(M:Nat) >) = ff .
 eq mutex(< Ø, N:Nat >) = tt .
 eq mutex(< N:Nat, Ø >) = tt .
 eq one-writer(< N:Nat, s(s(M:Nat)) >) = ff .
 eq one-writer(< N:Nat, Ø >) = tt .
 eq one-writer(< N:Nat, s(Ø) >) = tt .
endm

mod READERS-WRITERS-ABS is
 including READERS-WRITERS-PREDs .
 including READERS-WRITERS .
 eq < s(s(N:Nat)), Ø > = < s(Ø), Ø > .
endm
Abstraction by adding equations

In order to check both the *executability* and the *invariant-preservation* properties of this abstraction, since we have no equations with either $t\,t$ or $f\,f$ in their lefthand side, we need to check:

1. that the equations in both `READERS-Writers-Preds` and `READERS-Writers-ABS` are ground confluent, sort-decreasing, and terminating;

2. that the equations in both `READERS-Writers-Preds` and `READERS-Writers-ABS` are sufficiently complete; and

3. that the rules in both `READERS-Writers-Preds` and `READERS-Writers-ABS` are ground coherent with respect to their equations.
Church-Rosser Checker

Maude> (check Church-Rosser READERS-WRITERS-PREDs .)
Church-Rosser checking of READERS-WRITERS-PREDs
Checking solution:
 All critical pairs have been joined. The specification is locally-confluent.
The specification is sort-decreasing.

Maude> (check Church-Rosser READERS-WRITERS-ABS .)
Church-Rosser checking of READERS-WRITERS-ABS
Checking solution:
 All critical pairs have been joined. The specification is locally-confluent.
The specification is sort-decreasing.
Search and abstraction

Sufficient Completeness Checker

Maude> (scc READERS-WRITE<PASSWORD> PRED<PASSWORD> .)
Checking sufficient completeness of READERS-WRITE<PASSWORD> PRED<PASSWORD> ...
Success: READERS-WRITE<PASSWORD> PRED<PASSWORD> is sufficiently complete under the assumption that it is weakly-normalizing, confluent, and sort-decreasing.

Maude> (scc READERS-WRITE<PASSWORD> ABS .)
Checking sufficient completeness of READERS-WRITE<PASSWORD> ABS ...
Success: READERS-WRITE<PASSWORD> ABS is sufficiently complete under the assumption that it is weakly-normalizing, confluent, and sort-decreasing.
Coherence Checker

Maude> (check coherence READERS-WRITERS-PREDs .)
Coherence checking of READERS-WRITERS-PREDs
Coherence checking solution:
All critical pairs have been rewritten and all equations are non-constructor.
The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)
Coherence checking of READERS-WRITERS-ABS
Coherence checking solution:
The following critical pairs cannot be rewritten:
\text{cp} < s(\emptyset), \emptyset > \Rightarrow < s(N^*@\text{Nat}), \emptyset > .
Finite-state invariant checking

Maude> search in READERS-Writers-ABS :
 < 0, 0 > =>* C:Config
 such that \text{mutex}(C:Config) = ff .

No solution.
states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)

Maude> search in READERS-Writers-ABS :
 < 0, 0 > =>* C:Config
 such that \text{one-writer}(C:Config) = ff .

No solution.
states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)
Model checking

- Two levels of specification:
 - a system specification level, provided by the rewrite theory specified by that system module, and
 - a property specification level, given by some properties that we want to state and prove about our module.

- Temporal logic allows specification of properties such as safety properties (ensuring that something bad never happens) and liveness properties (ensuring that something good eventually happens), related to the infinite behavior of a system.

- Maude 2 includes a model checker to prove properties expressed in linear temporal logic (LTL).
Linear temporal logic

- **Main connectives:**
 - **True:** \(\top \in \text{LTL}(AP) \).
 - **Atomic propositions:** If \(p \in AP \), then \(p \in \text{LTL}(AP) \).
 - **Next operator:** If \(\varphi \in \text{LTL}(AP) \), then \(\bigcirc \varphi \in \text{LTL}(AP) \).
 - **Until operator:** If \(\varphi, \psi \in \text{LTL}(AP) \), then \(\varphi \mathcal{U} \psi \in \text{LTL}(AP) \).
 - **Boolean connectives:** If \(\varphi, \psi \in \text{LTL}(AP) \), then the formulae \(\neg \varphi \), and \(\varphi \lor \psi \) are in \(\text{LTL}(AP) \).

- **Other Boolean connectives:**
 - **False:** \(\bot = \neg \top \)
 - **Conjunction:** \(\varphi \land \psi = \neg (\neg \varphi) \lor (\neg \psi) \)
 - **Implication:** \(\varphi \rightarrow \psi = (\neg \varphi) \lor \psi \).
Linear temporal logic

- Other temporal operators:
 - Eventually: $\diamond \phi = \top U \phi$
 - Henceforth: $\Box \phi = \neg \diamond \neg \phi$
 - Release: $\phi R \psi = \neg ((\neg \phi) U (\neg \psi))$
 - Unless: $\phi W \psi = (\phi U \psi) V (\Box \phi)$
 - Leads-to: $\phi \leadsto \psi = \Box (\phi \rightarrow (\diamond \psi))$
 - Strong implication: $\phi \Rightarrow \psi = \Box (\phi \rightarrow \psi)$
 - Strong equivalence: $\phi \leftrightarrow \psi = \Box (\phi \leftrightarrow \psi)$.
Kripke structures

A Kripke structure is a triple $\mathcal{A} = (A, \rightarrow A, L)$ such that

- A is a set, called the set of states,
- $\rightarrow A$ is a total binary relation on A, called the transition relation, and
- $L : A \rightarrow \mathcal{P}(AP)$ is a function, called the labeling function, associating to each state $a \in A$ the set $L(a)$ of those atomic propositions in AP that hold in the state a.

The semantics of the temporal logic LTL is defined by means of a satisfaction relation

$$\mathcal{A}, a \models \varphi$$

between a Kripke structure \mathcal{A} having AP as its atomic propositions, a state $a \in A$, and an LTL formula $\varphi \in \text{LTL}(AP)$.
Kripke structures

- Given a system module \mathbb{M} specifying a rewrite theory $\mathcal{R} = (\Sigma, E, R)$, we
 - choose a kind k in \mathbb{M} as our kind of states;
 - define some state predicates Π and their semantics in a module, say \mathbb{M}-PREDs, protecting \mathbb{M} by means of the operation $\text{op } _|=_{-} : \text{State Prop} \rightarrow \text{Bool}$.

coming from the predefined SATISFACTION module.

- Then we get a Kripke structure

$$\mathcal{K}(\mathcal{R}, k)_{\Pi} = (T_{\Sigma/E,k}, (\rightarrow_{1}^{\mathcal{R}})^{\bullet}, L_{\Pi}).$$

- Under some assumptions on \mathbb{M} and \mathbb{M}-PREDs, including that the set of states reachable from $[t]$ is finite, the relation $\mathcal{K}(\mathcal{R}, k)_{\Pi}, [t] \models \varphi$ becomes decidable.
Mutual exclusion: processes

mod MUTEX is
 sorts Name Mode Proc Token Conf .
 subsorts Token Proc < Conf .
 op none : -> Conf [ctor] .

 ops a b : -> Name [ctor] .
 op [_,_] : Name Mode -> Proc [ctor] .
 ops * $: -> Token [ctor] .

 rl [a-enter] : $ [a, wait] => [a, critical] .
 rl [b-enter] : * [b, wait] => [b, critical] .
 rl [a-exit] : [a, critical] => [a, wait] * .
 rl [b-exit] : [b, critical] => [b, wait] $.
endm
Mutual exclusion: basic properties

mod MUTEX-PREDs is
 protecting MUTEX .
 including SATISFACTION .
 subsort Conf < State .

 op crit : Name -> Prop .
 op wait : Name -> Prop .

 var N : Name .
 var C : Conf .
 var P : Prop .

 eq [N, critical] C |= crit(N) = true .
 eq [N, wait] C |= wait(N) = true .
 eq C |= P = false [owise] .

endm
Model checking mutual exclusion

mod MUTEX-CHECK is
 protecting MUTEX-PREDs .
 including MODEL-CHECKER .
 including LTL-SIMPLIFIER .
 ops initial1 initial2 : -> Conf .
 eq initial1 = $ [a, wait] [b, wait] .
 eq initial2 = * [a, wait] [b, wait] .
endm

Maude> red modelCheck(initial1, [] ~(crit(a) \ crit(b))) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) \ crit(b))) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true
A strong liveness property

If a process waits infinitely often, then it is in its critical section infinitely often.

Maude> red modelCheck(initial1, ([]<> wait(a)) -> ([]<> crit(a))) .
ModelChecker: Property automaton has 3 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial1, ([]<> wait(b)) -> ([]<> crit(b))) .
ModelChecker: Property automaton has 3 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(a)) -> ([]<> crit(a))) .
ModelChecker: Property automaton has 3 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(b)) -> ([]<> crit(b))) .
ModelChecker: Property automaton has 3 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true
Counterexamples

- A counterexample is a pair consisting of two lists of transitions, where the first corresponds to a finite path beginning in the initial state, and the second describes a loop.
- If we check whether, beginning in the state initial1, process b will always be waiting, we get a counterexample:

```plaintext
Maude> red modelCheck(initial1, [a wait(b)]) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.

result ModelCheckResult:
counterexample({$ [a, wait] [b, wait], 'a-enter}
    {[a, critical] [b, wait], 'a-exit}
    {* [a, wait] [b, wait], 'b-enter} ,
    {[a, wait] [b, critical], 'b-exit}
    {$ [a, wait] [b, wait], 'a-enter}
    {[a, critical] [b, wait], 'a-exit}
    {* [a, wait] [b, wait], 'b-enter})
```
Model-checking modules

- MUTEX-CHECK
- LTL-SIMPLIFIER
- MODEL-CHECKER
- MUTEX-PRED
- LTL
- QID
- SATISFACTION
- MUTEX
- BOOL
Crossing the river

- A **shepherd** needs to transport to the other side of a river
 - a **wolf**,
 - a **lamb**, and
 - a **cabbage**.

- He has only a boat with room for the shepherd himself and another item.

- The problem is that in the absence of the shepherd
 - the wolf would **eat** the lamb, and
 - the lamb would **eat** the cabbage.
Crossing the river

- The shepherd and his belongings are represented as objects with an attribute indicating the side of the river in which each is located.
- Constants left and right represent the two sides of the river.
- Operation change is used to modify the corresponding attributes.
- Rules represent the ways of crossing the river that are allowed by the capacity of the boat.
- Properties define the good and bad states:
 - success characterizes the state in which the shepherd and his belongings are in the other side,
 - disaster characterizes the states in which some eating takes place.
Crossing the river

mod RIVER-CROSSING is
 sorts Side Group .

 ops left right : -> Side [ctor] .
 op change : Side -> Side .
 eq change(left) = right .
 eq change(right) = left .

 ops s w l c : Side -> Group [ctor] .
 op __ : Group Group -> Group [ctor assoc comm] .

 var S : Side .

 rl [shepherd] : s(S) => s(change(S)) .
 rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .
 rl [lamb] : s(S) l(S) => s(change(S)) l(change(S)) .
 rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm
Crossing the river

mod RIVER-CROSSING-PROP is
 protecting RIVER-CROSSING .
 including MODEL-CHECKER .
 subsort Group < State .

 op initial : -> Group .
 eq initial = s(left) w(left) l(left) c(left) .

 ops disaster success : -> Prop .

 vars S S' S'' : Side .

 ceq (w(S) l(S) s(S') c(S'')) |= disaster) = true if S =/= S' .
 ceq (w(S'') l(S) s(S') c(S) |= disaster) = true if S =/= S' .
 eq (s(right) w(right) l(right) c(right) |= success) = true .
endm
Crossing the river

- The model checker only returns paths that are counterexamples of properties.
- To find a safe path we need to find a formula that somehow expresses the negation of the property we are interested in: a counterexample will then witness a safe path for the shepherd.
- If no safe path exists, then it is true that whenever success is reached a disastrous state has been traversed before:

 \[
 <> \text{success} \rightarrow (<> \text{disaster} \lor (\neg \text{success}) \cup \text{disaster})
 \]

- A counterexample to this formula is a safe path, completed so as to have a cycle.
Model checking

Crossing the river

Maude> red modelCheck(initial,
 <> success -> (<> disaster /\ ((~ success) U disaster))).

result ModelCheckResult: counterexample(
 {s(left) w(left) l(left) c(left),'lamb}
 {s(right) w(left) l(right) c(left),'shepherd}
 {s(left) w(left) l(right) c(left),'wolf}
 {s(right) w(right) l(right) c(left),'lamb}
 {s(left) w(right) l(left) c(left),'cabbage}
 {s(right) w(right) l(left) c(right),'shepherd}
 {s(left) w(right) l(left) c(right),'lamb}
 {s(right) w(right) l(right) c(right),'lamb}
 {s(left) w(right) l(left) c(right),'shepherd}
 {s(right) w(right) l(left) c(right),'wolf}
 {s(left) w(left) l(left) c(right),'lamb}
 {s(right) w(left) l(right) c(right),'cabbage}
 {s(left) w(left) l(right) c(left),'wolf},
 {s(right) w(right) l(right) c(left),'lamb}
 {s(left) w(right) l(right) c(left),'lamb})
Crossing the river through search

mod RIVER-CROSSING is
 sorts Side Group State .
 ops left right : -> Side [ctor] .
 op change : Side -> Side .
 eq change(left) = right .
 eq change(right) = left .
 ops s w l c : Side -> Group [ctor] .
 op __ : Group Group -> Group [ctor assoc comm] .

vars S S' : Side . var G : Group .

ceq w(S) l(S) s(S') = w(S) s(S') if S /= S' .
 --- wolf eats lamb
ceq c(S) l(S) w(S') s(S') = l(S) w(S') s(S') if S /= S' .
 --- lamb eats cabbage

• Problem: lack of coherence!
• Solution: encapsulation and rule refinement
Model checking
Crossing the river

Crossing the river through search

\[
\begin{align*}
\text{op } \{_\} & : \text{Group } \to \text{State } [\text{ctor}] . \\
\text{op } \text{toBeEaten} & : \text{Group } \to \text{Bool} . \\
\text{ceq } \text{toBeEaten}(w(S) \land(S) s(S’) G) & = \text{true if } S =/= S’ . \\
\text{ceq } \text{toBeEaten}(c(S) \land(S) s(S’) G) & = \text{true if } S =/= S’ . \\
\text{eq } \text{toBeEaten}(G) & = \text{false [wise]} .
\end{align*}
\]

crl [shepherd-alone] : \{ s(S) G \} \to \{ s(\text{change}(S)) G \} \\
\quad \text{if not}(\text{toBeEaten}(s(S) G)) . \\
crl [wolf] : \{ s(S) w(S) G \} \to \{ s(\text{change}(S)) w(\text{change}(S)) G \} \\
\quad \text{if not}(\text{toBeEaten}(s(S) w(S) G)) . \\
rll [lamb] : \{ s(S) l(S) G \} \to \{ s(\text{change}(S)) l(\text{change}(S)) G \}. \\
crl [cabbage] : \{ s(S) c(S) G \} \to \{ s(\text{change}(S)) c(\text{change}(S)) G \} \\
\quad \text{if not}(\text{toBeEaten}(s(S) c(S) G)) .
\]

\[
\begin{align*}
\text{op } \text{initial} & : \to \text{State} . \\
\text{eq } \text{initial} & = \{ s(\text{left}) w(\text{left}) l(\text{left}) c(\text{left}) \} . \\
\text{endm}
\end{align*}
\]
Crossing the river through search

Maude> search initial
 =>* { w(right) s(right) l(right) c(right) }.
Solution 1 (state 27)
empty substitution

No more solutions.

Maude> show path labels 27.
lamb
shepherd-alone
wolf
lamb
cabbage
shepherd-alone
lamb
Reflection

• Rewriting logic is **reflective**, because there is a finitely presented rewrite theory \mathcal{U} that is **universal** in the sense that:
 - we can represent any finitely presented rewrite theory \mathcal{R} and any terms t, t' in \mathcal{R} as terms \overline{R} and $\overline{t}, \overline{t'}$ in \mathcal{U},
 - then we have the following equivalence

\[
\mathcal{R} \vdash t \rightarrow t' \iff \mathcal{U} \vdash \langle \overline{R}, \overline{t} \rangle \rightarrow \langle \overline{R}, \overline{t'} \rangle.
\]

• Since \mathcal{U} is representable in itself, we get a **reflective tower**

\[
\mathcal{R} \vdash t \rightarrow t' \\
\Downarrow \\
\mathcal{U} \vdash \langle \overline{R}, \overline{t} \rangle \rightarrow \langle \overline{R}, \overline{t'} \rangle \\
\Downarrow \\
\mathcal{U} \vdash \langle \overline{U}, \langle \overline{R}, \overline{t} \rangle \rangle \rightarrow \langle \overline{U}, \langle \overline{R}, \overline{t'} \rangle \rangle \\
\Downarrow \\
\vdots
\]
Maude’s metalevel
Maude’s metalevel

In Maude, key functionality of the universal theory \mathcal{U} has been efficiently implemented in the functional module META-LEVEL:

- Maude terms are reified as elements of a data type Term in the module META-TERM;
- Maude modules are reified as terms in a data type Module in the module META-MODULE;
- operations upModule, upTerm, downTerm, and others allow moving between reflection levels;
- the process of reducing a term to canonical form using Maude’s reduce command is metarepresented by a built-in function metaReduce;
- the processes of rewriting a term in a system module using Maude’s rewrite and frewrite commands are metarepresented by built-in functions metaRewrite and metaFRewrite;
Maude’s metalevel

- The process of applying a rule of a system module at the top of a term is metarepresented by a built-in function `metaApply`;
- The process of applying a rule of a system module at any position of a term is metarepresented by a built-in function `metaXapply`;
- The process of matching two terms is reified by built-in functions `metaMatch` and `metaXmatch`;
- The process of searching for a term satisfying some conditions starting in an initial term is reified by built-in functions `metaSearch` and `metaSearchPath`; and
- Parsing and pretty-printing of a term in a module, as well as key sort operations such as comparing sorts in the subsort ordering of a signature, are also metarepresented by corresponding built-in functions.
Representing terms

sorts Constant Variable Term .
subsorts Constant Variable < Qid Term .

op <Qids> : -> Constant [special (...)] .
op <Qids> : -> Variable [special (...)] .

sort TermList .
subsort Term < TermList .
op _,_: TermList TermList -> TermList
 [ctor assoc gather (e E) prec 120] .

Representing terms: Example

- **Usual term**: `c (q M:State)`

- **Meta-representation**
  ```
  '__['c.Item, '__['q.Coin, 'M:State]]
  ```

- **Meta-meta-representation**
  ```
  '_['_[''_['q.Item(Constant,
  '_['_['''q.Coin(Constant,
  ''M:State.Variable]])]
  ```
Representing modules

sorts FModule SModule FTheory STheory Module .
sorts FModule < SModule < Module .
sorts FTheory < STheory < Module .
sort Header .
subsort Qid < Header .
op fmod_is_sorts_._____endfm : Header ImportList SortSet
 SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule
 [ctor gather (& & & & & &)] .
op mod_is_sorts_._____endm : Header ImportList SortSet
 SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet
 -> SModule [ctor gather (& & & & & & &)] .
op fth_is_sorts_._____endfth : Qid ImportList SortSet SubsortDeclSet
 OpDeclSet MembAxSet EquationSet -> FTheory
 [ctor gather (& & & & & & &)] .
op th_is_sorts_._____endth : Qid ImportList SortSet SubsortDeclSet
 OpDeclSet MembAxSet EquationSet RuleSet -> STheory
 [ctor gather (& & & & & & &)] .
Representing modules: Example at the object level

```plaintext
fmod VENDING-MACHINE-SIGNATURE is
  sorts Coin Item State .
  subsorts Coin Item < State .
  op $ : -> Coin [format (r! o)] .
  op q : -> Coin [format (r! o)] .
  op a : -> Item [format (b! o)] .
  op c : -> Item [format (b! o)] .
endfm
```
Representing modules: Example at the metalevel

fmod 'VENDING-MACHINE-SIGNATURE is
 nil
 sorts 'Coin ; 'Item ; 'State .
 subsort 'Coin < 'State .
 subsort 'Item < 'State .
 op '___ : 'State 'State -> 'State [assoc comm] .
 op 'a : nil -> 'Item [format('b! 'o)] .
 op 'c : nil -> 'Item [format('b! 'o)] .
 op '$: nil -> 'Coin [format('r! 'o)] .
 op 'q : nil -> 'Coin [format('r! 'o)] .
 none
 none
endfm
Reflection Maude’s metalevel

Representing modules: Example at the object level

mod VENDING-MACHINE is
 including VENDING-MACHINE-SIGNATURE .
 var M : State .
 rl [add-q] : M => M q .
 rl [buy-c] : $ => c .
 rl [buy-a] : $ => a q .
 rl [change] : q q q q => $.
endm
Representing modules: Example at the metalevel

mod 'VENDING-MACHINE is
 including 'VENDING-MACHINE-SIGNATURE .
 sorts none .
 none
 none
 none
 none
 rl 'M:State => '___['M:State, 'q.Coin] [label('add-q)] .
 rl '$.Coin => 'c.Item [label('buy-c)] .
 rl '$.Coin => '___['a.Item, 'q.Coin] [label('buy-a)] .
 rl '___['q.Coin,'q.Coin,'q.Coin,'q.Coin]
 => '$.Coin [label('change)] .
endm
Moving between levels

op upModule : Qid Bool ~> Module [special (...)] .
op upSorts : Qid Bool ~> SortSet [special (...)] .
op upSubsortDecls : Qid Bool ~> SubsortDeclSet [special (...)] .
op upOpDecls : Qid Bool ~> OpDeclSet [special (...)] .
op upMbs : Qid Bool ~> MembAxSet [special (...)] .
op upEqs : Qid Bool ~> EquationSet [special (...)] .
op upRls : Qid Bool ~> RuleSet [special (...)] .

In all these (partial) operations

- The first argument is expected to be a module name.
- The second argument is a Boolean, indicating whether we are interested also in the imported modules or not.
Moving between levels: Example

Maude> reduce in META-LEVEL : upEq('VENDING-MACHINE, true').
result EquationSet:
 eq '_and_['A:Bool, '_xor_['B:Bool, 'C:Bool]]
 eq '_or_['A:Bool, 'B:Bool]
 eq '_implies_['A:Bool, 'B:Bool]
Moving between levels: Example

Maude> reduce in META-LEVEL : upEqS('VENDING-MACHINE, false) .
result EquationSet: (none).EquationSet

Maude> reduce in META-LEVEL : upRls('VENDING-MACHINE, true) .
result RuleSet:
 rl '$.Coin => 'c.Item [label('buy-c)] .
 rl '$.Coin => '__[''q.Coin,''a.Item] [label('buy-a)] .
 rl 'M:State => '__[''q.Coin,''M:State] [label('add-q)] .
Moving between levels: Terms

fmod UP-DOWN-TEST is protecting META-LEVEL .
 sort Foo .
 ops a b c d : -> Foo .
 op f : Foo Foo -> Foo .
 op error : -> [Foo] .
 eq c = d .
endfm

Maude> reduce in UP-DOWN-TEST : upTerm(f(a, f(b, c))) .
result GroundTerm: 'f['a.Foo,'f['b.Foo,'d.Foo]]

Maude> reduce downTerm('f['a.Foo,'f['b.Foo,'c.Foo]], error) .
result Foo: f(a, f(b, c))

Maude> reduce downTerm('f['a.Foo,'f['b.Foo,'e.Foo]], error) .
Advisory: could not find a constant e of
 sort Foo in meta-module UP-DOWN-TEST.
result [Foo]: error
metaReduce

- Its first argument is the representation in META-LEVEL of a module \mathcal{R} and its second argument is the representation in META-LEVEL of a term t.
- It returns the metarepresentation of the canonical form of t, using the equations in \mathcal{R}, together with the metarepresentation of its corresponding sort or kind.
- The reduction strategy used by metaReduce coincides with that of the reduce command.

Maude> reduce in META-LEVEL:
 metaReduce(upModule('SIEVE, false),
 'show_upto_['primes.NatList, 's_\^10[\^0.Zero]]) .
result ResultPair:
 {'_.[s_\^2[\^0.Zero], 's_\^3[\^0.Zero], 's_\^5[\^0.Zero],
 's_\^7[\^0.Zero], 's_\^11[\^0.Zero], 's_\^13[\^0.Zero],
 's_\^17[\^0.Zero], 's_\^19[\^0.Zero], 's_\^23[\^0.Zero],
 's_\^29[\^0.Zero]],
 'IntList}
metaRewrite

- Its first two arguments are the representations in META-LEVEL of a module \(\mathcal{R} \) and of a term \(t \), and its third argument is a natural \(n \).
- Its result is the representation of the term obtained from \(t \) after at most \(n \) applications of the rules in \(\mathcal{R} \) using the strategy of Maude’s command rewrite, together with the metarepresentation of its corresponding sort or kind.

Maude> reduce in META-LEVEL :
 metaRewrite(upModule('VENDING-MACHINE, false),
 '__['.Coin, '__['.Coin, '__[q.Coin, q.Coin]], 1).
result ResultPair:
 {'__ ['.Coin, '.Coin, '.Coin, q.Coin, q.Coin], 'State'}

Maude> reduce in META-LEVEL :
 metaRewrite(upModule('VENDING-MACHINE, false),
 '__['.Coin, '__['.Coin, '__[q.Coin, q.Coin]], 2).
result ResultPair:
 {'__ ['.Coin, '.Coin, '.Coin, q.Coin, q.Coin, q.Coin], 'State'}
metaApply

- The first three arguments are representations in META-LEVEL of a module \mathcal{R}, a term t in \mathcal{R}, and a label l of some rules in \mathcal{R}.
- The fourth argument is a set of assignments (possibly empty) defining a partial substitution σ for the variables in the rules.
- The last argument is a natural number n, used to enumerate (starting from 0) all the possible solutions of the intended rule application.
- It returns a triple of sort ResultTriple consisting of the metarepresentation of a term, the metarepresentation of its corresponding sort or kind, and the metarepresentation of a substitution.
The operation \texttt{metaApply} is evaluated as follows:

1. the term \(t \) is first \textbf{fully reduced} using the equations in \(\mathcal{R} \);
2. the resulting term is \textbf{matched at the top} against all rules with label \(l \) in \(\mathcal{R} \) partially instantiated with \(\sigma \), with matches that fail to satisfy the condition of their rule discarded;
3. the \textbf{first} \(n \) \textbf{successful matches} are \textbf{discarded}; if there is an \((n + 1)\)th match, its rule is applied using that match and the steps 4 and 5 below are taken; otherwise \textbf{failure} is returned;
4. the term resulting from \textbf{applying the given rule with the} \((n + 1)\)th match is \textbf{fully reduced} using the equations in \(\mathcal{R} \);
5. the triple formed by the metarepresentation of the resulting fully reduced term, the metarepresentation of its corresponding sort or kind, and the metarepresentation of the substitution used in the reduction is returned.
metaApply

Maude> reduce in META-LEVEL :
 metaApply(upModule('VENDING-MACHINE, false),
 '$.Coin, 'buy-c, none, 0) .
result ResultTriple: {'c.Item,'Item,(none).Substitution}

Maude> reduce in META-LEVEL :
 metaApply(upModule('VENDING-MACHINE, false),
 '$.Coin, 'add-$, none, 0) .
result ResultTriple:

Maude> reduce in META-LEVEL :
 metaApply(upModule('VENDING-MACHINE, false),
 '__['q.Coin, '$.Coin], 'buy-c, none, 0) .
result ResultTriple?: (failure).ResultTriple?
metaXapply

- The operation $\text{metaXapply}(\mathcal{R}, \bar{t}, \bar{l}, \sigma, n, b, m)$ is evaluated as the function metaApply but using extension and in any possible position, not only at the top.
- The arguments n and b can be used to localize the part of the term where the rule application can take place.
- n is the lower bound on depth in terms of nested operators, and should be set to 0 to start searching from the top, while
- The Bound argument b indicates the upper bound, and should be set to unbounded to have no cut off.
- The result of metaXapply has an additional component, giving the context (a term with a single “hole”, represented $[\]$) inside the given term \bar{t}, where the rewriting has taken place.
Reflection Descent functions

metaXapply

Maude> reduce in META-LEVEL :
metaXapply(upModule('VENDING-MACHINE, false),
'__['q.Coin, '$.Coin], 'buy-c, none, 0, unbounded, 0).
result Result4Tuple:
{'__['q.Coin, 'c.Item], 'State, none, '__['q.Coin, []]}

Maude> reduce in META-LEVEL :
metaXapply(upModule('VENDING-MACHINE, false),
'__['q.Coin, '$.Coin], 'buy-c, none, 0, unbounded, 1).
result Result4Tuple?: (failure).Result4Tuple?
metaMatch and metaXmatch

- The operation \(\text{metaMatch}(\overline{\mathcal{R}}, \overline{t}, \overline{t'}, \text{Cond}, n) \) tries to match at the top the terms \(t \) and \(t' \) in the module \(\mathcal{R} \) in such a way that the resulting substitution satisfies the condition \(\text{Cond} \).
- The last argument is used to enumerate possible matches.
- If the matching attempt is successful, the result is the corresponding substitution; otherwise, \text{noMatch} is returned.
- The generalization to \text{metaXmatch} follows exactly the same ideas as for \text{metaXapply}.
- \text{metaMatch} provides the metalevel counterpart of the object-level command \text{match}.
- \text{metaXmatch} provides a \text{generalization} of the object-level command \text{xmatch}. The object-level behavior of the \text{xmatch} command is obtained by setting both min and max depth to 0.
metaMatch and metaXmatch

Maude> reduce in META-LEVEL:
 metaMatch(upModule('VENDING-MACHINE, false),
 '__[M:State, $Coin],
 '__[$Coin, q.Coin, a.Item, c.Item], nil, 0).
result Assignment: M:State <- '__[q.Coin, a.Item, c.Item]

Maude> reduce metaXmatch(upModule('VENDING-MACHINE, false),
 '__[M:State, $Coin],
 '__[$Coin, q.Coin, a.Item, c.Item],
 nil, 0, unbounded, 0).
result MatchPair: {M:State <- '__[q.Coin, a.Item, c.Item], []}

Maude> reduce metaXmatch(upModule('VENDING-MACHINE, false),
 '__[M:State,$Coin],
 '__[$Coin,q.Coin,a.Item,c.Item],
 nil, 0, unbounded, 1).
result MatchPair: {M:State <- '__[a.Item,c.Item], '__[q.Coin,[]]}
metaSearch

- metaSearch takes as arguments
 - the metarepresentation of a module,
 - the metarepresentation of the starting term for search,
 - the metarepresentation of the pattern to search for,
 - the metarepresentation of a condition to be satisfied,
 - the metarepresentation of the type of search to carry on,
 - a Bound value, and
 - a natural number, to enumerate solutions.

- The searching strategy used by metaSearch coincides with that of the object level search command.

- The possible types of search are:
 - '//' for a search involving zero or more rewrites (corresponding to =>* in the search command),
 - '++' for a search consisting in one or more rewrites (=>+),
 - '!' for a search that only matches canonical forms (=>!).

- The result has the same form as the result of metaApply.
metaSearch

Maude> reduce in META-LEVEL :
metaSearch(upModule('VENDING-MACHINE, false),
'__[\$.

Coin, 'q.

Coin, 'q.

Coin,'q.

Coin],
'__['c.

Item, 'a.

Item, 'c.

Item, 'M:

State],
nil, '+, unbounded, Φ) .
result ResultTriple:
{'__['q.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin,'q.

Coin,'a.

Item,'c.

Item,'c.

Item],
'State,
'M:

State <- '__['q.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin]}

Maude> reduce in META-LEVEL :
metaSearch(upModule('VENDING-MACHINE, false),
'__[\$.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin],
'__['c.

Item, 'a.

Item, 'c.

Item, 'M:

State],
nil, '+, unbounded, 1) .
result ResultTriple:
{'__[\$.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin,'q.

Coin,'a.

Item,'c.

Item,'c.

Item],
'State,
'M:

State <- '__[\$.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin, 'q.

Coin]
Reflection Descent functions

metaSearchPath

Maude> reduce in META-LEVEL :
metaSearchPath(upModule('VENDING-MACHINE, false),
 '__['$Coin, 'q.Coin, 'q.Coin,'q.Coin],
 '__['c.Item, 'a.Item, 'c.Item, 'M:State],
nil, '+, unbounded, 0).

result Trace:
{ '__['$Coin,'q.Coin,'q.Coin,'q.Coin],
 'State,
 rl 'M:State => '__['$Coin,'M:State] [label('add-')] .}
{ '__['$Coin,'$Coin,'q.Coin,'q.Coin,'q.Coin],
 'State,
 rl 'M:State => '__['$Coin,'M:State] [label('add-')] .}
{ '__['$Coin,'$Coin,'$Coin,'q.Coin,'q.Coin,'c.Item],
 'State,
 rl '$Coin => 'c.Item [label('buy-c')] .}
{ '__['$Coin,'$Coin,'q.Coin,'q.Coin,'q.Coin,'c.Item],
 'State,
 rl '$Coin => 'c.Item [label('buy-c')] .}
{ '__['$Coin,'q.Coin,'q.Coin,'q.Coin,'c.Item,'c.Item],
 'State,
 rl '$Coin => '__['q.Coin,'a.Item] [label('buy-a')] .}
Internal strategies

- System modules in Maude are rewrite theories that do not need to be Church-Rosser and terminating.
- Therefore, we need to have good ways of controlling the rewriting inference process—which in principle could not terminate or go in many undesired directions—by means of adequate strategies.
- In Maude, thanks to its reflective capabilities, strategies can be made internal to the system.
- That is, they can be defined using statements in a normal module in Maude, and can be reasoned about as with statements in any other module.
- In general, internal strategies are defined in extensions of the META-LEVEL module by using metaReduce, metaApply, metaXapply, etc., as building blocks.
Internal strategies

We illustrate some of these possibilities by implementing the following strategies for controlling the execution of the rules in the VENDING–MACHINE module:

- \texttt{insertCoin}: insert either a dollar or a quarter in the vending machine;
- \texttt{onlyCakes}: only buy cakes, and buy as many cakes as possible, with the coins already inserted;
- \texttt{onlyNitems}: only buy either cakes or apples, and buy at most \(n \) of them, with the coins already inserted;
- \texttt{cakesAndApples}: buy the same number of apples and cakes, and buy as many as possible, with the coins already inserted.
Internal strategies: insertCoin

var T : Term .
var Q : Qid .
var N : Nat .
vars BuyItem? BuyCake? Change? : [Result4Tuple].

op insertCoin : Qid Term -> Term .

ceq insertCoin(Q, T)
 = if BuyItem? :: Result4Tuple
 then getTerm(BuyItem?)
 else T
 fi

 if (Q == 'add-q or Q == 'add-$)
 \ BuyItem? := metaXapply(upModule('VENDING-MACHINE, false),
 T, Q, none, 0, unbounded, 0) .

eq insertCoin(Q, T) = T [owise] .
Internal strategies: onlyCakes

\[
\begin{aligned}
\text{op} \ \text{onlyCakes} & : \ \text{Term} \rightarrow \ \text{Term} . \\
\text{ceq} \ \text{onlyCakes}(T) & = \begin{cases}
\text{if} \ \text{BuyCake}? :: \ \text{Result4Tuple} \\
\text{then} \ \text{onlyCakes}(\text{getTerm}(\text{BuyCake}?)) \\
\text{else} \ (\text{if} \ \text{Change}? :: \ \text{Result4Tuple} \\
\text{then} \ \text{onlyCakes}(\text{getTerm}(\text{Change}?)) \\
\text{else} \ T \\
\text{fi} \\
\text{fi} \\
\text{if} \ \text{BuyCake}? := \ \text{metaXapply}(\text{upModule}('\text{VENDING-MACHINE, false}), \\
T, '\text{buy-c}, \text{none, 0, unbounded, 0}) \\
\text{\textbackslash Change}? := \ \text{metaXapply}(\text{upModule}('\text{VENDING-MACHINE, false}), \\
T, '\text{change}, \text{none, 0, unbounded, 0}).
\end{cases}
\end{aligned}
\]
Internal strategies: onlyNItems

\[
\text{op onlyNItems : Term Qid Nat -> Term .}
\]

\[
\text{ceq onlyNItems(T, Q, N)}
\]
\[
= \text{if } N \equiv \emptyset \quad \text{then } T
\]
\[
\quad \text{else (if } \text{BuyItem? :: Result4Tuple}
\]
\[
\quad \text{then onlyNItems(getTerm(BuyItem?), Q, sd(N, 1))}
\]
\[
\quad \text{else (if } \text{Change? :: Result4Tuple}
\]
\[
\quad \text{then onlyNItems(getTerm(Change?), Q, N)}
\]
\[
\quad \text{else } T
\]
\[
\quad \text{fi}
\]
\[
\quad \text{fi}
\]
\[
\text{if } (Q \equiv \text{'buy-c or Q \equiv 'buy-a})
\]
\[
\quad \text{// BuyItem? := metaXapply(upModule('VENDING-MACHINE, false),}
\]
\[
\quad \text{ T, Q, none, \emptyset, unbounded, \emptyset)}
\]
\[
\quad \text{// Change? := metaXapply(upModule('VENDING-MACHINE, false},}
\]
\[
\quad \text{ T, 'change, none, \emptyset, unbounded, \emptyset).}
\]

\[
\text{eq onlyNItems(T, Q, N) = T [owise].}
\]
Internal strategies: cakesAndApples

```plaintext
op buyItem? : Term Qid -> Bool .

ceq buyItem?(T, Q) = if BuyItem? :: Result4Tuple
then true
else (if Change? :: Result4Tuple
then buyItem?(getTerm(Change?), Q)
else false
fi)
fi

if (Q == 'buy-c or Q == 'buy-a)
\BuyItem? := metaXapply(upModule('VENDING-MACHINE, false),
T, Q, none, 0, unbounded, 0)
\Change? := metaXapply(upModule('VENDING-MACHINE, false),
T, 'change, none, 0, unbounded, 0) .

eq buyItem?(T, Q) = false [owise] .
```
Internal strategies: cakesAndApples

```
	op cakesAndApples : Term -> Term .

eq cakesAndApples(T)
  = if buyItem?(T, 'buy-c)
    then (if buyItem?(onlyNitems(T, 'buy-c, 1), 'buy-a)
        then cakesAndApples(onlyNitems(onlyNitems(T, 'buy-c, 1),
          'buy-a, 1))
          else T
        fi)
    else T
    fi .
```
Internal strategies: Examples

Maude> reduce in BUYING-STRATS :
 insertCoin('qCoin, insertCoin('$Coin,
 '____[$Coin,'$Coin,'$Coin, 'qCoin])).

Maude> reduce in BUYING-STRATS :
 onlyCakes('____[$Coin,'$Coin,'$Coin, 'qCoin]) .

Maude> reduce in BUYING-STRATS :
 onlyNitems('____[$Coin,'$Coin,'$Coin, 'qCoin], 'buy-a, 3) .

Maude> reduce in BUYING-STRATS :
 cakesAndApples('____[$Coin,'$Coin,'$Coin, 'qCoin]) .
Metaprogramming

- **Programming at the metalevel**: the metalevel equations and rewrite rules operate on representations of lower-level rewrite theories.
- Reflection makes possible many advanced metaprogramming applications, including
 - user-definable strategy languages,
 - language extensions by new module composition operations,
 - development of theorem proving tools, and
 - reifications of other languages and logics within rewriting logic.
- **Full Maude** extends Maude with special syntax for object-oriented specifications, and with a richer module algebra of parameterized modules and module composition operations.
- Theorem provers and other formal tools have underlying inference systems that can be naturally specified and prototyped in rewriting logic. Furthermore, the strategy aspects of such tools and inference systems can then be specified by rewriting strategies.
Developing theorem proving tools

- Theorem-proving tools have a very simple **reflective design** in Maude.
- The inference system itself may perform **theory transformations**, so that the theories themselves must be treated as data.
- We need **strategies** to guide the application of the inference rules.
- Example: **Inductive Theorem Prover (ITP)**.
Metaprogramming examples

- A **metaprogram** is a program that takes programs as inputs and performs some useful computation.
- It may, for example, **transform** one program into another.
- Or it may **analyze** such a program with respect to some properties, or perform other useful program-dependent computations.
- We can easily write Maude metaprograms by importing META-LEVEL into a module that defines such metaprograms as functions that have Module as one of their arguments.
- Examples:
 - order-sorted unification,
 - rule instrumentation.
Order-sorted unification

- A unification problem is a system \((e_1, \ldots, e_n)\) of commutative equations of the form \(t \equiv^c t'\), or a disjunction of systems \(S_1 \lor \ldots \lor S_n\).

- Given an order-sorted specification \(S = (\Sigma, E \cup A)\), where \(A\) consists of the commutativity property of some operators in \(\Sigma\), a substitution \(\sigma\) is an \(S\)-solution of the equation \(t \equiv_A^c t'\) if and only if \(\sigma(t) \equiv_A \sigma(t')\). The set of \(S\)-solutions of an equation \(t \equiv_A^c t'\) is denoted \(U(t, t', S)\).

- A set of substitutions \(\Phi\) is a complete set of \(S\)-solutions of the equation \(t \equiv_A^c t'\) away from the set of variables \(W\) such that \(\text{vars}(t) \cup \text{vars}(t') \subseteq W\) if and only if
 - \(\forall \sigma \in \Phi, D(\sigma) \subseteq \text{vars}(t) \cup \text{vars}(t')\) and \(I(\sigma) \cap W = \emptyset\);
 - \(\forall \sigma \in \Phi, \sigma \in U(t, t', S)\); and
 - \(\forall \rho \in U(t, t', S), \exists \sigma \in \Phi\) such that \(\sigma <_A \rho [\text{vars}(t) \cup \text{vars}(t')]\).
Order-sorted unification: Inference rules

- Inference rules operate on 3-tuples of the form $\langle V; E; \sigma \rangle$ and on 4-tuples of the form $[V; C; \sigma; \theta]$.
- A 3-tuple $\langle V; E; \sigma \rangle$ consists of a set of variables V, a set of equations E, and a substitution σ.
- A 4-tuple $[V; C; \sigma; \theta]$ consists of a set of variables V, a set of membership constraints C, and substitutions σ and θ.
- The rules operating on the first kind of tuples correspond to the first phase of the process, which is quite similar to syntactic unification. The main differences are in the rules Check and Eliminate, in which the sort information is used to try to quickly discard failure.
- In the second phase the constraints on the solutions are checked.
Order-sorted unification: Inference rules

Deletion of trivial equations

\[
\langle V; \{t =_c t, E\}; \sigma \rangle \\
\langle V; E; \sigma \rangle
\]

Decomposition

\[
\langle V; \{f(t_1, \ldots, t_n) =_c f(t'_1, \ldots, t'_n), E\}; \sigma \rangle \\
\langle V; \{t_1 =_c t'_1, \ldots, t_n =_c t'_n, E\}; \sigma \rangle
\]

if \(n \neq 2 \) or \(f \) noncommutative

\[
\langle V; \{f(t_1, t_2) =_c f(t'_1, t'_2), E\}; \sigma \rangle \\
\langle V; \{t_1 =_c t'_1, t_2 =_c t'_2, E\}; \sigma \rangle \lor \langle V; \{t_1 =_c t'_2, t_2 =_c t'_1, E\}; \sigma \rangle
\]

if \(f \) commutative
Order-sorted unification: Inference rules

Clash of symbols

\[\langle V; \{f(t_1, \ldots, t_n) =^c g(t'_1, \ldots, t'_m), E\}; \sigma \rangle \]

failure

if \(n \neq m \) or \(f \neq g \)

Merging

\[\langle \{x : s, V\}; \{x =^c t, x =^c t', E\}; \sigma \rangle \]
\[\langle \{x : s, V\}; \{x =^c t, t =^c t', E\}; \sigma \rangle \]

if \(x = t \succ t = t' \)

Check

\[\langle \{x : s, V\}; \{x =^c t, E\}; \sigma \rangle \]

failure

if \(x \neq t \) and \((x \text{ occurs in } t \text{ or } s \cap LS(t) = \emptyset) \)
Order-sorted unification: Inference rules

Eliminate

\[
\begin{array}{c}
\langle \{x : s, V\}; \{x \neq\ c t, E\}; \sigma \rangle \\
\langle \{x : s, V\}; E\theta; \{\sigma\theta, \theta\} \rangle \\
\end{array}
\]

with \(\theta = \{x \leftarrow t\} \)

if \(x \) does not occur in \(t \) and \(s \cap LS(t) \neq \emptyset \)

Transition

\[
\begin{array}{c}
\langle V; \emptyset; \sigma \rangle \\
[V; \emptyset; \sigma; \sigma]
\end{array}
\]
Order-sorted unification: Inference rules

Solving \((x \leftarrow t)\)

\[
\frac{\left\{ x : s, \ V \right\}; \ C; \ \left\{ x \leftarrow t, \ \sigma \right\}; \ \theta \}{\left\{ (t : s), \ C \right\}; \ \sigma; \ \theta}
\]

\[
\left\{ V; \ \left\{ t : s \right\}, \ C \right\}; \ \sigma; \ \theta
\]

Solving \((x : s)\)

\[
\frac{\left\{ x : s, \ V \right\}; \ \left\{ x : s', \ C \right\}; \ \emptyset; \ \theta}{\bigvee_{s'' \in s \cap s'} \left\{ x : s'', \ V \right\}; \ C; \ \emptyset; \ \theta}
\]

Solving \(f(t_1, \ldots, t_n) : s)\)

\[
\frac{\left\{ V; \ \left\{ f(t_1, \ldots, t_n) : s, \ C \right\}; \ \emptyset; \ \theta \}{\bigvee_{f : s_1 \ldots s_n \rightarrow s'} \left\{ V; \ \left\{ t_1 : s_1, \ \ldots, \ t_n : s_n, \ C \right\}; \ \emptyset; \ \theta \}
\]

\[f : s_1 \ldots s_n \rightarrow s'\]
\[s' \leq s\]
\[s_1 \ldots s_n \text{ maximal}\]
Order-sorted unification in Maude

sorts VarDecl VarDeclSet .
op var_:_ : Variable Type -> VarDecl .
op varDecls : Term -> VarDeclSet .
op varDecls : TermList -> VarDeclSet .
op varDecls : CommEqSet -> VarDeclSet .

sort SubstitutionSet .

sorts UnifPair UnifTuple Disjunction .
subsort UnifTuple < Disjunction .
op <_;_;_;> : VarDeclSet CommEqSet Substitution -> UnifTuple .
op [_;_;_;_;] :
 VarDeclSet MembAxSet Substitution Substitution -> UnifTuple .
op failure : -> Disjunction .
op __/ : Disjunction Disjunction -> Disjunction
 [assoc comm id: failure] .
op unifPair : Module Disjunction -> UnifPair .
Order-sorted unification in Maude

- Commutative equations are built with syntax `_=?_` as terms of sort `CommEq`.

  ```
  sorts CommEq CommEqSet .
  subsort CommEq < CommEqSet .
  op _=?_ : Term Term -> CommEq [comm] .
  op none : -> CommEqSet .
  op __ : CommEqSet CommEqSet -> CommEqSet [assoc comm id: none] .
  ```

- The disjunction of tuples that must be created for the `Solving (x:s)` rule is generated by the following `unifTuplesVar` function.

  ```
  op unifTuplesVar :
      Module Variable Type Type UnifTuple -> Disjunction .
  ```
Order-sorted unification in Maude

- The `unifTuplesNonVar` function generates the disjunction of tuples that must be created for the `Solving (f(t₁,…,tₙ) : s)` rule.

  ```
  op unifTuplesNonVar : Module MembAx UnifTuple -> Disjunction .
  ```

- The `greaterCommEq` predicate defines a well-founded order on equations, based on the size of terms, defined in turn as the number of operator symbols in them.

  ```
  op greaterCommEq : CommEq CommEq -> Bool .
  op size : TermList -> Nat .
  op size : Term -> Nat .
  ```
Order-sorted unification in Maude

Deletion of Trivial Equations

eq \text{unifPair}(M, (< VDS ; (T =? T) \text{CEqS} ; \text{Subst} > \backslash D))
\quad = \text{unifPair}(M, (< VDS ; \text{CEqS} ; \text{Subst} > \backslash D)) .

Decomposition

eq \text{unifPair}(M, (< VDS ; (F[TL] =? G[TL']) \text{CEqS} ; \text{Subst} > \backslash D))
\quad = \text{if} (F /= G)
\quad \quad \quad \text{or}-\text{else} (\text{length}(TL) /= \text{length}(TL'))
\quad \quad \quad \text{then} \text{unifPair}(M, D)
\quad \quad \quad \text{else if} (\text{length}(TL) == 2)
\quad \quad \quad \quad \text{and}-\text{then} \text{hasAttr}(M, F, \text{leastSort}(M, TL), \text{comm})
\quad \quad \quad \quad \text{then} \text{unifPair}(M,
\quad \quad \quad \quad \quad \text{commUnifTupleSet}(VDS, F, TL, TL', \text{CEqS}, \text{Subst}) \backslash D)
\quad \quad \quad \quad \text{else} \text{unifPair}(M,
\quad \quad \quad \quad \quad < VDS ; \text{commEqBreak}(TL, TL') \text{CEqS} ; \text{Subst} > \backslash D)
\quad \quad \quad \quad \quad \text{fi}
\quad \quad \quad \text{fi} .
Order-sorted unification in Maude

Clash of Symbols

\[\text{ceq unifPair}(M, (< VDS ; (C =? C') CEqS ; Subst > \backslash D))
 = \text{unifPair}(M, D)
 \quad \text{if } C =/= C'.\]
\[\text{eq unifPair}(M, (< VDS ; (C =? F[TL]) CEqS ; Subst > \backslash D))
 = \text{unifPair}(M, D).\]

Merging

\[\text{ceq unifPair}(M, (< VDS ; (V =? T) (V =? T') CEqS ; Subst > \backslash D))
 = \text{unifPair}(M, (< VDS ; (V =? T) (T =? T') CEqS ; Subst > \backslash D))
 \quad \text{if greaterCommEq}((V =? T'), (T =? T')).\]
Order-sorted unification in Maude

Check and Eliminate

```plaintext
ceq unifPair(M, (< VDS ; (V =? T) CEqS ; Subst > \ / D))
  = if occurs(V, T)
    then unifPair(M, D)
    else if glbSorts(M, leastSort(M, T), getType(V)) == none
      then unifPair(M, D)
      else unifPair(M,
        < VDS ;
        substCommEqs(CEqS, V <- T) ;
        (substSubst(Subst, V <- T) ; V <- T) >
        \ / D)
    fi
  fi
if V =/= T .
```

```plaintext
op substCommEqs : CommEqSet Substitution -> CommEqSet .
op substSubst : Substitution Substitution -> Substitution .
```
Order-sorted unification in Maude

Transition

\[
\text{eq } \text{unifPair}(M, (< \text{VDS} ; \text{none} ; \text{Subst} > \backslash D)) \\
= \text{unifPair}(M, ([\text{VDS} ; \text{none} ; \text{Subst} \cdot \text{Subst}] \backslash D)) .
\]

Solving \((V \leftarrow T)\)

\[
\text{eq } \text{unifPair}(M, \\
[\text{var } V : S . \text{VDS} ; \text{MAS} ; (V \leftarrow T ; \text{Subst}) ; \text{Subst’}] \backslash D) \\
= \text{unifPair}(M, \\
[\text{VDS} ; \text{mb } T : S [\text{none}] . \text{MAS} ; \text{Subst} \cdot \text{Subst’}] \backslash D) .
\]
Order-sorted unification in Maude

Solving \((X : S)\) and Solving \((f(t_1, \ldots, t_n) : S)\)

eq \text{unifPair}(M, \\
[\text{var} V : S \ . \ VDS ; \text{mb} V : S' [\text{none}] \ . \ MAS ; \text{none} ; \text{Subst}] \ \setminus\ D) \\
= \text{unifPair}(M, \\
\text{unifTuplesVar}(M, V, S, S', [VDS ; MAS ; \text{none} ; \text{Subst}]) \ \setminus\ D) .

eq \text{unifPair}(M, [VDS ; \text{mb} C : S [\text{none}] \ . \ MAS ; \text{none} ; \text{Subst}] \ \setminus\ D) \\
= \text{if} \ \text{sortLeq}(M, \text{getType}(C), S) \\
\text{then} \ \text{unifPair}(M, [VDS ; MAS ; \text{none} ; \text{Subst}] \ \setminus\ D) \\
\text{else} \ \text{unifPair}(M, D) \\
\text{fi} .

eq \text{unifPair}(M, [VDS ; \text{mb} F[TL] : S[AtS] . \ . \ MAS ; \text{none} ; \text{Subst}] \ \setminus\ D) \\
= \text{unifPair}(M, \\
\text{unifTuplesNonVar}(M, (\text{mb} F[TL] : S [AtS] .), \\
[VDS ; MAS ; \text{none} ; \text{Subst}]) \ \setminus\ D) .
Order-sorted unification in Maude

```latex
op metaUnify : Module CommEqSet -> SubstitutionSet. 
\text{eq metaUnify}(M, \text{CEqS}) 
\quad = \text{getUnifSolution}(\text{unifPair}(M, < \text{varDecls}(\text{CEqS}); \text{CEqS}; \text{none} >)). 
```

Maude> red in UNIFICATION:
```latex
\text{metaUnify}(\text{upModule}('\text{PEANO-NAT}, \text{false}), 
\quad '_+_[''X:\text{NzNat},'_*_'[''0:Zero,'Y:\text{NzNat}] 
\quad =? '_+_[''W:\text{Nat},'_s_[''Z:\text{Nat}]) .
```

result Substitution:
```latex
''W:\text{Nat} <- '_*_'[''0:Zero,'Y@:NzNat] ; 
''X:\text{NzNat} <- '_s_[''Z@:Nat] ; 
''Y:\text{NzNat} <- 'Y@:NzNat ; 
''Z:\text{Nat} <- 'Z@:Nat 
```
Rule instrumentation

- **Instrumentation** is the addition of mechanisms to some application for the purpose of gathering data.
- We are interested in collecting a history of the rules being applied on a configuration of objects and messages.
- We transform a given specification so that each rule

 \[(c)rl\ [L] : T \rightarrow T' \ (\text{if cond}) \ .\]

 with T a term of sort Configuration (or some other sort in the same kind) is transformed into a rule

 \[(c)rl\ [L] : \{T, LL\} \rightarrow \{T', LL L\} \ (\text{if cond}) \ .\]

- This transformation will instrument properly object-oriented modules whose rules rewrite terms of kind \([\text{Configuration}]\).
Rule instrumentation in Maude

sorts InstrConfig .
op {_,_} : Configuration QidList -> InstrConfig .
op getConfig : InstrConfig -> Configuration .
op getLabels : InstrConfig -> QidList .
op getLabel : AttrSet -> Qid .
op setRls : Module RuleSet -> Module .
op addImports : Module ImportList -> Module .
op instrument : Qid -> Module .
op instrument : Module -> Module .
op instrument : Module RuleSet -> RuleSet .

eq instrument(H) = instrument(upModule(H, false)) .
eq instrument(M) = setRls(addImports(M, (including 'INSTRUMENTATION-INFRASTRUCTURE .)), instrument(M, getRls(M))) .
Rule instrumentation in Maude

eq \text{instrument}(M, \text{rl } T \Rightarrow T' \space \text{[AtS]} \space . \text{RLS})
 = \text{if sameKind}(M, \text{leastSort}(M, T), \space \text{'Configuration})
 \quad \text{then (rl '}{_\text{,'}_\text{,'}}[_][_][T', \text{'C@:Configuration}], \text{'QL@:QidList}
 \quad \Rightarrow '}{_\text{,'}_\text{,'}}[_][_][T', \text{'C@:Configuration}],
 \quad ______['\text{QL@:QidList},
 \quad \text{qid}(''' + \text{string(getLabel(AtS))} + '\'text{.Qid}'\text{)])\text{[AtS] .})
\text{else (rl } T \Rightarrow T' \space \text{[AtS]} \space .\text{)}
\text{fi}
\text{instrument}(M, \text{RLS}).
eq \text{instrument}(M, \text{crl } T \Rightarrow T' \space \text{if } C_d \space \text{[AtS]} \space . \text{RLS})
 = \text{if sameKind}(M, \text{leastSort}(M, T), \space \text{'Configuration})
 \quad \text{then (crl '}{_\text{,'}_\text{,'}}[_][_][T', \text{'C@:Configuration}],
 \quad ______['\text{QL@:QidList}]
 \quad \Rightarrow '}{_\text{,'}_\text{,'}}[_][_][T', \text{'C@:Configuration}],
 \quad ______['\text{QL@:QidList},
 \quad \text{qid}(''' + \text{string(getLabel(AtS))} + '''\text{.Qid}')\text{)]}
\text{if } C_d
 \quad \text{[AtS] .})
\text{else (crl } T \Rightarrow T' \space \text{if } C_d \space \text{[AtS] .})
\text{fi}
\text{instrument}(M, \text{RLS}).
eq \text{instrument}(M, \text{none}) = \text{none} .
Rule instrumentation: Example

mod BANK-ACCOUNT is
 protecting INT .
 including CONFIGURATION .
 op Account : -> Cid [ctor] .
 op bal :_ : Int -> Attribute [ctor gather (&)] .
 ops credit debit : Oid Nat -> Msg [ctor] .
 op from_to_transfer_ : Oid Oid Nat -> Msg [ctor] .
 vars A B : Oid .
 vars M N N' : Nat .

rl [credit] : < A : Account | bal : N > credit(A, M)

 => < A : Account | bal : N - M >
 if N >= M .

crl [transfer] : (from A to B transfer M)
 < A : Account | bal : N > < B : Account | bal : N' >
 => < A : Account | bal : N - M > < B : Account | bal : N' + M >
 if N >= M .

endm
Rule instrumentation: Example

Maude> red in INSTRUMENTATION-TEST :
 downTerm(
 getTerm(
 metaRewrite(
 addOps(instrument('BANK-ACCOUNT),
 op 'A-003 : nil -> 'Oid [ctor] .),
 '{_-,'_-'}[upTerm(< A-001 : Account | bal : 300 >
 debit(A-001, 200)
 debit(A-001, 150)
 < A-002 : Account | bal : 250 >
 debit(A-002, 400)
 < A-003 : Account | bal : 1250 >
 (from A-003 to A-002 transfer 300)),
 'nil.QidList],
 unbounded)),
 {(none).Configuration, (nil).QidList})
 result InstrConfig:
 { debit(A-001, 200)
 < A-001 : Account | bal : 150 >
 < A-002 : Account | bal : 150 >
 < A-003 : Account | bal : 950 >,
 'debit 'transfer 'debit }
Rule instrumentation: Example

Maude> red in INSTRUMENTATION-TEST :
 getLabels(
 downTerm(
 getTerm(
 metaSearch(
 addOps(instrumevity(BANK-ACCOUNT),
 op 'A-001 : nil -> 'Oid [ctor].
 op 'A-002 : nil -> 'Oid [ctor].
 op 'A-003 : nil -> 'Oid [ctor].),
 '{_,_,}'[
 upTerm(< A-001 : Account | bal : 300 >
 debit(A-001, 200)
 debit(A-001, 150)
 < A-002 : Account | bal : 250 >
 debit(A-002, 400)
 < A-003 : Account | bal : 1250 >
 (from A-003 to A-002 transfer 300)),
 'nil.QidList],
 '{_,_,}'[
 upTerm(C:Configuration debit(A-001, 150)),
 'QL:QidList],
 nil, '!', unbounded, 1)),
 {(none).Configuration, (nil).QidList})).
 result NetTypeList: 'transfer 'debit 'debit
Many thanks

- My colleagues in the Maude team:
 - José Meseguer
 - Francisco Durán
 - Steven Eker
 - Manuel Clavel
 - Carolyn Talcott

- My colleagues in the UCMaude group:
 - Alberto Verdejo
 - Miguel Palomino
 - Adrián Riesco

- The RIO 2007 organizers