

Maude 2.0 Primer
Version 1.0

Theodore McCombs

August 2003

Introduction

Hi! Welcome to the Maude primer. If you’re looking for an in-depth exploration of the
capabilities and mathematical foundation of Maude 2.0, this is not it. You’re looking for the
Maude manual, a wonderful comprehensive tome that weighs about as much as a newborn child.
This primer is meant as a more casual, more cursory introduction to Maude; the main goal is to
get the beginning user, whether he/she have an extensive or just a basic background in
mathematics and modeling, programming in Maude as quickly and painlessly as possible.

So, what is Maude?

Maude is a programming language that models systems and the actions within those systems.
The rest of the primer will be spent clarifying and illustrating this statement.

Maude is powerful. It can model almost anything, from the set of rational numbers to a biological
system to the programming language Maude itself. Anything you can write about, talk about, or
describe with human language, you can express in Maude code.

Maude is simple. Its semantics is based on the fundamentals of category theory, which is pretty
intuitive and straightforward until a mathematician tries to describe it formally with symbols and
Greek letters. While such notation is essential to the detailed understanding of Maude, the
beginning user does not need to know it to start programming; therefore, this tutorial will keep it
simple. Compared to most languages, Maude does not have much syntax to memorize, only a
small set of key words and symbols, and some general guidelines and conventions to keep track
of.

Maude is concrete. Or, depending on how you look at it, it is extremely abstract. Its design
allows such flexibility that the syntax may seem rather abstract, and alone, it is. However, this
means that, as the user programs, he/she is very close to the problem itself. To put it another
way, the majority of programming languages distance the programmer from the model with a
gaggle of special keywords and syntax whose design and protocol is more or less hidden from
the user. In a Maude model, pretty much every object and artifact is open to the programmer’s
scrutiny and whim, and the majority of the model has probably been actually written by the user.
So you need not worry about how to declare an int or a float correctly – just look in the
modules INT and FLOAT for the code of the model.

Maude is challenging. This is not to say it is difficult, or complex, but rather, that the ingenuity
and mindset required for a certain algorithm are often strikingly original. It challenges the
programmer to be clever; instead of solving a problem by bashing it with enough global
variables and functions, one is asked to write streamlined, efficient code, which, often enough, is
a thrill in itself.

This primer is designed as an overview of the most important and powerful features that make
Maude unique, and most importantly, how to use them. Short quizzes follow each chapter to

 1

drive home the lessons; they are not especially tricky, and I urge the reader to try his or her hand
at them. Finally, I cannot repeat enough (this will certainly not be the last time) that the primer
was never intended to be completely comprehensive, and if you don’t find what you’re looking
for here, there’s a host of documentation and theory in the Maude manual or the plethora of
papers written by the Maude team.

To download Maude 2.0, go to http://maude.cs.uiuc.edu and you can find versions of Maude for
several platforms, the Maude sources, papers on Maude, the Manual, and contact information.
Good luck, and enjoy!

 2

1. FOUNDATION

1.1 Modules

The module is the key concept of Maude. It is essentially a set of definitions. These define a
collection of operations and how they interact, or, mathematically speaking, they define an
algebra. An algebra is a set of sets and the operations on them. In Maude, a module will
provide a collection of sorts and a collection of operations on these sorts, as well as the
information necessary to reduce and rewrite expressions that the user inputs into the Maude
environment.

There are three types of modules in Maude: the functional module (fmod), the system module
(mod), and the object-oriented module (omod). The differences between these will appear as we
look at the capabilities and specifics of each one. Each module is declared with the key terms:

fmod NAME is … endfm
mod NAME is … endm
omod NAME is … endom

where the ellipses denote all the declarations and statements in between the beginning of the
module and the end of it. Whitespace does not make a difference in Maude.

There are actually two separate levels of Maude: Core Maude and Full Maude. Anything in
Core Maude is in Full Maude, but not vice versa. System modules and functional modules are
both in Core Maude, but not object-oriented modules. To use Full Maude, all commands and
modules must be entered in enclosed in parentheses, so, in effect, the declaration for any object-
oriented module will look like:

(omod NAME is … endom)

As in most programming languages, one can import a module from another. This means that we
can include all the declarations and definitions that another module made in a new one without
being redundant. One uses the key words protecting, extending, or including,
depending on how we use the imported module. “protecting” essentially means that the
declarations in the imported module are not modified in any way, that all the defined operations
and sorts are used strictly as they are in the imported module. “including” means that one can
change the sense in which the declarations were used. For example, if you wanted import the
module INT (the provided module for integers) but wanted to define its addition operator to
multiply instead of add, you would use including. The syntax is simply:

protecting MODULENAME .
or

including MODULENAME .
 or

extending MODULENAME .

 3

The extending importation falls somewhere between these two extremes, but a deeper
knowledge of modules is needed to explain – we will return to it in the next chapter.

Don’t forget the period after the importation. All statements like these, including all
declarations, need the period. Only module definitions don’t need the period.

1.2 Sorts and Variables

***Before continuing, it would be beneficial to point out that Maude supports comments.

---Three asterisks or three dashes in a row set apart the rest of the line as a comment.

A sort is a category for values. For example, the number one could be a value of sort
“integer,” or perhaps just “number,” or even “PlaceInLine.” A sort can pretty much
describe any type of value, including lists and stacks of other values. Sort names should be
specific, increasing readability and the tightness of the code. Sort names, like all other identifiers
in Maude, may not contain whitespace, a comma, or any of the three bracket types: ‘(’, ‘[’, and
‘{’ unless immediately preceded by an apostrophe, that is, backquote: ‘`’. Additionally, sort
names in particular may not contain periods or colons – as we will see later, the reason is that
these special symbols are heavily involved in the syntax of Maude, and using them incorrectly
will set off all kinds of fireworks.

A sort is declared within the module, with the key word sort and a period at the end.

sort integer .
sorts integer decimal .

There are also subsorts, which are further specific groups all belonging to the same sort. For
example, the sort of real numbers real could have irrational and rational as subsorts,
and rational could have integer and fraction, integer could have positive and
negative, etc. etc. One declares a subsort by first declaring the sorts, and then situating one
sort within another with the key word subsort (or subsorts) and the less-than sign (<).

sorts Real Irrational Rational Integer Fraction Positive Negative .
subsorts Irrational Rational < Real .
subsort Fraction < Rational .
subsorts Positive Negative < Integer < Rational .

All this means is that both irrational and rational are subsorts of real, that fraction is
a subsort of real, and that positive and negative are subsorts of integer which is a
subsort of rational.

A variable is an indefinite value for a sort. Just as x is a common variable for a number, one can
declare a variable x as being of sort number. Or, one could declare c1, c2, and c3 as variables

 4

of sort color. Variables are never used as constants; one should not declare red as a variable
of sort color. Unlike variables in C++ and Java and other common programming languages,
Maude variables never have a definite value assigned to them. They cannot carry from one
operation to another. The only important use of variables is as placeholders, when defining
operations through equations and rewrite laws, which will come later.

Variables are declared with the key words var or vars, followed by the name(s) of the
variables, then a colon, and then the sort to which each variable belongs, and finally a period.
Note that if one declares multiple variables using vars, all the variables must belong to the same
sort.

var x : number .
vars c1 c2 c3 : color .

The expression var x : [number] . declares a variable for the kind of number as opposed
to the sort. We will discuss kinds later on in the chapter, but suffice to point out that variables
can be declared as such.

1.3 Operations

As mentioned earlier, describing an algebra (one of the key mathematical uses of Maude)
consists of declaring sorts and declaring the operations that act on these sorts. An operation can
be thought of as a pathway between sorts. For example, if one had a sorts x-coordinate, y-
coordinate, and point, one could create an operator “(_ , _)” to combine an x-
coordinate and a y-coordinate into a point on a Cartesian plane. Or, one could create an operator
“bake” to connect sorts “batter” and “cake.” Surprisingly, the activities of operators will
become clearer as we look at the syntax behind them.

Maude understands both prefix and mixfix notation for operations. Prefix notation is used most
widely, in major programming languages like C++ and Java, and indeed the notation “f (x)” is
prefix. Prefix notation consists of the name of the operator, followed by its arguments in
parentheses and separated by commas. To call the + operator on variables x and y using prefix
notation, one would write “ +(x, y) .” As one can see, this notation makes more sense for
operations like “bounce(ball3) .”

The alternative is mixfix notation, which, unlike prefix in Maude, is declared with specific places
for the variables. While one would declare the addition operator in prefix notation as “op +,” in
mixfix it would be “op _+_ .” Or, if for some reason you wanted an operation to add the sum
of two numbers to a list, prefix notation would declare it “op AddSumToList” and call it with
“AddSumToList(x, y, List1)” ; mixfix would declare the operation “op
AddSum_+_to_” and call it as “AddSum x + y to List1.”

 5

One declares an operation in either prefix or mixfix using the key word op, followed by the
name of the operation, then a colon, then the name(s) of the sort(s) fed into the operation, then an
arrow (->), the name of the sort of the result of the operation, and finally a period. Both the
prefix and mixfix declarations are shown for the declaration of an addition operator adding two
natural numbers (sort Nat).

op + : Nat Nat -> Nat .
op _+_ : Nat Nat -> Nat .

Similarly, one can declare two operations with the same sort arguments and sort results by using
the key word ops.

ops + * : Nat Nat -> Nat .
ops _+_ _*_ : Nat Nat -> Nat .

Both the addition and multiplication operations connect two variables of sort Nat, and return a
variable of sort Nat.

Operation names may contain the special characters, such as the parentheses and brackets,
commas, and periods. Maude parses them with backquotes, but you don’t have to worry about
that. But if you do use parentheses in an operator name, you have to declare it with parentheses
around that name. You may declare two operators with the same name – this is called operator
overloading – but it is a powerful tool that should be handled carefully. We will further discuss
operator overloading in Chapter 2.

1.4 Constructors and Operator Attributes

There is a special type of operation supported in Maude called a constructor. To designate a
function as a constructor, one adds “[ctor]” after the result sort name and before the period. A
constructor is a fundamental operation that defines the basics of the algebra. We won’t be able
to fully appreciate this definition until the next chapter, but let’s give it a go anyways.

One approach to understanding the role of constructors is via the constant operation, which acts
as the equivalent of a constant in other programming languages. But instead of a variable
(remember that Maude variables do not carry or store values), Maude constants are functions
with no independent variable, in the sense that “2” can be represented by the constant
mathematical function f (x) = 2. Constants leave the place for the argument sorts blank.

op pi : -> Irrational .

ops red blue yellow : -> Color .

 6

Of course, one still needs to designate the result sort to which the constant belongs. What does
this have to do with a constructor? Constants will often be constructors, because they often
define a basic aspect of the algebra. For example, if we were to try and model the trigonometric
functions in a module, we’d certainly need the constant pi, which we use to express angles in
radians. Without pi, we’re helpless. In this case, we therefore set pi as a constructor:

op pi : -> Irrational [ctor] .

On the other hand, if we simply want to define the set of irrational numbers, the constant pi is
superfluous, not exactly a waste of space, but simply an extra feature that isn’t necessary to
understand irrational numbers. In this case, we do not make pi a constructor.

It’s kind of tricky to decide what operations should be constructors, but only experience
remedies this. One excellent example can be found in the Peano notation for natural numbers.
Peano proved that the set of natural numbers could all be described with a constant 0 and a
successor operator s() that took a natural number and returned the natural number after it. For
example, two could be expressed as the s(s(0)). Every other closed operation on the natural
numbers can be defined with the combination of these fundamental operators, and so we set
these as constructors. On the other hand, an addition operator isn’t fundamental to the Peano
notation; it could support one, but does not necessitate it. Therefore, the addition operator is not
a constructor.

The Peano notation of natural numbers is given below:

fmod PEANO-NAT is

sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

endfm

One will note that that the operator s is not declared as s_, so it must be in prefix notation. And,
it should be obvious that one need not worry about prefix vs. mixfix for constant functions,
because they take no arguments!

Another common and good-to-know example is the basic List algebra. A bare-minimum list
needs a sort List and an element sort, or as commonly represented, Elt, a constant for empty
lists, and a concatenation operator. It can support, but does not need, operations to return the
head or tail of list the size of the list, etc. The module below represents the bare minimum. Note
that, because the concatenation operator is necessary to define the bare-minimum, it is a
constructor.

 7

fmod BASIC-LIST is
sorts List Elt .
subsort Elt < List .
op nil : -> List [ctor] .
op __ : List List -> List [ctor] .
vars E1 E2 : Elt . vars L1 L2 : List .

endfm

There are a few important things to note in this example. The concatenation operator is the
double underscore. This operation is in mixfix notation, and would be called with variables L1
and L2 as “L1 L2.” Elt is declared as a subsort of List, because an element of a list is really
just a special case of a list: a list of size one (called a singleton). This also means we can form a
list by concatenating two elements, because an operator that takes List will also take a subsort of
List. Otherwise, we would have to create an operator that transforms an element into a list, and
this is much easier. This way, the Maude compiler understands not only “L1 L2” but also “E1
E2” and “E1 L1.” And finally, the constant constructor nil is a common way to name a list of
size zero.

A list is a perfect example for illustrating the use of the three key flags assoc, comm, and id,
which impose the equational attributes of associativity, commutativity, and identity on any
binary operator (whether it is a constructor or not). Associativity just means that the list formed
by “(L1 L2) L3” is the same as the list formed by “L1 (L2 L3)” is the same as the list
formed by “L1 L2 L3.” Associativity is declared by adding the key word assoc after ctor in
the brackets.

op __ : List List -> List [ctor assoc] .

Identity is an extremely important attribute for lists. The identity property of addition is “n + 0 =
n.” Similarly, the identity property of lists is that “L1 nil” is the same as just “L1.” In other
words, concatenating a list with an empty list reduces to the original list. Identity is declared
with the key word id: followed by the null constant that fulfills the identity property, in this
case nil. One may also define identities for the left and right arguments (remember, all these
flags only apply to binary operators: that is, operators with two arguments), using the flags left
id: and right id:. This doesn’t make much sense for a concatenation operator, but consider
the difference between the identity declarations jack kills nobody and nobody kills
jack. Illustrated below is the general identity flag:

op __ : List List -> List [ctor assoc id: nil] .

Commutativity is a property that technically does not belong to lists, but rather to sets (or rather,
to ‘multi-sets,’ but that’s not really the issue here). Commutativity means that order does not
matter, that “S1 S2 S3” is the same as “S1 S3 S2” is the same as “S2 S1 S3” etc. The order
of the equational attribute flags within the brackets does not matter.

op __ : Set Set -> Set [ctor assoc comm id: none] .

 8

There is still another flag to mention, idem, which denotes the equational attribute idempotency,
the property that repeated elements are discarded. Though an important property of sets, we will
suffice with the mention of idempotency, since as of yet the assoc and idem flags may not be
used together in Maude.

A useful flag for unary operators (operators only taking one argument) that must be iterated over
and over again – say, for example, the s_ operator, where ‘five’ takes the monstrous form of s s
s s s 0 – is the iter flag, which allows such chains of iteration to be expressed as a single
instance of the operator, raised to the number of iterations. To whit, we may write s s s s s
0 as s_^5(0). This notation may be used for both input and output. The flag iter, like the
other flags, falls between the brackets following the operator declaration.

1.5 Kinds

It may have occurred to you already that an improperly used operator can make a sort go...
wrong. For an example, let’s consider a canine pedigree chart that maps the genealogy of a
particular puppy:

sort Dog .
ops bloodhound collie dalmatian pitbull schnauzer : -> Dog .
op breed : Dog Dog -> Dog [ctor] .

So a mutt with a little Dalmatian, Pitbull, and Schnauzer might have the pedigree chart breed(
breed(pitbull, breed(pitbull, dalmatian)), schnauzer). But what poor
creature results from the expression breed(schnauzer, penguin)?

sort Animal .
subsort Dog < Animal .
op penguin : -> Animal .

The expression breed(schnauzer, penguin) is an error term, and while it is certainly not
of the sort Dog or even Animal, it is of the kind [Animal]. Whenever we define a sort, Maude
automatically defines a corresponding kind, a ‘supersort’ that groups together all other sorts
connected to that sort (I will explain this soon) and all ‘interfamilial’ errors.

When we declare a sort hierarchy using subsort, we define a connected component for Maude.
If, say, we write

sorts Terrier Hound Toy Sporting .
subsorts Terrier Hound Toy Sporting < Dog .

we create a graph of connected sorts. Our current graph looks something like:

 9

 Animal
 |
 Dog
 ________|_________
 | | | |
 Terrier Hound Toy Sporting

This whole entire graph is connected component. If we were to declare another sort Vegetable
and not declare any subsort relations with any sort on the above graph, Vegetable would not be
part of the connected component. Vegetable would be its own, separate, singleton connected
component.

A kind may be defined by any sort in the connected component. Thus, a breed between a Jack-
Russel-terrier (a member of Terrier) and a frog will be a member of [Animal], or [Dog] or
[Terrier], though Maude will always refer to it as [Animal]. If there be more than one
topmost sort, as in the example below:

sorts Human Horse Centaur .
 Horse Human
subsort Centaur < Human. \ /
 Centaur
subsort Centaur < Horse .

then the kind may also be written as [Horse,Human], which is how Maude understands the
kind.

Moreover, the only error terms included in a kind are those that involve members of the
connected component. Breeding a collie and a bromeliad will not be a member of [Animal] or
[Vegetable]; the term breed(collie, bromeliad) will simply not parse, i.e., Maude will
return a warning and do nothing with the collie-flower.

But are kinds just kindnesses towards malformed hybrids, or do they actually have some real use
to them? Well, error-handling is extremely important to a computer language, so consider it a
kindness towards Maude and the Maude user. In the next chapter, we’ll also see that kinds can
be handled by operations and equations in the same way that sorts can, with the result that certain
error expressions can be simplified into non-errors – in other words, we can breed out the
penguins in our dogs.

1.6 Common Supplied Modules: NAT, QID, and STRING

Maude thankfully has a library (albeit small) of common modules to import if needed. Nats are
an alternative to defining your own Nat or Integer or Num sort: the module NAT includes sort
Nat, addition _+_, symmetric difference sd, multiplication _*_, quotient _quo_, modulo
rem, and a host of other useful operations, and all the natural numbers written in normal,
numeric notation. One can simply say “2 + 16” rather than “s s 0 + s s s … well, you
get the point. However, the NAT module supports the Peano notation as well. The provided

 10

modules INT, FLOAT, and RAT support integer, floating point, and rational numbers,
respectively.

Another extremely useful standard module is QID, or Quoted IDentifier. An apostrophe just
before any word creates a quoted identifier, which can be used as a name. For example, if we
wanted to create a sort Name and didn’t want to define a whole slew of constants we could write:

fmod NAME is
 protecting QID .
 sort Name .
 subsort Qid < Name .
endfm

Then, 'Ted would be a term of sort Name, without having to define constant constructor.

The standard library also provides a STRING module, while handles strings of characters and
provides useful functions for searching and determining length. A String is any group of
characters enclosed in quote marks, for example, "hello world!" Strings can be
concatenated with the _+_ operator, so "hello" + "world" is equal to "helloworld". The
characters of a string are indexed by natural numbers, starting at the beginning with zero. The
substr function returns a part of the string with a certain starting index and length;
substr("hello world!", 2, 3) would return "llo", for example. The find function
searches for a substring, starting at a certain index and going forward; the rfind function
searches backwards from the given index.

find("hello world!", "orl", 0) = find("hello world!", "orl", 4) = 7
rfind("hello world!", "orl", 0) = notFound
rfind("hello world!", "orl", 10) = 7

This summary does not pretend to be exhaustive in any way. To truly appreciate the power of
the standard library, please refer to the Maude 2.0 manual (available at the website), Part I,
Chapter 7.

Sorts and operations are the core foundation of Maude. In the next few chapters, we’ll look at
how each type of module creates algebras out of this foundation.

 11

EXERCISES FOR CHAPTER 1

1. The three types of modules in Maude are declared as ______________, _____________, and

____________. They syntactically stand for _______________ module, ______________

module, and _______________________ module, respectively. The only type of module

that is not in Core Maude, but is in Full Maude, is the _____________________.

2. Identify the following operations as prefix, mixfix, or constant:

 op _^_ : Nat Nat -> Nat . ___________________

 op smile : -> Expression . ___________________

 op to_from_ : Name Name -> Valentine . ___________________

 op grab : Thing -> Action . ___________________

3. When defining the division operator for the natural numbers, one must address the problem of

dividing by zero. Do the following on the lines below. a) Define two sorts, Nat and

NzNat, which stands for a non-zero natural number. b) Declare NzNat a subsort of Nat.

c) Define a division operation that takes a Nat and an NzNat, and returns a Nat.

 a) __________________________________

 b) __________________________________

 c) __________________________________

4. Say I want to make an operation that takes a person’s name and age, and returns a statement

such as “Johnny is 3 years-old”.

 a) Choose two standard modules you think I should import for this operation:

 __________________________ and _________________________

 b) Fill in the blanks for the operation declaration with the correct standard sorts:

 op _is_years-old : ___________ ___________

-> AgeStatement [ctor] .

c) Assume that this is the only operation that uses the two imported modules. How should I

import them: using including or protecting? ________________________

 12

5. Let us define two sorts, Queue and Grab-bag. In a Queue, the order of the elements

matter, and so we want to exclude commutativity from the list of its properties. In a Grab-

bag, order doesn’t matter, so we want commutativity as a property. Furthermore, we want

an identity property defined for both, with respect to the nothing constant. Associativity

we definitely want for both.

 Below are two constructors, one for Queue and another for Grab-bag. Fill in the blanks

between the brackets, putting in all the syntax necessary to fulfill the above requirements.

 op __ : Queue Queue -> Queue [_________________________] .

 op __ : Grab-bag Grab-bag -> Grab-bag

[_________________________] .

6. The combined use of subsorts with operation declarations can be very powerful, and

consequently rather tricky. By defining an operation for a sort, one defines it for all of its

subsorts. One can think of the < symbol as short for “qualifies as a,” e.g., integer

qualifies as a rational. With this in mind, and given the following sort and operation

declarations,

sorts Plea Inquiry Assertion Question Speech .

sort LogEntry .

subsorts Inquiry < Question < Plea .

subsorts Assertion Question < Speech .

op respond : Question -> Speech .

op record : Speech Speech -> LogEntry .

ops p1 p2 : -> Plea . ops i1 i2 : -> Inquiry .

ops a1 a2 : -> Assertion . ops q1 q2 : -> Question .

ops s1 s2 : -> Speech .

 13

mark which expressions will parse correctly, i.e., which will follow the rules of the

declarations above.

_____ respond(q1) ______________________

_____ record(q1, i1) ______________________

_____ respond(record(q1, i1)) ______________________

_____ record(q1, respond(q1)) ______________________

_____ respond(p1) ______________________

_____ record(p1, p2) ______________________

_____ record(respond(i1), s1) ______________________

_____ record(i1, respond(i1)) ______________________

_____ respond(s1) ______________________

_____ respond(respond(q1)) ______________________

In the second blanks, mark which sort or kind will be the result of the expression, or no parse

for those terms that will simply not parse at all.

 14

2. FUNCTIONAL MODULES

2.1 Equations

Equations are much easier to describe in form than in purpose. They follow the same structure,
rules of order of operation, etc. of any normal mathematical equation. The syntax uses the key
word eq, followed by two expressions separated by the key symbol =, and then a period.

Remember the Peano notation of natural numbers example? The module defined an algebra of
the Peano notation, though not a very interesting one. If we add the addition operator, it
becomes slightly more complicated, and we use equations to define this operator.

fmod PEANO-NAT-EXTRA is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor iter] .
 op _+_ : Nat Nat -> Nat .
 vars M N : Nat .
 eq 0 + N = N .
 eq s(M) + N = s(M + N) .
endfm

The whole idea of equations is to provide the Maude interpreter with certain rules to simplify an
expression. One rule of addition is that zero plus a number reduces to that same number.
Without this equation, Maude would not be able to reduce 0 + s(s(s(0))) to s(s(s(0))).
The second equation is a more general simplification rule for addition, which would help reduce
s(s(0)) + s(0) to s(s(0) + s(0)) and then to s(s(0 + s(0))). The first equation
would then reduce the expression to its most simple form, s(s(s(0))).

This brings up another unique quality of constructors: expressions with only constructors cannot
be simplified. There are no equations to define how to simplify constructors, and there shouldn’t
be. The ultimate goal of a set of equations in a module is to provide rules by which any
expression involving the sorts and operations in the module can be simplified to the constructors
of the algebra – this is called the canonical form of the expression.

The use of variables in equations is really the only use of variables in a module at all. As
mentioned before, variables do not carry actual values. Rather, they stand for any instance of a
certain sort. For example, when in the example above we used M and N as variables of type Nat,
the expression s(M) + N really just means “take the successor of any Nat[ural number] and add
it to another Nat.” Variables are like the spaces in Mad-Libs: insert any instance of the sort in
the blank, and the expression works.

Maude also supports on-the-fly variable declaration, and yes, it really is as fun as the name
sounds. When, for example, our algebra forces us to write an equation with a variable we only
use once, we have two options: waste space by declaring a variable in the usual manner, or

 15

declare it on-the-fly, within the equation. If we have, say, a card catalog constructor, and an
operator that retrieves the author name:

op n_t_pd_l_ : Name Title PublDate Location -> CatalogCard [ctor] .
op author : CatalogCard -> Name .

and we really don’t have any other equations that involve instances of these sorts, we can,
instead of declaring the variables outside the function, simply write:

eq author(n N:Name t T:Title pd P:PublDate l L:Location) = N:Name .

Note that on-the-fly variables include no whitespace between the variable name, the colon, and
the variable sort. The scope of such variables is the equation it’s declared in; outside this
equation it doesn’t exist.

Now, there are several common strategies or guidelines for writing equations that simplify well.
The first and most important strategy is recursion. Nearly every set of equations is defined with
some level of recursion in mind. If you don’t like recursion, Maude is definitely not the
programming language for you. Take another look at the two equations for the addition
operator.

eq 0 + N = N .
eq s(M) + N = s(M + N) .

The second equation employs recursion by calling the operator _+_ again on the right hand side,
and the first equation is the case that ends the recursion. A more obvious example of recursive
definition appears in multiplication:

fmod PEANO-NAT-MULT is
 protecting PEANO-NAT-EXTRA .
 op _*_ : Nat Nat -> Nat .
 vars M N : Nat .
 eq N * 0 = 0 .
 eq N * s(M) = N + (N * M) .
endfm

If one were to try 3 * 5 (I’ve dropped the successor notation for simplicity’s sake, but one can
imagine all the successors of successors etc.), the recursion would look something like

 3 * 5 = 3 + (3 * 4)
 = 3 + (3 + (3 * 3))
 = 3 + (3 + (3 + (3 * 2)))
 = 3 + (3 + (3 + (3 + (3 * 1))))
 = 3 + (3 + (3 + (3 + (3 + (3 * 0)))))
 = 3 + (3 + (3 + (3 + (3 + (0)))))

where each line is a new level of recursion.

 16

It would also be good to look at non-arithmetic operators as examples. Below is a basic module
for lists:

fmod LIST is
 sorts Elt List .
 subsort Elt < List .
 op nil : -> List [ctor] .
 op __ : List List -> List [ctor assoc id: nil] .
endfm

Now say we wanted to add an operator size that would return a Nat value equal to the number of
elements in a list.

fmod LIST-SIZE is
 protecting LIST .
 protecting PEANO-NAT .

 op size : List -> Nat .
 var E : Elt . var L : List .

 eq size(nil) = 0 .
 eq size(E L) = s(size(L)) .
endfm

This is a common recursive strategy in modules involving lists: represent the list as its first
element concatenated with the rest of the list, perform a single operation on the first element,
then call itself recursively on the rest of the list. In this case, we split the list into its first element
E and the rest of the list L, then add one s() for E, then call size on L.

Recursion is not necessary in every single operation: recall the author operation in our card
catalog example. There are equations like this that only access a piece of data in a containing
structure. In this case, the containing structure is the n_t_pd_l_ constructor, and the piece of
data is the first argument. If one were to represent a deck of playing cards, one might employ the
definitions below:

fmod CARD-DECK is
 sorts Number Suit Card .
 ops A 2 3 4 5 6 7 8 9 10 J Q K : -> Number [ctor] .
 ops Clubs Diamonds Hearts Spades : -> Suit [ctor] .
 op _of_ : Number Suit -> Card [ctor] .
 op CardNum : Card -> Number .
 op CardSuit : Card -> Suit .
 var N : Number . var S : Suit .

 eq CardNum(N of S) = N .

eq CardSuit(N of S) = S .
endfm

 17

Note that with the examples in lists and cards, it is hardly ever useful to represent a higher-order
sort, such as a list or a card, as one variable, but rather as components combined by a constructor.
This makes recursive strategies much easier also. Also note that this really only works with
constructors. It would be superlatively stupid to represent a number M as a sum made by the
addition operator, but not so to represent a number as the successor of M.

Some of the equations are similar to common mathematical properties, in addition to being good
simplification rules. For example, the first equation in the Peano notation example, N + 0 = N,
is the additional property of zero. One will notice that other elementary, common mathematical
properties, those of associativity, commutativity, and identity are not expressed as equations;
rather, these have special flags. Imagine how one might declare an equation for the commutative
property: N + M + O = N + O + M . Now, is the right side at all simpler than the left side?
Or are they equally simple? (Please answer ‘yes’ to the second question.) Maude cannot use this
equation to simplify, because one side is not simpler. The same goes for commutativity. The
end result of these non-simplifying equations is non-termination, which means that the
interpreter, trying to reduce the expression, would continually try to reduce to an equally simple
expression. Non-simplifying equations cause this, and so Maude designates special flags for the
compiler to deal with this problem in an ingenious and, to this tutorial, irrelevant, way.

Identity properties are often useful to define by equations, sometimes even with constructors. N
+ 0 = N and L nil = L are both identity attribute equations. We can do this with non-
constructors (defined operations) because they rarely cause non-termination, so the first equation
is valid, but as we will see soon, the second equation may cause non-termination in some cases
and should be avoided in favor of the id: flag.

Just because things aren’t complicated enough yet, I’ll add in idempotency. Remember
idempotency? It was touched upon in the first chapter. Idempotency is a property belonging to
sets, which are multisets (remember that multisets are lists where order doesn’t matter, that is,
the commutativity property reigns) that don’t have more than one of the same elements. For
example, a multiset could consist of { 1 , 2 , 2 , 2 , 7 , 7 } but an analogous set would only
include { 1 , 2 , 7 }. To express this property using the common list/multiset/set notation of the
__ operator, one has an equation

var E : Elt .
eq E E = E .

Note that in this case, the right hand side is definitely simpler than the left hand side. Recall that
the idem flag cannot be used alongside the assoc flag, so if you want both properties, you’ll
need the above equation to declare idempotency. It’s also good to note that both identity and
idempotency (whether you use the attribute flags or not) can easily become pitfalls of non-
termination in operations that use recursion: a list-size operation length that is defined as
length(L1 L2) = length(L1) + length(L2) will run into trouble when L2 is the nil:

 18

length(L1 nil) = length(L1) + length(nil)
 = length(L1 nil) + length(nil)
 = length(L1) + length(nil) + length(nil)
 = …

Because this algorithm splits the list into two arbitrary parts, as opposed to a single element and
“the rest,” it does not terminate. These pitfalls are easy to repair but hard to spot ahead of time.
Generally, we want a recursion that goes in one progressive direction, as opposed to the above,
which goes in many directions.

2.2 Conditional Equations

Congratulations! You’ve read through the toughest part of this chapter. The next topic, if
you’ve understood equations, is a piece of cake: conditional equations. Conditional equations
are equations that depend on a Boolean statement. They are written with the key word ceq and,
after the equation, a condition starting with the key word if. Maude comes with a sort Bool
already provided, along with constants true and false, and ==, =/=, and, or, and not
operations (all are mixfix). A conditional equation will execute a reduction only if its condition
reduces to true.

ceq different?(N , M) = true if N =/= M .

If we want to include more than one condition in a conditional equation, we string them along
using the _/_ condition-concatenation operator:

ceq bothzero?(N , M) = true if N == M /\ M == 0 .

These are a trivial examples, of course. A side note: one thing to look out for when dealing with
Bools is the lack of provided comparison operations (<= , >=, <, >). Because each sort has
unique definitions for these comparisons, these operations must be defined in the module.

fmod NAT-BOOL is
 protecting PEANO-NAT .
 op _<=_ : Nat Nat -> Bool .
 op _>_ : Nat Nat -> Bool .
 vars M N : Nat .
 eq 0 <= N = true .
 eq s(M) <= 0 = false .
 eq s(M) <= s(N) = M <= N .
 eq M > N = not(M <= N) .
endfm

No, this example does not make use of conditional equations. But one usually needs a module
like this to use conditional equations in meaningful ways. With the above definitions, I can write
an equation for a subtraction operator within the natural numbers (remember that natural
numbers are all non-negative).

 19

ceq N – M = 0 if M > N .

This is an important equation to have if the subtraction operator is to stay within the bounds of
the natural numbers.

One more side note: conditional equations are not to be confused with the operator
if_then_else_fi, an operator provided by Maude (like Bool, no importation necessary),
which takes a boolean condition as its first argument, then two expressions as the next
arguments. It is not necessary to declare equations with this operator as conditional, because
they aren’t using the key word if.

max(M , N) = if N > M then N else M fi .

One of the most powerful features of Maude 2.0 is the ability to use a pattern match as a
condition, using the key symbol :=. This symbol compares a pattern on the left-hand side with
the right-hand side, and if they match, returns true. For example, let’s consider an irritable
professor who takes questions only after class and simply ignores any other sort of interruption.
We’ll use the STRING module and the operators _? and _! to denote the difference between a
question and an exclamation.

fmod IRRITABLE-PROFESSOR is
 protecting STRING .

 sorts Question Exclamation Interruption .
 subsorts Question Exclamation < Interruption .

 op _? : String -> Question [ctor] .
 op _! : String -> Exclamation [ctor] .
 op reply : Interruption -> String .

 var I : Interruption .
 ceq reply(I) = "Questions after class, please"

if (S:String) ? := I .
endfm

There are a few things to point out, besides the always fun use of on-the-fly variables: first, we
put the pattern in the left-hand side, and the target in the right hand side. Note also that the
above could be written as a normal equation

eq reply((S:String) ?) = "Questions after class, please" .

with the same results. The difference is in the ideology: in the pattern-matching example, we’re
essentially assigning a certain pattern to I, then searching for all instances of this pattern in an
expression, replacing them with ‘I’, and reducing it according to the equation whose left-hand
side is reply(I). We can also use the := as a sort of value assignment operator:

var T : String .

 20

ceq reply((S:String) !) = T if T := "Please be quiet!" .

in which case, T is the pattern, and wherever it is matched, "Please be quiet!" takes its
place. We’re basically saying “let T be equal to "Please be quiet!" and go from there.”
It’s essentially, all the same sort of matching, but with a wildly different effect, and it is
important not to confuse these two uses. As we can see, the freedom to match patterns in
conditions can lead to some exciting and powerful implementations.

2.3 The Maude Environment

Now, the Maude environment, for our present purposes, revolves around the provided command
reduce (or red). First, one must write the modules for the algebras to be used in the
environment, either by typing them directly into the prompt (not recommended), or by storing
them in a file directory that the Maude environment can access, and then typing load MODULE-
NAME into the prompt. Then, one types in reduce, followed by the expression to be reduced.
For example:

Maude> reduce s(0) + s(s(0)) .
result Nat: s(s(s(0)))

Make sure the expression is followed by a period, and that the current module contains the
equations necessary to reduce the expression. To change the current module, type in select
MODULE-NAME into the prompt. Alternatively, one may specify which module contains the rules
to be applied to the expression by including the optional key phrase in MODULE-NAME : . To
whit,

Maude> red in PEANO-NAT-MULT : s(s(0)) * s(s(s(0))) .
result Nat: s(s(s(s(s(s(0)))))) .

Any expression which follows the syntax of a module can be reduced using this command, as
long as the module is already loaded. Of course, if an expression is already at its simplest form,
the result will simply be the original expression.

For those interested in seeing exactly how an expression is reduced, step by step, by the Maude
interpreter, type:

Maude> set trace on .

Now, whenever you reduce an expression, Maude will take you through each reduction, giving
you the equations used, how each variable in the equation was filled, etc. This can be especially
useful for debugging a tricky module. For reasons that may become clearer in Chapter 4, this
author does not recommend using trace while in Full Maude yet, unless you can read really
really fast.

 21

2.4 Membership Axioms

Now, we’ve actually looked at some expressions in Maude that deal with membership logic.
“Membership” simply refers to how certain terms are “members” of sorts. When we declare a
variable, we declare it as a member of a sort using the colon, which one can think of a symbol for
“is a member of.” Thus, the declaration var N : Nat is the same as saying “variable N is a
member of the sort Nat.” But in fact, membership logic is at the bottom of pretty much every
declaration in Maude. For example, the declaration of an operation

op _+_ : Nat Nat -> Nat .

can be expressed as a conditional membership axiom. Conditional membership axioms are just
like conditional equations, except that they deal with membership, not simplification, and use
different key symbols like the colon and key words like cmb and mb (for conditional membership
axiom and membership axioms, respectively). The same idea at work in the above operation
declaration can be expressed as

cmb N + M : Nat if N : Nat and M : Nat .

I don’t mean that the above conditional membership axiom replaces the operation declaration,
but rather that the two express the same things. Likewise, the declaration of NzNat (non-zero
natural numbers) as a subsort of Nat can be written two different ways.

subsort NzNat < Nat .

or

cmb N : Nat if N : NzNat .

The above examples illustrates the idea commonly called “syntactic sugar:” of special key words
as programming shortcuts, expressing in simpler terms what can be expressed in a more basic
logic. And since we do have this syntactic sugar, in my opinion, we should use it as much as
possible. So when are membership axioms and conditional membership axioms useful? An
excellent example can be seen if we declare a division operator. To avoid division by zero, we
have the second argument of the operator be a non-zero Nat, a NzNat.

sorts Zero NzNat Nat .
subsort Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op _/_ : Nat NzNat -> Nat .

So far, so good, right? But what happens if we enter in the expression s(s(s(0))) /
(s(s(s(0))) / s(0)) into the Maude environment? This expression, ignoring Peano
notation, is 3 / (3 / 1), and should come out as 1. But (3 / 1) returns, according to the
declaration, a Nat, and therefore it cannot serve as the second argument of another division
operation; it must be a NzNat. “3 / (3 / 1)” will come out as an error term of kind [Nat]. So
what we can do is create a conditional membership axiom

 22

var N : Nat . var M : NzNat .
cmb N / M : NzNat if (N =/= 0) .

or, alternatively, an equivalent membership axiom:

vars N M : NzNat .
mb N / M : NzNat .

Either way, (3 / 1) will now be parsed as a NzNat, solving our argument problem.

Other common uses of membership axioms appear when importing and building on other
modules. For example, if we were to define a module for the card game “crazy eights,” where
any card with value eight is a wild card, we might write:

fmod CRAZY-EIGHTS is
 protecting CARD-DECK .
 sort WildCard .
 subsort WildCard < Card .
 var C : Card .
 cmb C : WildCard if CardNum(C) == 8 .
endfm

Or, if for some reason we wanted to define a certain sort SuicideKing (if you look at the King
of Hearts in pretty much any card deck, he seems to be sticking his sword into his head, hence
the name), we might write:

fmod SUICIDE-KING is
 protecting CARD-DECK .
 sort SuicideKing .
 subsort SuicideKing < Card .
 mb K of Hearts : SuicideKing .
endfm

The matching condition can also be used in conditional membership axioms: consider the
following module for poker pairs.

fmod CARD-PAIR is
 protecting CARD-DECK .
 sorts Pair PokerPair .
 subsort PokerPair < Pair .
 op <_;_> : Card Card -> Pair [ctor comm] .
 var N : Number . var P : Pair .
 cmb P : PokerPair if < N of S:Suit ; N of S’:Suit > := P .
endfm

In this example, the <_;_> makes a general pair of any two cards. If the number values of these
cards are the same, then they are a pair in the poker definition of the term, or, as above, a
PokerPair.

 23

2.5 Operator and Statement Attributes

Aside from what we already know of constructors and flags, the user may employ several
powerful techniques when declaring operators, which decide how the operator will behave
within certain expressions, equations, and reductions. Furthermore, equations themselves may
carry flags, or attributes, within brackets following the declaration. An examination of operator
and statement attributes will prove practicably useful only in specific situations, but lend a more
complete picture of the capabilities of Maude.

One extremely powerful operator attribute is the memo flag. When Maude comes across an
operation with memo among its attributes, it “memorizes” the reduced form of any expression
with that operator at the top (that is, if the expression were written in prefix mode, the outermost
operator). Whenever such an expression appears, Maude refers to its memorization table and
produces the reduced form much quicker than if it had to continually apply reduction equations
over and over again. This is useful when we write programs where the same expression
(important: the same expression, not just the same operator) pops up thousands and thousands of
times, such as highly recursive number theory problems.

When there is any fear of ambiguous expressions – for example, consider the expression 3 + 3
* 3, which can be understood by Maude as either (3 + 3) * 3, that is, 24, or 3 + (3 * 3),
that is, 12 – then the user may declare precedence for the operator using the flag prec and a
natural number. Precedence is kind of like the operator’s place in line: the lower the number, the
higher the precedence, the sooner the operation will be executed. If we declare

op _+_ : Num Num -> Num [prec 35] .
op _*_ : Num Num -> Num [prec 25] .

then 3 + 3 * 3 will always be 12. If the user chooses not to give precedence for an operation,
Maude secretly and automatically assigns it a precedence value of 41. Precedence can always be
overridden with parentheses.

Of course, the expression 3 + 3 + 3 would still be ambiguous. True, we could declare the _+_
operator with the assoc tag, but what about non-associative operators? What if we have, say, a
“versus” operation, _vs_, which pits two tennis players against each other and returns the
winner? How does Maude parse sampras vs agassi vs roddick ? Suppose we declare
the following:

op _vs_ : Player Player -> Player [comm] .
ops sampras agassi roddick -> Player .

eq roddick vs agassi = roddick .
eq agassi vs sampras = agassi .
eq sampras vs roddick = sampras .

 24

Then sampras vs (agassi vs roddick) will result in Pete Sampras as the victor, while
(sampras vs agassi) vs roddick will give Andy Roddick the cup. In this case, we
declare a gathering pattern using the flag gather and the key symbols e, E, and &.

Still with us? Good for you. The flag we declare looks like gather (e E &), where the
number of symbols in the parentheses is the number of arguments the operator takes. If the
symbol corresponding to an argument is e, this means that the top operator involved in the
argument expression must have a precedence value strictly less than that of the operator; if the
symbol is E, then the argument’s precedence may be less than or equal to that of the operator; if
the symbol is &, Maude accepts an argument of any precedence.

This probably makes no sense yet. Well, for one, it only makes sense for expressions that string
operators together. X + Y makes no use of the gather flag because its arguments are just
variables. X + Y + Z, however, involves the addition of a variable to another addition: it is
either _+_(X, _+_(Y, Z)) or _+_(_+_(X, Y), Z), depending on the gather flag. If, say,
we were to declare the _+_ operator with the flag gather (E e), then only the latter is
possible. Why? Because the second underscore of _+_ can only be filled with an operator of a
lower prec number, which excludes itself. So, the nested operator goes in as the first argument,
and the second argument takes the variable Z. As one can imagine, the default of any declared
operation is the & in every argument.

Returning to tennis, let us declare the versus operation as

op _vs_ : Player Player -> Player [prec 33 gather (e E)] .

so that the matches are played starting with the last two players and proceed to the first. Only an
event of higher precedence (that is, lower prec value) disrupts this order. If we, say, declare the
two operators murders and teases with prec values 32 and 34, respectively, then sampras
murders agassi vs roddick becomes sampras vs roddick, while sampras teases
agassi vs roddick still pits Andre Agassi against Andy Roddick.

Only one statement attribute stands out among the others in its helpfulness (the others, for the
most part, become useful only at the meta-level; see Chapter 6), and this is the owise flag.
Whenever we declare an equation or membership axiom, we set up the left-hand side as a pattern
that must be matched in order to reduce to the right-hand side. If we write a second equation,
directly following the first, and add the otherwise or owise flag in brackets, this new
statement acts like a conditional equation whose condition is the exact opposite of the first
equation. Returning to our irritable professor, if we wanted to make him even brusquer, we
could write:

eq reply(I) = if I :: Question
 then "Questions after class, please"
 else "Shut up!" fi .

Or we could use a conditional equation and owise:

 25

ceq reply(I) = "Questions after class, please"
if (S:String) ? := I .

eq reply(I) = "Shut up!" [owise] .

Yes, the difference is trivial for easily-expressed conditions, but it’s rather useful in cases where
one side of the condition is much easier to express than the other:

eq suicideking?(K of Hearts) = true .
eq suicideking?(C:Card) = false [owise] .

There are hosts of other nifty little flags, but they escape the depth of this tutorial. The complete
list may be found in the Maude 2.0 Manual, Chapter 4, Section 4.

As said before, the above techniques are useful only in specific cases, and do not affect the basic
concepts of operations and equations. On the other hand, these tools are powerful, and can make
all the difference in more complicated problems.

2.6 Expanding on Chapter One

I always try to keep my promises: in the last chapter, we said we’d elaborate on importing
modules, on the usefulness of kinds, and on operator overloading. These fundamental concepts
can only be completely understood with reference to equational reduction, and so we have
postponed the full story until now.

In Chapter One, we briefly touched upon the three types of module importation: protecting,
extending, and including. The basic idea of the protecting importation is the same: we
don’t want to change the meaning of the imported module. We can change this meaning in two
key ways: by adding new ground terms (constructors and constants) to a module’s sort(s), and by
redefining the already extant terms of the imported module. The first is called “junk” and the
second, “confusion.” For example, if we were to import the module PEANO-NAT-EXTRA and
declare a new constant 5,

op 5 : -> Nat .

this would be junk. The equations in PEANO-NAT-EXTRA have nothing to do with 5, but there it
is, stuffed in with the other ground terms 0 and s. On the other hand, if we were to redefine the
addition operator with the equation

eq 5 + N = s(s^4(0) + N) .

 or even just

eq s^5(0) + N = s(s^4(0) + N) .

that would be confusion, because we’re adding reduction rules that mess with the module’s
original idea of how to reduce the addition operator. Now, Maude will let you do this, but it’s

 26

just not nice. It’s a violation of the imported module’s original sense. There will be times when
we’ll want to change this sense, to be sure, but for the other times, we forbid the Maude compiler
to accept junk and confusion by importing the module with the key word protecting.

The extending importation allows junk, but no confusion. Say we wanted to use PEANO-NAT-
EXTRA in a module that deals with multivariable algebra. To allow for an expression like X + Y
+ 8, we’d have to declare the following:

sort Variable .
subsort Variable < Nat .
ops X Y : -> Variable [ctor] .

This adds junk to the sort Nat, because X and Y are new ground terms that the equations of
PEANO-NAT-EXTRA fail to deal with (note that, if Nat were declared a subsort of Variable,
this would not be the case, and we could use protecting... but that’s another story). Anyway,
we’d import the module using extending, since we don’t add any confusion, and we don’t
want Maude to let us if we make a mistake.

The including importation allows junk and confusion. Let’s say we import the module CARD-
DECK into a new POKER-DECK module, and add the following declarations:

op anyNumber : -> Number . op anySuit : -> Suit .
op joker : -> Card .
eq CardNum(joker) = anyNumber .
eq CardSuit(joker) = anySuit .

This is a perfectly reasonable thing to do, but it adds junk (anyNumber, anySuit, and joker)
and confusion (the two new equations redefine CardNumber and CardSuit). To allow this, we
say

including CARD-DECK .

and we’ve given fair warning to Maude that we’ll be changing the sense of the module.

So much for importations. On to kinds.

In the last chapter, we used a breed operation to illustrate the relationship between error terms
and kinds, showing that a mismatch of sorts and operators within a connected component returns
an error term included in the corresponding kind. We also mentioned that, in certain cases, we
may be able to reduce error terms into non-error terms. Intuitively, this makes sense: if we were
to create an operator sire that returns the first argument of the breed function, then
sire(breed(collie, penguin)) should reduce to Dog : collie, even though the
argument of sire is an error term. Consider the following dog-racing module:

fmod DOG-RACING is
 protecting DOGS. protecting NAT .
 op race : Dog Dog -> Dog .

 27

 op speed : Dog -> Nat .
 vars N M : Dog .
 eq speed(bloodhound) = 20 .

eq speed(collie) = 25 .
 ...
 eq speed(frog) = 5 .
 eq speed(breed(N, M)) = (speed(N) + speed(M)) quo 2 .

ceq race(N, M) = N if speed(N) > speed(M) .
eq race(N, M) = M [owise] .

endfm

where I have omitted the other dogs’ speeds so to save space. The algorithm is simple: the faster
dog wins, speed being determined by the average of the speeds of the parents. As the module
stands now, the expression race(breed(collie, frog), bloodhound) would not reduce,
but instead return itself as [Animal] : race(breed(collie, frog), bloodhound). If
we bring the equations to the kind level, however, simply by making N and M variables of the
kind [Dog] instead of the sort Dog, the expression does indeed reduce (to Dog :
bloodhound). Should we race a collie-frog versus a bloodhound-frog, Maude will declare the
[Animal] : breed(collie, frog) the winner, even though it is an error term. The
presence of kinds in Maude allows us to play around with error expressions in ways that will
often prove constructive.

Maude allows overloaded operators; that is, we can define two different operators with the same
name. For example, we can define two _+_ operators, for natural numbers and integers, or for
musical notes and all sorts of wild things.

op _+_ : Integer Integer -> Integer .
op _+_ : Nat Nat -> Nat .
op _+_ : Note Note -> Chord .
op _+_ : Wrong Wrong -> Right .

Note that, since Nat is just a subsort of Integer (er... you can assume that I’ve declared this
earlier), the second line is just a specification of the first, telling Maude that if we add two
natural numbers, the result will not be just an Integer, but a Nat. This is called subsort
overloading; the other examples are called ad-hoc overloading. In general, it’s a bad idea to try
ad-hoc overloading constants (guess why), but it can be done by enclosing the constant in
parentheses and attaching a dot with the sort name to it within the expression. So, to
differentiate between the Letter A and the Note A, we write (A).Letter and (A).Note.
Subsort overloading requires that both operators be declared with the same equational attributes
(the same flags), save for the ctor flag.

In the chapter on foundation, the hardest part of learning a term or idea was memorizing the
syntax and maybe a bit of the ideology behind it. For equations and membership axioms, the
hardest part is the strategy involved in writing them, so that they define tight, complete algebras.
I’ve tried to include some common strategies and examples of how these guidelines can be
applied, but only experience, both personal and observational, will teach effectively.

 28

EXERCISES FOR CHAPTER 2

1. There are four, actually five basic requirements for an equation. It must begin with the

keyword ______, it must have the key symbol ______ somewhere in it, it must have a

__________ at the end, and it must have within it mathematical phrases consisting of

variables and ______________. Finally, for an equation to be worth its weight, the right-

hand side of the equation must be ________________ than the left-hand side.

2. Decide what the following expressions are by writing in the necessary keyword:

a) _______ N mod M = (N – M) mod M if M <= N .

b) _______ N mod M : NzNat if N =/= M

/\ (N – M) mod M :: NzNat .

c) _______ N mod M = (N – M) mod M .

d) _______ s(0) mod M : NzNat .

e) _______ N mod M = if M <= N then (N – M) mod M else N fi .

3. The modulus operator mod returns the remainder of an integer division: for example, 11 mod

3 = 2, 4 mod 3 = 1, and 30 mod 8 = 6. Given the following module (for the NAT-BOOL and

PEANO-NAT modules, see 2.2 and 1.4, respectively),

 1 fmod MODULUS is

2 protecting NAT-BOOL .

3 sorts NzNat Zero .

4 subsorts NzNat Zero < Nat .

5 op 0 : -> Zero [ctor] .

 6 op _–_ : Nat Nat -> Nat [right id: 0].

 7 op _mod_ : Nat NzNat -> Nat [...........................] .

 8 vars X Y : Nat . var M : NzNat .

 9 cmb X : NzNat if X =/= 0 .

 10 eq s X – s Y = if s X > s Y

 11 then X – Y else 0 fi .

 29

 12 …………………………………………..

 13 endfm

 a) Which expression from question #2 would best fill in the dotted blank on line (12) if you

want to reduce the following statement?

 red in MODULUS

(s s s s s 0 mod s s s 0) mod s s 0 .

 b) Write the equation that the identity flag on line (6) replaces.

 __

 c) Lines (10) and (11), which, along with line (6), define the subtraction operator, could be

replaced by the following two equations:

 ceq s X – s Y = X – Y if s X > s Y .

 eq = 0 [............] .

 Choose the expression-and-flag pair that best fills in the two dotted blanks.

 a. s X – s Y ... memo c. s X – s Y ... owise

 b. X – Y ... owise d. X – Y ... gather (& e)

 d) The constant operator 0 in line (5) is an example of ________________ overloading.

 e) What flag(s) should fill the dotted blank on line (7) so that 14 mod 5 mod 3 reduces to 0?

 a. assoc c. gather (E e)

 b. gather (e E) d. gather(& &)

4. The sort Deck is a list of cards (refer to the CARD-DECK module in 2.1) defined by the

subsort declaration

 subsort Card < Deck .

 and the operator __, defined by

 op __ : Deck Deck -> Deck [ctor assoc id: null] .

 30

 op null : -> Card [ctor] .

 a) Write an equation that defines the operation topcard, which takes a Deck and returns

the top card (i.e., the first element.) Assume that the variable C of sort Card has already

been declared.

 b) Let sort FemCard be defined with the subsort relation FemCard < Card. Write one

(or more) membership axiom(s), conditional if you wish, that makes a Card a FemCard

if the suit is Hearts or the card is a Queen. You might want to use the operations

CardNum and CardSuit defined in CARD-DECK, but then again you might not. Feel

free to declare your variables any way you like.

 c) Write one or more equation(s) that define(s) the operator FirstFemCard, which

returns the first FemCard drawn from a deck. You must use recursion.

 i. Write it using the if_then_else_fi operator.

 ii. Write it using a conditional equation and the _::_ operator.

 iii. Write it using a conditional equation and pattern matching.

 31

3. SYSTEM MODULES

3.1 Rewrite Laws

Equations are extremely useful for creating and mapping out structures – structures like a set of
operators on constants and sorts, structures like lists and decks of cards – but the real power of
Maude is about transitions that occur within and between structures. These transitions are
mapped out in rewrite laws. Rewriting logic, like most things in mathematics, is a pretty simple
thing unless one tries to explain it in math language. Rewriting logic consists of two key ideas:
states and transitions. States are situations that, alone, are static, and transitions are the
transformations that map one state to another. For example, if it’s a sunny day, but a big grey
cloud comes along and it starts raining, the two states would be “It’s a sunny day” and “It’s a
rainy day” and the transition would be the rain cloud. A rewrite law declares the relationship
between the states and the transitions between them.

Rewrite laws are usually very precise, in the sense that an equation’s power lies in its breadth of
applicability. We could not, for example, have “sunny day” = “rainy day” as a rewrite law,
because 1) by itself, it’s just not true: a sunny day is not the same thing as a rainy day, and 2) this
includes nothing about the transition. Therefore, in Maude, we find it very helpful to give a
rewrite law a name in brackets, though this is optional. We might say [rain cloud] : “sunny day”
= “rainy day” then. Note that we do not, actually. I’ll get to syntax soon.

But probably the most important characteristic of rewrite laws is their irreversibility. It’s a one-
way street. This is not to say that one state cannot transition to another state and transition back;
after all, a rainy day can certainly turn sunny. The difference is that any particular rewrite law
cannot go backwards; a rainy day can’t turn sunny again because of a rain cloud. To make this
distinction, we give rewrite laws a special symbol “=>” to show their unidirectional property.

Now for the syntax: we already know about the brackets with the name and the => symbol. We
declare a rewrite law with the key word rl.

rl [raincloud] : sunnyday => rainyday .

For an equation to make sense, both sides of the equation have to return the same sort. This
comes as intuitive for equations; after all, for something to equal another they should be of the
same sorts. Thus, the fact that both sides of s(M) + N = s(M + N) are of sort Nat comes, er,
naturally. Well, the same thing goes for rewrite laws. Even though rewrite laws map transitions
of states, these transitions are all within an all-encompassing sort. For example, we could have
declared the rewrite law in a system module such as:

mod CLIMATE is
 sort weathercondition .
 op sunnyday : -> weathercondition .
 op rainyday : -> weathercondition .
 rl [raincloud] : sunnyday => rainyday .
endm

 32

Many times, we just call the all-encompassing sort “State” and make more specific subsorts.

One thing that you might notice is that we didn’t use variables in this rewrite law. Rewrite laws
often map transitions between very specific states, which are therefore expressed as constructors,
since the states cannot, and should not, be reduced further. Note that a constructor, if it is not a
constant, can take an argument, such as an op talking : Adverb -> State [ctor] . An
example of this state might be “talking(loudly) .” Variables appear most often when the
rewrite law describes a precise transition that may be applied to a certain phylum of states. We’ll
see some examples of this soon enough.

So now that I’ve dumped all this information on you, let’s look at a concrete example. There’s
this mind puzzle that I heard when I was a little kid: a certain hobo can make one cigarette out of
four cigarette butts (the butt of course, is what’s left after smoking a cigarette); if the hobo starts
off with sixteen cigarettes, how many cigarettes can he smoke in total? The answer is twenty
one, because once he smokes 16 cigarettes, he can make the sixteen butts into 4 more cigarettes,
and once he smokes those, he can make the four butts into 1 more cigarette. So how do we
implement this puzzle in rewriting laws? Basically, there are two states involved: cigarette and
butt (smoked cigarette), and two transformations: transforming a cigarette into a butt (smoking)
and transforming four butts into a cigarette (making a new cigarette).

mod CIGARETTES is

sort State .
op c : -> State [ctor] . *** cigarette

 op b : -> State [ctor] . *** butt
 op __ : State State -> State [ctor assoc comm] .
 rl [smoke] : c => b .
 rl [makenew] : b b b b => c .
endm

To actually do something with this module, we use the rewrite command in the Maude
environment. There are certain strategies in applying rewrite rules; it may have occurred to you
that a module with a lot of rewrite rules might create some confusion between all these states and
transitions with little hierarchy between them. Strategies provide an “order of operation” for
applying rewrite rules. Creating strategies is much too complex to discuss here, but I will say
that the rewrite command is a strategy, a default strategy which Maude provides. One invokes it
with the key word rewrite (or rew) followed by a natural number in brackets representing the
maximum number of rewrite laws that you want to be applied. Of course, if you choose to leave
out the number in brackets, this becomes an unbounded rewrite, and Maude will apply rewrite
laws until they terminate. Now, one can imagine a set of rewrite laws such as rl a => b and
rl b => a, a pair of laws that doesn’t terminate, but is still a legitimate set of rewrite laws for
all that Maude cares. Therefore, we usually want to use the cutoff the rewrite command provides
as a sort of “plan B” in case our module’s rewrite laws don’t terminate by themselves.

So let’s plug in “rew [100] c c c c c c c c c c c c c c c c” into the Maude
environment: this represents 16 cigarettes. The sixteen cigarettes become sixteen butts because

 33

of the smoking rewrite law, then four cigarettes because of makenew, then four butts because of
smoking, then one cigarette because of makenew, and finally one butt because of smoking. So
we’ll end up with just a “b” displayed. Of course, this doesn’t really illustrate the solution of the
puzzle; it doesn’t count how many cigarettes have been smoked in total. We can adjust the
module pretty easily:

mod COUNTING-CIGARETTES is
 protecting NAT .
 sort State .
 op c : Nat -> State [ctor] .
 op b : Nat -> State [ctor] .
 op __ : State State -> State [ctor assoc comm] .
 vars W X Y Z : Nat .
 rl [smoke] : c(X) => b(X + 1) .

rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) .
endm

So if we enter “rew c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0)
c(0) c(0) c(0) c(0) c(0)” into the Maude environment, we will end up with “b(21)” as
our answer.

3.2 The Toy Crane Example

The cigarettes module is a good example with which
to break into rewriting logic, but doesn’t necessarily
provide the best illustration of the powers of rewriting
logic. For one, in the cigarette example, we see
rewriting laws drawing transitions from complex states
to simpler states, and this does not have to be the case.
While in equations our goal was simplify, simplify,
simplify, rewriting laws most of the time deal with
states neither simpler nor more complex than one
another.

A common and oft-used example in rewriting logic is
the blocks world. The basic idea is to create an
algorithm for a bunch of wooden blocks stacked on
each other or the table, and a robot arm that can carry
them. Since it’s such a great example, it’s also used to
illustrate principles of object-oriented programming
and artificial intelligence. Here, I’m going to tweak
the example to a more familiar situation: those arcade
crane machines with stuffed animals in a big glass box
and a controllable arm that moves and tries to grab
them. I think everyone has been ripped off by one of
these at one point in their life, but just in case I’ll

 34

provide a picture.

So what states are there? For stuffed animals, there are three state constructors needed: 1) the
stuffed animal is on the floor of the machine, not on top of any other stuffed animal; 2) the
stuffed animal is on top of another stuffed animal; 3) the stuffed animal is clear, that is, there are
no other stuffed animals on top of it. For the robot arm/claw/crane, there are two: 1) the claw is
holding a stuffed animal, or 2) it is empty. Any pile of stuffed animals in an arcade crane may be
represented as a combination of these states. And we have four main transitions: the claw picks
up, puts down, unstacks, or stacks. These last two may seem the same as the first two, but the
difference is that a picked up or put down stuffed animal must be on the table, while stacked or
unstacked stuffed animals must be on top of another stuffed animal. If this is confusing, perhaps
the Maude implementation will make things a bit clearer. And to counteract this possible clarity,
we’re going to add some Qids in there.

mod ARCADE-CRANE is
 protecting QID .
 sorts ToyID State .
 subsort Qid < ToyID .

 op floor : ToyID -> State [ctor] .
 op on : ToyID ToyID -> State [ctor] .
 op clear : ToyID -> State [ctor] .
 op hold : ToyID -> State [ctor] .
 op empty : -> State [ctor] .
 op 1 : -> State [ctor] .

*** this is the identity State; it’s just good to have one.
 op _&_ : State State -> State [ctor assoc comm id: 1] .
 vars X Y : ToyID .

 rl [pickup] : empty & clear(X) & floor(X) => hold(X) .
 rl [putdown] : hold(X) => empty & clear(X) & floor(X) .
 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
 rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) .
endm

To look at an example, take a look at the figures below.
In box A, the entire state can be expressed as “empty &
floor('mothergoose) &
on('teddybear,'mothergoose) &
on('soccerball,'teddybear) &
clear('soccerball) & floor('dragondude) &
clear('dragondude).”

In box B, the state is described as “empty &
floor('mothergoose) & clear('mothergoose)
& floor('dragondude) &
on('soccerball, 'dragondude) &
on('teddybear, 'soccerball) &

 35

clear('teddybear).” And the set of transitions between these two states would be rewrite
law unstack called on 'soccerball, stack called
on 'soccerball and 'dragondude, unstack called
on 'teddybear, and stack called on 'teddybear
and 'soccerball. And if we wanted to put the
Mother Goose on top of them all, we would have to call
pickup on her and stack on her and 'teddybear.

Notice that neither State A nor State B is any simpler or
more complex than the other. This means that any
execution of these laws is potentially non-terminating,
that is, there is no specific direction which rewriting will
take the states, and might randomly transition ad
infinitum. This is when it’s important to use the built in
limit on the rew command.

Also note that in our module, the transitions represented by the rewrite laws are between very
precise states. The more realistic the situation, the more factors will be involved in each state,
and the more information will be involved in the rewrite laws. For example, we could build
upon this example and account for the horribly weak grip of the claw, the fact that some animals
would be easier to pick up than others, etc. This would create even more states and therefore
even more precise transitions.

3.3 Rewriting in the Maude Environment

We have already seen the rewrite operation at work, but the Maude environment provides
several other useful tricks to more fully explore the powers of rewrite logic. Now, if we were to
enter our ARCADE-CRANE module into the Maude environment and call rew [2] on the state
represented by Box A, we’d find that the default strategy has stacked Dragon Dude on top of the
soccer ball. So far, so good. If we call rew [4] on the same state, we end up with... Dragon
Dude stacked on the soccer ball. In fact, upon further investigation, we’ll find that, after the
initial pickup of Dragon Dude, all that’s happening is a continual stacking and unstacking of
Dragon Dude! Any even number of rewrites, even as high as thirty or a hundred, will result in
the same state as two rewrites.

Obviously, the default strategy has very little imagination. It’s really only applying two out of
the four rewriting laws. Because such inane loops may often appear in rewriting systems, Maude
provides another rewrite command, frewrite, or “fair rewrite,” which picks which rewrite laws
to apply such that no law goes ignored. As it turns out, if we plug in frew [30] with our Box
A state, this fair strategy ends up scattering the whole stack across the floor. This is certainly
much more interesting than the stack-unstack loop, though perhaps not as interesting as it
could be. But hey, frewrite is still a default strategy, meant to be applied to any and every
rewriting system it comes across. So don’t expect it to build the Tower of Hanoi any time soon.

 36

Let’s say we wanted to know how quickly frewrite scatters the stack on to the floor. We’d
start off with

Maude> frew [1] empty & floor('mothergoose) &
on('teddybear,'mothergoose) & on('soccerball,'teddybear) &
clear('soccerball) & floor('dragondude) & clear('dragondude) .
...
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result State: floor('mothergoose) & clear('soccerball) &
hold('dragondude) & on('teddybear, 'mothergoose) & on('soccerball,
'teddybear)

The Maude environment always repeats to the user the command it receives, which I have
omitted with ellipses. Anyway, the first rewrite shows us that the crane has picked up Dragon
Dude. Instead of following with frew [2] of the same state, we use the provided continue
command, which continues the current rewrite strategy for X more rewrites, X being a bound
supplied by the user.

Maude> continue 1 .
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result (sort not calculated): floor('mothergoose) &
clear('soccerball) & (empty & floor('dragondude) &
clear('dragondude)) & on('teddybear, 'mothergoose) & on('soccerball,
'teddybear)

You don’t need to worry about that sort not calculated line; as one can see from the extra
parentheses, Maude hasn’t exactly finished processing the result, but it won’t interfere with our
rewriting. In any case, we see that the crane just set down Dragon Dude. If we keep entering in
continue 1, we find that it takes eight rewrites to get all the stuffed animals on the floor.
Then, for fun, we enter in continue 100 and see that they’re... still all on the floor. Oh well –
it’s a default strategy, after all.

One extremely powerful tool provided by Maude is the search command. Just like it sounds, it
searches for paths of rewrite laws between a beginning and end state supplied by the user. For
example, I wanted to find out how, beginning with our Box A state, we could switch Teddy Bear
and Mother Goose so that instead of on('teddybear, 'mothergoose) we have
on('mothergoose, 'teddybear). So, I entered into Maude the following and got:

Maude> search in ARCADE-CRANE : empty & floor('mothergoose) &
on('teddybear, 'mothergoose) & on('soccerball, 'teddybear) &
clear('soccerball) & floor('dragondude) & clear('dragondude) =>+
empty & floor('teddybear) & on ('mothergoose,'teddybear) &
on('soccerball,'mothergoose) & clear('soccerball) &
floor('dragondude) & clear('dragondude) .
...

Solution 1 (state 69)
states: 70 rewrites: 125 in 0ms cpu (0ms real) (~rewrites/second)
empty substitution

 37

No more solutions.
states: 125 rewrites: 272 in 10ms cpu (10ms real) (27200 rew/s)

First, some syntax: the search key word is obviously necessary, but one doesn’t need to
explicitly name the search module, as long as the currently selected module is the correct one,
but if you leave out the module name, drop in and the colon as well; the =>+ symbol means that
you are looking for a search solution involving at least one rewrite law. The other commonly
used symbol is =>!, which means you’re looking for a terminal state, that is, something that
can’t be rewritten any more. But since the crane system is non-terminating, we use the first
option.

The empty substitutions means that we haven’t involved any variables in our search. If we
wanted to search for a path from our Box-A-state to anything with the crane empty and Mother
Goose and Teddy Bear on the floor and clear, we’d enter:

Maude> search in ARCADE-CRANE : empty & floor('mothergoose) &
on('teddybear,'mothergoose) & on('soccerball,'teddybear) &
clear('soccerball) & floor('dragondude) & clear('dragondude) =>+
empty & floor('teddybear) & floor('mothergoose) & M:State .

Don’t forget to declare the variable M on-the-fly, or the command won’t parse. The result of this
is three different solutions:

Solution 1 (state 10)
states: 11 rewrites: 16 in 0ms cpu (0ms real) (~rewrites/second)
M:State --> floor('dragondude) & clear('soccerball) &

on('soccerball, 'dragondude)

Solution 2 (state 15)
states: 16 rewrites 23 in 0ms cpu (0ms real) (~rewrites/second)
M:State --> floor('soccerball) & floor('dragondude) &

clear('soccerball) & clear('dragondude)

Solution 3 (state 34)
states: 25 rewrites: 65 in 0ms cpu (0ms real) (~rewrites/second)
M:State --> floor('soccerball) & clear('dragondude) &

on('dragondude, 'soccerball)

These three solutions represent the three possibilities that involve Mother Goose and Teddy Bear
clear and on the floor, where the third line tells the user what state it has plugged in for the
variable M:State.

Thus, depending on the search, you may or may not get more than one solution. The important
thing to look for is the number next to state in the parentheses. This number will allow you to
see the rewrite path, which is after all what we want. In our first search example, a few pages
back, we see that Solution 1 is connected to a certain state 69. We type into Maude show path
69 . and it displays the path it used to reach the end state:

 38

Maude> show path 69 .
state 0, State: empty & ...
===[rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label

unstack] .]===>
state 2, State: floor(‘mothergoose) & ...
===[... [label stack] ...
state 4, State: ...
===[... [label unstack] ...
state 6, State: ...
===[...
state 10, State: ...
===[...
state 17, State: ...
...
state 69, State: empty & floor('teddybear) & floor('dragondude) &

clear('soccerball) & clear('dragondude) & on('mothergoose,
'teddybear) & on('soccerball, 'mothergoose)

I’ve cut out a lot from the transcription, to highlight the important points. One, you can see how
Maude lists the rewrite rule within the ===[]===>, as well as its label, when transitioning to
the next state. Also, you might notice that the state numbers skip. The omitted states are the
dead-end searches, the rewrites that went nowhere. The idea is that Maude performed one
hundred twenty five rewrites and ended up with seventy states, some of which form a solution
path. In case you’re wondering, the solution to our question was, in my own abridged notation,

[unstack] : on('sb, 'tb) => hold('sb) (0)=>(2)
 [stack] : hold('sb) => on('sb, 'dd) (2)=>(4)
 [unstack] : on('tb, 'mg) => hold('tb) (4)=>(6)
 [putdown] : hold('tb) => floor('tb) (6)=>(10)
 [pickup] : floor('mg) => hold('mg) (10)=>(17)
 [stack] : hold('mg) => on('mg, 'tb) (17)=>(28)
 [unstack] : on('sb, 'dd) => hold('sb) (28)=>(48)
 [stack] : hold('sb) => on('sb, 'mg) (48)=>(69)

Where the numbers in parens are the states through which the law transitions.

3.4 Conditional Rewrite Laws

Conditional rewrite laws should not be too difficult to explain now that we have both rewrite
laws and conditional equations under our belt. Conditional rewrite laws use the keyword crl,
and the rest is a rewrite law with an if statement at the end. Conditional rewrite laws are not
extremely common, because usually the pattern of states in the left-hand side of a rewrite law
supplies all the “ifs” of the transition. However, sometimes they are undeniably useful. If we
wanted to mention the weight of stuffed animal, we might write the following rewrite rule:

crl [pickup] : empty & clear(X) & floor(X) => hold(X)

if weight(X) < 10 .

 39

This, obviously, assumes there is a weight operation which returns the heaviness of the stuffed
animals in some unit or another. In general, conditional rewrite laws are used when there’s a
condition that can’t be easily expressed as a state. Like conditional equations, the if statement
can take the form of a Boolean statement or a pattern match, but in addition to these, the
condition of a rewrite rule may also be another rewrite rule. The following conditional rewrite
rules are all equivalent:

crl [equation1] : a(X) => b(X – 1) if X > 0 .
crl [equation2] : a(X) => b(X – 1) if X > 0 == true .
crl [equation3] : a(X) => b(X – 1) if X > 0 = true .
crl [membership1] : a(X) => b(X – 1) if X :: NzNat .
crl [membership2] : a(X) => b(X – 1) if X : NzNat .
crl [pattern] : a(X) => b(X – 1) if s(N:Nat) := X .

If we select one of these rewrite rules and get rid of the others (take your pick), we can write:

crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) .

What in the world does this mean? It means that the rewrite law may be executed on b(X) only
if a(X) could transition to a some state of b. Think of the => not so much as the rewrite symbol
but as the search symbol: the idea is, the condition is fulfilled if it’s possible to rewrite the left-
hand side into the right-hand side. So, in the above example, while a(3) can rewrite to c(4):

a(3) => b(2) => c(4)

the state a(1) could never reach c(0):

 a(1) => b(0) =/=> c(0)

because a(0) cannot transition into any b state according to any one of the rewrite laws above.

3.5 Rewrite Laws and Equations

At first glance, the difference between using equations and rewrite laws may seem trivial, but
they solve very different problems. Equations are much better than rewrite laws at
simplification; however, rewrite laws are better at expressing problems with just one level of
simplicity. Rewriting laws also can illustrate constitutional changes that equations can’t; though
an equation may simplify an expression, the expression is still mathematically equal to its
predecessor. A functional module would have a hard time creating the cigarette example,
because a cigarette butt is definitely not equal to a newly made cigarette.

In general, equational logic creates a framework through which rewriting laws trace transitions.
System modules often include equations; when they do, they set up and define all the operations
that become states, and then the rewrite laws deal with these states. For example, in the slightly
expanded arcade crane example, we would have to define the operation weight using an

 40

equation. We also use equations to define numbers (creating our own notation, such as the
Peano notation, or using the library module INT, which is also defined with equations) that can
later be used in rewrite laws.

Equations are the nuts and bolts and gears and girders; rewrite laws create the machine.

 41

EXERCISES FOR CHAPTER 3

1. While _________________ describe rules of simplification (writing the same thing a

different way), a _______________ maps a ________________ between two states (a

change in constitution). And while the right-hand side of a(n) _________________ should

be simpler than the left-hand side, this is not necessarily true for the other. This latter uses

the key symbol => to emphasize its ____________________, that is, the fact that it only

works in one direction.

 Both equations and rewrite laws may be found in a ____________ module, initiated with the

keyword _______.

2. The following module sets down the rules for a rewrite game, called “Zip-Zap-Zop.”

Whenever the constants zip, zap, and zop appear in that order, they become a win. And

wins can change into all sorts of combinations of the three. In addition, four zops in a row

ends the game. The goal is, then, to apply the correct rewrite rules so that we end with one

win. Look over the module and answer the questions that follow:

 1 mod ZIP-ZAP-ZOP is

 2 sort GameState .

 3 op _>_ : GameState GameState ->

 4 GameState [ctor assoc id: 1] .

 5 op 1 : -> GameState [ctor] .

 6 ops zip zap zop : -> GameState [ctor] .

 7 ops win gameover : -> GameState [ctor] .

 8

 9 rl [winner!] : zip > zap > zop => win .

 10 rl [scatter1] : win => zop > zip .

 11 rl [scatter2] : win => zip > zap .

 12 rl [scatter3] : win => zop > zop .

 13 rl [gameend] : .. .

 14 endm

 42

a) What’s missing from line (4) that would allow Maude to rewrite zop > zap > zip ?

b) Fill in the dotted blank on line (13):

__

c) Consider the expression win > zop > win :

i. Does an unbounded rewrite of this expression always terminate? __________

ii. What are the five rewrites, in order of application, that must occur in order for the

above expression to reach a gameover? In the first blank, put the label of the

rewrite law you apply, and in the second, the state that results.

 win > zop > win

 1. ________________ => ____________________________________

 2. ________________ => ____________________________________

 3. ________________ => ____________________________________

 4. ________________ => ____________________________________

 5. ________________ => ____________________________________

d) Let’s say we want to add a rule that will change zap into zip as long as this

immediately produces a win in the expression. Write a conditional rewrite law change

that transforms zap > S into zip > S, and the condition is another rewrite law.

Assume variables S and P of GameState have already been declared.

3. Two separate searches were performed with the complete ZIP-ZAP-ZOP module (that is,

including the conditional rewrite law change), and the transcription appears below. The

ellipses appear in the place of unimportant information, so don’t worry about those, but some

important parts have been substituted by dotted blanks. Study the searches carefully and

answer the questions below.

First search:

 43

Maude> search zap > zap > zip > zap > zop(a).... win .

...

No solution.

states: 22 rewrites: 106 ...

Second search:

Maude> search zap > zap > zip > zap > zop(a).... win .

...

Solution 1 (state 18)

states: 19 rewrites: 103 ...

empty substitution

No more solutions.

states: 22 rewrites: 106 ...

Maude> show(b)..................... .

state 0, GameState: zap > zap > zip > zap > zop

==[rl zip > zap > zop => win [label winner!] .]===>

state 1, GameState: zap > zap > win

==[rl win => zop > zop [label scatter3] .]===>

state 3, GameState: zap > zap > zop > zop

==[crl ... [label change] .]===>

state 9, GameState:(c)..

==[rl zip > zap > zop => win [label winner!] .]===>

state 11, GameState: win > zop

==[rl(d)...................... [label(d).............] .]===>

state 16, GameState: zip > zap > zop

==[rl zip > zap > zop => win [label winner!] .]===>

state 19, GameState: win

 44

a) As you can see, the first and the second searches are almost identical, except for the

symbol that goes in the two dotted blanks labeled (a).

 i. What symbol must have been used for the first search? ________________

 ii. What symbol must have been used for the second search? _______________

iii. If we had written zop > zop > zop instead of win in the first search, would

Maude have found a solution? __________

iv. If we had written zop > zop > zop instead of win in the second search, would

Maude have found a solution? __________

b) Fill in the dotted blank labeled (b): ___________________________________

 If you had entered in show path 11 . instead, what would the last line of your result

be? ___

c) Refer to question 2.d) and the rest of the search transcript. How should you fill the dotted

blank labeled (c)? __

d) Based on the evidence of states 11 and 16, what must go in the two dotted blanks labeled

(d)? ___________________________________

 and

 45

4. FULL MAUDE & OBJECT-ORIENTED MODULES

4.1 Full Maude

What is Full Maude?

Full Maude is an adventure – more difficult, to be sure, and often even frustrating, but ultimately
rewarding. Full Maude extends the capabilities of Core Maude, adding powerful new features
that can make all the difference in a project, though at the same time, it complicates or even does
away with some of the ‘safety nets’ that keep a greenhorn Maude programmer from crashing the
environment. Therefore, Full Maude requires some finesse and expertise to use effectively, and
also some patience, for Full Maude is above all a Great Experiment in progress, an important
tour-de-force of Maude programming and its flexibility. Even if you choose not to use Full
Maude very often, it is essential to learn it.

To understand what Full Maude actually is, one must start at the beginning, which is the standard
library module LOOP-MODE. This module provides the programmer with the tools to create a
user interface, so that, in addition to the provided commands of the Maude environment, we can
fashion commands of our own for a module-defined “sub-environment” within Maude. The
magic of LOOP-MODE lies in a single, simple constructor:

op [_,_,_] : QidList State QidList -> System [ctor special (....)] .

The procedure is this: the user enters in some word or words into the Maude environment,
enclosed in parentheses. Because of the parentheses, Maude recognizes the phrase as a loop
command, and converts each word into a quoted identifier. This becomes the first QidList
argument. Some sort of rewriting, defined by the program modules, occurs, usually with the aid
of the second argument, a sort State declared within LOOP-MODE. More on this later. At the
end of the rewriting, whatever QidList ends up as the third argument is printed to the screen,
without the quotes.

Let’s look at an example. When I was a kid I used to spend ludicrous amounts of time coming
up with ASCII smiley faces, such as: : –) (standard), 8 – 0 (gawping), !: -) (well-groomed),
[: - | (Frankenstein’s monster), etc. The program below takes in a command from the user –
which smiley face to print out – and outputs that particular face.

 mod SMILE-LOOP is
 inc LOOP-MODE .
 op none : -> State .
 op startsmiling : -> System .
 eq startsmiling = [nil, none, nil] .
 var S : State . vars I O : QidList .
 rl [smile] : ['smile I, S, O] => [I, S, O ' ': '- '`)] .
 rl [wink] : ['wink I, S, O] => [I, S, O ' '; '- '`)] .
 rl [gawp] : ['gawp I, S, O] => [I, S, O ' '8 '- '`)] .
 rl [elvis] : ['elvis I, S, O] => [I, S, O ' '? 'B '- '`)] .

 46

endm

To run the smiley “sub-environment,” we first load the above module and then initialize the loop
to some starting point with the keyword loop. The convention is to define this starting point
within the module, as we did above with startsmiling. But the following two commands are
equivalent and equally valid:

Maude> loop startsmiling .
Maude> loop [nil, none, nil] .

Now, we simply enter in the commands we want, being sure to enclose them in parentheses:

Maude> (smile)
 : -)
Maude> (elvis)
 ? B –)
Maude> (smile elvis gawp)
 : -) ? B –) 8 – 0

A few things to point out: one, we need to backquote the parentheses before making it into a
Qid, because otherwise Maude thinks it’s a real paren and we get a parse error. Also look at the
quote standing by itself between the O variable and the smiley-face: that’s the blank-space Qid.
Finally, notice that we must import LOOP-MODE using including, not protecting, because
we mess around with the definitions of State and System. Speaking of which, you might
notice we made no use of the State argument. This second argument can often be very useful
for more complicated environments that require a bit more rewriting before it can output an
answer:

mod MOOD-LOOP is
 inc LOOP-MODE .
 sort Mood .
 op <_;_> : Mood Mood -> State [ctor] .
 op init : -> System .
 ops happy shocked playful : -> Mood .
 op # : -> Mood . ***blank placeholder

eq init = [nil, < # ; # >, nil] .

vars I O : QidList . var S : State .

rl [in-smile] : ['smile I, S, O] => [I, < happy ; # >, O] .
 rl [in-gape] : ['gape I, S, O] => [I, < shocked ; # >, O] .
 rl [in-wink] : ['wink I, S, O] => [I, < playful ; # >, O] .

rl [out-smile] : [I, < # ; happy >, O] =>
[I, < # ; # >, O ' ': '- '`)] .

 rl [out-gape] : [I, < # ; shocked >, O] =>
 [I, < # ; # >, O ' '8 '- '0] .
 rl [out-wink] : [I, < # ; playful >, O] =>
 [I, < # ; # >, O ' '; '- '`)] .

 47

 rl [wow!] : < happy ; # > => < # ; shocked > .
 rl [hehe] : < happy ; # > => < # ; playful > .
 rl [hey!] : < playful ; # > => < # ; shocked > .
endm

Here, the process is slightly more complicated. First, the user inputs the command, and we
convert it into a mood using the in- laws. Then, the three last rules describe the mood changes,
and lastly, the out- laws output the corresponding smiley.

As you can imagine, we can create some amazingly complex and powerful rewriting systems
that fit into the LOOP-MODE constructor, thereby adding the power of user interaction. In fact,
we could even write an entire programming language using loop mode, by defining our own
commands and making them programming language keywords, then setting down rewrite
modules to interpret these keywords into Maude terms and expressions. In fact, we could even
write this loopy programming language with the same keywords as Maude, plus a few extra
ones, so that essentially, all we’re doing is giving extended capabilities to the Maude language
we already know.

And we did. We called it ‘Full Maude.’

Maude is a modeling tool so powerful it can model almost anything, including itself. Here’s how
it works. Full Maude is an extension of Core Maude written in Core Maude using loop-mode.
So when we load a Full Maude module or command, or enter it into the environment directly, the
LOOP-MODE constructor receives it as input, processes it according to the reduction and rewrite
rules set down in the Full Maude signature (a series of modules that mimic and extend the syntax
of Core Maude), and then output it in a style similar to the output of Core Maude. The only real
visible differences are: 1) the extended features, and 2) we have to put everything in parentheses.
Modules, commands, everything we want Full Maude to pay attention to – has to be in
parentheses. Other than that, we use the exact same syntax for Core Maude, plus a new set of
syntax for the extended features.

What are these extended features? Aside from a few helpful functions here and there, the two
main tools of Full Maude are object-oriented modules and parameterization. The rest of this
chapter will explore the syntax and uses of object-oriented programming, and Chapter 5 will
tackle parameterized systems. So, to begin.

4.2 Introduction to Object Oriented Ideology

The ancient Greeks introduced the Western world to the concept of the mnemonic, which is any
device used to remember a set of data better. One such device involved touring some temple or
mansion or public building, and assigning pieces of data to specific things or places within the
building. For example, an orator might walk through an old statue garden and assign to each
statue a certain point or item to be brought up in his speech. Then, when giving the speech for
real, he would walk through the garden in his mind, and discourse on each subject as he
encountered its symbolic statue during the mental tour. These “temples of memory” were

 48

commonly used by teachers and politicians and any body who had a lot to memorize. Ironically,
these “temples of memory” give the orator more information to memorize instead of less. But it
still makes remembering easier, because the properties of spatial location lend otherwise abstract
concepts a solidity, a realness, and bring out certain traits in these concepts such as hierarchy,
order, and inclusive/exclusive qualities.

In programming, one can think of an object as a computer’s “temple of memory.” An object is
simply a structure that groups together data of all types. For example, one could make an object
CAT which includes a variable for the color of its fur, a variable for its weight, and an operation
“purr.” Now, it is perfectly feasible to work with each operation and each variable separately,
but an object establishes implicit connections between each piece of data just by existing and
including them. An object also gives the group exclusivity; now purr is utterly separate from,
say, the addition operator. The structure of objects merely explicitly states for the computer
what the programmer already knows. This strengthens, condenses, and simplifies code
remarkably.

The big vocabulary word to learn this chapter, which you will encounter in every discourse on
object oriented programming, is “encapsulation.” An object encapsulates data into one easily
manageable structure. Encapsulation also carries the connotations of exclusivity and
inclusiveness, which are essential to objects. In the next section we’ll look at how we actually
implement all this ideology in Full Maude.

4.3 Objects in Maude

Objects all belong to a class, which is a general category of which objects are specific instances.
For example, the object CAT could belong to class Animal. Or, class TABLE might have
instances Table1, Table2, Table3, representing certain tables in a restaurant. The relationship
between classes and objects is somewhat analogous to the relationship between sorts and
variables of those sorts.

Classes are declared in Maude with a class name and however many attributes you want linked
to objects of that class. Attributes are declared with an attribute name and the attribute’s sort.
Multiple attributes are separated by commas (the set of a class’s attributes is commutative, so
order does not matter). We also declare classes with the keyword class and the | symbol, as
follows:

class TABLE | occupied : Bool , chairs : Nat .

TABLE has attributes occupied, which is a Boolean value (whether or not the table is occupied),
and chairs, a Nat denoting the number of chairs at the table. Objects are a bit more
complicated to declare, because one must declare each individual piece (name and attribute(s))
using variables. For example, an object of TABLE needs a name, a Boolean value, and a Nat.

var A : Oid . var O : Bool . var N : Nat .

 49

“Oid” stands for “object identifier,” which is a fancy name for “object name.” Object identifiers
are just variable specifically for objects. It comes as a built-in sort in omods. So we’ve declared
variables for all the pieces of a TABLE object; if we want to use this object, say, in a rewrite law,
we call it with the symbols < >, | , and the colon.

< A : TABLE | occupied : O , chairs : N >

This syntax can look pretty baffling at first. If it helps, think of the above structure not as a piece
of syntax, but as a constructor defined by Full Maude in its signature:

op < _:_ | _ > : Oid Cid AttrSet -> Object [ctor] .

Just remember that the | symbol always separates the class/object name from its attributes, and
that colons separate attribute names and their associated sorts/values. Objects are above all data
structures, like computational file cabinets, and the look of the object constructor emphasizes the
ideology of encapsulation, that several pieces of information (“occupied : O , chairs :
N”) are gathered under the same name (“A : TABLE”) and separated from the rest of the
environment (“< >”).

Just as sorts can have subsorts, classes can have subclasses. In C++, certain classes are
constructed from other classes, inheriting their attributes. In Maude, the concept of “inheritance”
is implemented through classes and subclasses. Suppose our restaurant puts some tables outside,
and during the winter we want to know if a certain table is next to a propane heater-lamp. We
declare a class OutDoorTABLE, with this additional attribute.

class OutDoorTABLE | next2heater : Bool .

We then declare OutDoorTABLE a subclass of TABLE. OutDoorTABLE will inherit the
attributes of TABLE, in addition to this new attribute next2heater. Since subclasses parallel
subsorts, the declaration syntax will not come as a surprise:

subclass OutDoorTABLE < TABLE .

Note that OutDoorTABLE is as much a class as TABLE; the key word subclass just establishes an
inheritance hierarchy. An object of OutDoorTABLE, once all variables are declared, might look
like:

< A : OutDoorTABLE | occupied : O , chairs : N , next2heater : H >

4.4 Messages

If classes are something like bigger versions of sorts, and objects are something like bigger
versions of variables, then messages are something like the bigger versions of operations. They
are declared with the key word msg, and are otherwise declared pretty much like operations:
after msg comes the name (in either prefix or mixfix), followed by a colon, then the sorts fed into
the message, then the -> symbol. The two special requirements are that, for messages, the ->
symbol is always followed by the key sort Msg, and the first argument is always an Oid, assumed

 50

to be the name of the object upon which the message acts or to which the message is “sent.” Msg
(with a capital M, differentiating it from the key word msg) is a built-in sort specified by Full
Maude for omods and object-oriented programming. So, if we want a message sit@, which
changes a table from unoccupied to occupied, we write:

msg sit@ : Oid -> Msg .

Note that one feeds sorts, not classes, into a message. We identify all objects by their Oids, so
feeding in an entire class is unnecessary and extraneous. And the reason for the built-in sort
Msg? This gets complicated. Messages are like bigger version of operations, but we don’t plug
an entire object into a message like we plug a variable into an operation. So instead of writing
sit@(< A : TABLE | occupied : O , chairs : N >), we write sit@(A) next to < A
: TABLE | occupied : O , chairs : N >. Imagine the Maude interpreter is Alice in
Wonderland, and she comes across 1) a vial of liquid, and 2) a note that says “Drink Me.” So, of
course, she drinks the vial. Messages work the exact same way: they are a note sitting next to
the object they affect, telling the interpreter to perform some action. We’ll later use rewrite laws
to define exactly how to perform that action. In a sense, messages are just the first “half” of the
process. Is this confusing? Absolutely. We’ll clear this all up soon enough. Is the difference
between msg and Msg especially confusing? Maddeningly. The only solace I can offer is that
key words are always lower case in Maude, so msg must be the key word and Msg the built-in
sort.

4.5 Rewrite Laws in Object-Oriented Modules

When we last left rewrite laws in Chapter 3, in system modules, we had resolved that they took
some state and mapped a transition to another state. In our toy crane example, several of our
rewrite laws mapped a concatenation of States, which is a State itself, and mapped a
transition to another concatenation of States. In other words,

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

in terms of the sort State, looks like

State State State => State State

which is really just a specific example of

 State => State

or something like that.

Now, a similar arrangement occurs in object-oriented modules, it just looks different. Messages
and objects are both specific types of states. So what a rewrite law looks like in omods is:

 Message Object Object => Object Object

 51

Not to say, of course, that a rewrite law in an omod is always 1 message + 2 objects = 2 objects;
the following are also common patterns:

 Message Message Object => Object
 Message Object => Object Message

My point is that objects and messages are just specific states, and any concatenation of messages
and objects can be mapped to any other concatenation of messages and objects with a rewrite
law, just as concatenations of states were mapped to each other in system modules. How does
this specification work? Reflect over the following:

 subsorts Message Object < State .

Of course, the actual Full Maude signature uses different names and words etc., but this explains
why we need the built-in sort Msg. The message declaration gathers all the required sorts into
one state, Msg. Then the rewrite law provides the actual transition, using all the information
contained in the Msg in conjunction with the provided objects.

So all the components of object-oriented rewrite laws, including messages and the new Msg sort
and the bizarre new syntax of objects, are really just specific examples of everyday rewriting
logic; they just imitate Core Maude syntax, and a bit more. In Chapter 3, we created a toy crane
environment using rewriting logic. Well, Full Maude simply creates an object-oriented
programming environment using rewriting logic. How thoughtful, no?

All right, that was an enormous amount of theory there. Let’s look at some examples. First, let’s
expand our TABLE example into a full-fleshed module. We already have a class and a subclass,
attributes for both, and a message sit@. Let’s add a message borrowchairfrom, which takes
a chair from one table and adds it to another, a message changetables, which changes one
occupied table to unoccupied and one unoccupied table to occupied, and a message
heaterswitch that toggles the next2heater attribute of OutDoorTABLEs.

(omod RESTAURANT is
 protecting NAT .
 class TABLE | occupied : Bool , chairs : Nat .
 class OutDoorTABLE | next2heater : Bool .
 subclass OutDoorTABLE < TABLE .
 msgs sit@ heaterswitch : Oid -> Msg .
 msgs _borrowchairfrom_ changetables : Oid Oid -> Msg .

 vars A B : Oid .
 vars M N : Nat .

 rl [sit] : sit@(A) < A : TABLE | occupied : false >
 => < A : TABLE | occupied : true >
 rl [switchon] : heaterswitch(A)

< A : TABLE | Next2heater : false >
 => < A : TABLE | Next2heater : true > .
 rl [switchoff] : heaterswitch(A)

 52

 < A : TABLE | next2heater : true >
 => < A : TABLE | next2heater : false > .

rl [move] : changetables(A, B)
< A : TABLE | occupied : true >

 < B : TABLE | occupied : false >
 => < A : TABLE | occupied : false >
 < B : TABLE | occupied : true > .

rl [takechair] : (A borrowchairfrom B)
 < A : TABLE | chairs : M >

< B : TABLE | chairs : s N >
=> < A : TABLE | chairs : s M >

 < B : TABLE | chairs : N > .
endom)

Note that, because object-oriented modules are part of Full Maude and not Core Maude, we have
to enclose the omod definition in parentheses. Also remember that, even when using mixfix
notation, we feed in only Oids, not full obejcts. That is, we wrote

(A borrowchairfrom B)

instead of

< A : TABLE > borrowchairfrom < B : TABLE >

Please keep in mind that you are not writing in Core Maude, so parsing tricks you might have
gotten away with in Core Maude will very easily crash your program in Full Maude. For
example, if I did not put parentheses around A borrowchairfrom B, Full Maude would
understand me to mean A borrowchairfrom (B < A : TABLE | chairs ... >), which of
course makes no sense. So, be sure to practice “safe parsing” when programming in Full Maude:
use whitespace and parentheses always. Finally, when calling an object with multiple attributes
in a rewrite law, it is only necessary to state explicitly the attribute that matters for the law. For
example, we didn’t have to provide any information about the attribute occupied in the rewrite
law takechair.

My favorite omod implementation example is the sliding tile
puzzle. Imagine (or, just look at the adjacent figure) a three
by three grid, with eight numbered tiles free to slide up,
down, left, or right into the empty space. So, in our module,
we’ll have a class Tile with an attribute val. As for
coordinates, we’ll create a constructor operation to turn
coordinates into an Oid.

(omod TILE-PUZZLE is
 sorts Value Coord .
 ops One Two Three Four Five Six Seven Eight : -> Value .
 op empty : -> Value .
 ops 0 1 2 : -> Coord .
 op s_ p_ : Coord -> Coord .

 53

 op `(_`,_`) : Coord Coord -> Oid [ctor] .
 eq s 0 = 1 .
 eq s 1 = 2 .
 eq p 1 = 0 .
 eq p 2 = 1 .

class Tile | val : Value .
msg move : Oid Oid -> Msg .
vars R1 R2 C1 C2 : Coord . var V : Value .

crl [l] : move((R1, C1), (R1, C2))

< (R1, C1) | val : V > < (R1 , C2) | val : empty >
 => < (R1 , C2) | val : V > < (R1 , C1) | val : empty >
 if C2 == p C1 .

crl [r] : move((R1, C1), (R1, C2))
< (R1, C1) | val : V > < (R1, C2) | val : empty >

 => < (R1, C2) | val : V > < (R1, C1) | val : empty >
 if C2 == s C1 .

crl [u] : move((R1, C1), (R2, C1))
< (R1, C1) | val : V > < (R2, C1) | val : empty >

 => < (R2, C1) | val : V > < (R1, C1) | val : empty >
 if R2 == p R1 .

crl [d] : move((R1, C1), (R2, C1))
< (R1, C1) | val : V > < (R2, C1) | val : empty >

 => < (R2, C1) | val : V > < (R1, C1) | val : empty >
 if R2 == s R1 .
endom)

Note that the Oid, in this case, was not a typical variable name or word, but rather the result of a
constructor. Also note that, for that constructor, we had to use backquotes in front of the
parentheses and commas. Since omods are part of Full Maude, in which parentheses and
commas are key symbols, we have to put the backquote to use them as normal characters.

So we’ve wrapped up our exploration of the three types of modules: functional, system, and
object-oriented. More importantly, we’ve seen how Full Maude extends the tools and language
of Core Maude, and experienced a bit of the madness inherent in Full Maude programming. In
the next two chapters, we’ll learn about how to coordinate and manipulate multiple modules in
two complex and useful ways, through parameterization and through metaprogramming.

 54

EXERCISES FOR CHAPTER 4

1. Full Maude is an ___________________________ of Core Maude, mimicking the Maude

syntax within its own modules but defining a few extra capabilities, most notably

_______________________ modules, declared with the keyword _________ at the

beginning and ___________ at the end, and ___________________________, the subject of

Chapter 5. All modules and commands to be loaded into Full Maude must be enclosed in

____________________________, because Full Maude is written using the input-output

capabilities of the provided module ____________________.

2. The following lines are from different object-oriented modules, and none of them parse

correctly. Write the appropriate revision to each statement or declaration that will fix the

error(s).

 a) Msgs debit credit : Oid Nat -> msg .

 b) rl [switchnums] : A switch B

 < A : NUMOBJ | n : N >

 < B : NUMOBJ | n : M >

 => < A : NUMOBJ | n : M >

 < B : NUMOBJ | n : M > .

 c) object PERSON | age : Nat sign : Zodiac .

 55

 d) rl [older] : ++age(A) < A | age : N , sign : Z >

 => < A | age : s N , sign : Z > .

3. The following object-oriented module defines a basketball scoresheet model, where each

player, identified by their jersey number, has a line with their name, scoring record (how

many three-pointers, two-pointers, and free throws they’ve attempted and made) and the

number of fouls they’ve accrued. Examine the module below and answer the questions that

follow. You can assume that throw is defined somewhere else such that true and false

are equally probable results.

1 (omod BASKETBALL-SCORESHEET is

2 pr NAT . pr STRING .

3 sorts History JerseyNumber .

4 .. .

5

6 op _for_ : Nat Nat -> History [ctor] .

7 op throw : Oid -> Bool .

8

9 class LINE | name : String , threes : History ,

10 twos : History , fts : History ,

11 fouls : Nat .

12

13 msgs ... : Oid Bool -> Msg .

14 msg foul : Oid -> Msg .

15 msg _fouled_ : Oid Oid -> Msg .

16

 56

17 vars J K : JerseyNumber . vars X Y N : Nat .

18 var B : Bool . var S : String .

19

20 rl [f] : foul(J)

21 < J : LINE | name : S , fouls : N >

22 => < J : LINE | name : S , fouls : s N > .

23 rl [3] : 3A(J, B) < J : LINE | threes : X for Y >

24 => < J : LINE | threes : if B

25 then (s X) for (s Y)

26 else X for (s Y) fi > .

27 rl [2] : 2A(J, B) < J : LINE | twos : X for Y >

28 => < J : LINE | twos : if B

29 then (s X) for (s Y)

30 else X for (s Y) fi > .

31 rl [ft] : ftA(J, B) < J : LINE | fts : X for Y >

32 => < J : LINE | fts : if B

33 then (s X) for (s Y)

34 else X for (s Y) fi > .

35 rl [foulcalled] : (J fouled K)

36 < J : LINE | > < K : LINE | >

37 => foul(J) < J : LINE | >

38 ftA(K, throw(K)) fta(K, throw(K))

39 < K : LINE | > .

40 endom)

a) What declaration has to go on line 4 so that JerseyNumber, which is really just a Nat,

counts as an object identifier?

b) Fill in the dotted blank on line 13: ____________________________________

 57

c) On lines 20-22, the message foul is defined using a rewrite rule.

 i. Is the attribute name necessary to include in the rule? __________________

 ii. Is the attribute fouls necessary to include in the rule? __________________

d) The following was entered into the Maude environment after having loaded the above

module, except the messages have been deleted from the input. What three messages

must have occupied the dotted blank to produce the following result?

Maude> (rew < 8 : LINE | name : "Kobe" , fouls : 1,

 threes : 0 for 0, twos : 6 for 8, fts : 4 for 4 >

 < 34 : LINE | name : "Shaq" , fouls : 3,

 threes : 0 for 0, twos : 9 for 9, fts : 0 for 8 >

 < 3 : LINE | name : "Iverson" , fouls : 2,

 threes : 2 for 3, twos : 3 for 4, fts : 2 for 4 >

 .. .)

rewrites: 1503 in 20ms cpu (20ms real) (75650 rewr/s)

result Configuration :

< 3 : LINE | fouls : 3,fts : 2 for 4,twos : 3 for

5,threes : 2 for 3,name : "Iverson" > < 8 : LINE |

fouls : 1,fts 4 for 4,twos : 6 for 8,threes : 1 for

1,name : "Kobe" > < 34 : LINE | fouls : 3,fts : 1 for

10,twos : 9 for 9,threes : 0 for 0,name : "Shaq" >

 58

5. PARAMETERIZATION

5.1 Ideology

In Alvin Toffler’s 1970 psycho-social analysis tome Future Shock, the author describes an
apartment building made up of a permanent building frame, while steel, modular apartments are
hoisted by crane and “plugged into” the frame. This design reflects the general architecture of
parameterization, consisting of a frame sort, and a “plugged in” sort. Or, consider a normal
electrical outlet. The outlet is only a single structure, by itself not very powerful. But thousands
of different appliances (which are not very powerful without an outlet) can be plugged in,
creating a combination that is useful. This is the ideology of parameterization. One creates a
parameterized sort, the outlet, and a parameter sort, which plugs into the parameterized sort and
creates a useful combination.

For example, say you wanted to make a roster of all the people in a particular school. This
would mean a list of teachers, a list of administrators, and a list of students. You could just make
a sort NameList, to include all three types of names:

sorts NameList Name .
subsort Name < NameList .
op __ : NameList NameList -> NameList .

But this means that there is no difference in how the module treats teachers, students, and
administrators. We could create separate lists for all of them – but this becomes wasteful after a
while, when we have the alternative of creating a general sort Roster, and parameterizing it.
Then we can create three different types of Rosters: Roster(teacher), Roster(student),
Roster(administrator). As you might expect, parameterization is a very powerful but also
rather complex tool, and requires a fair amount of special syntax to learn before we can use it to
its fullest extent.

5.2 Syntax of Parameterization

5.2.1 : The Theory

The first requirement for a parameterized anything is a theory. A theory sets down the rules for a
parameter, a sort of schematic, which the parameter must fulfill in order to be accepted by a
parameterized sort. The most common theory, TRIV, is, well, trivial:

(fth TRIV is
 sort Elt .
endfth)

This theory is automatically included in Full Maude, and is the basic example of a theory whose
sole requirement is that some sort be present in the parameter. This theory would work well for
general parameterized lists. A general list only requires that its elements exist, which is
essentially the requirement of TRIV. Note that the sort Elt is the common abbreviation for

 59

“element” (as in an element of a list or set). Also note that this theory is a functional theory: this
theory is for the benefit of functional modules. This doesn’t mean that a system module or an
object-oriented module can’t make use of this theory, but rather that there is nothing in the
theory which limits it to these modules, such as, say, any requirement about rewrite laws or
classes. Finally, note that the theory is in parentheses, because parameterization is a part of Full
Maude (see Chapter 4.2).

There are certainly times when a more specific theory is useful. Let’s say that you were asked to
model (1) a highway map of California, (2) an electrical power grid, and (3) a cross-referenced
encyclopedia. What these three examples have in common is that they are a network, and can be
modeled using a graph of nodes and edges. The nodes are the (1) cities, (2) houses and power
plants, or (3) encyclopedia entries, while the edges are the (1) highways, (2) power lines, or (3)
cross-references. So let us create a functional theory GRAPH that specifies the requirements of a
network:

(fth GRAPH is
 sorts Node Edge .
 ops node1 node2 : Edge -> Node .
endfth)

Note that we don’t specify what the operations node1 and node2 actually mean for the sorts.
Depending on whether our edges are one-way only, node1 and node2 could mean “source” and
“target,” or they could just be two nodes connected by the edge. All that the theory requires is
that there be two operators that return the nodes associated with an edge.

5.2.2 : The Parameterized Module

The next step of parameterization is the actual parameterized module. We declare this module
with a special, clunky notation:

(fmod EXAMPLE(X :: TRIV) is … endfm)

The syntax may look strange, but every bit of it is important. The (X :: TRIV) phrase declares
that there will be one or more parameterized sorts in the module (all of which will in some way
carry around the label X) whose parameter must fulfill the theory TRIV. Why X? Why not. You
can use any letter or identifier you wish, as long as you’re consistent. But the convention is a
single capital letter, usually X.

Then, you make sure that anything within the module that relies on a parameter carries that label
(we’ll use X throughout the rest of the chapter). The parameterized sort or sorts carries a
parenthesized X whenever it appears, while the sorts defined in the theory carry an “X@”
wherever they go. Thankfully, the operations defined in the theory do not carry the X with them.
Returning to our network example, we write the following module:

(fmod NETWORK(X :: GRAPH) is
 sorts NodeSet(X) EdgeSet(X) Network .

 60

 subsort X@Node < NodeSet(X) .
 subsort X@Edge < EdgeSet(X) .
 op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] .
 op __ : NodeSet(X) NodeSet(X) -> NodeSet(X)

[ctor assoc comm id: nnil] .
 op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X)

[ctor assoc comm id: nil] .
 op nnil : -> NodeSet(X) [ctor] .
 op nil : -> EdgeSet(X) [ctor] .

 op _in_ : X@Node NodeSet(X) -> Bool .
 op _in_ : X@Edge EdgeSet(X) -> Bool .

 var N : X@Node . var NS : NodeSet(X) .

var E : X@Edge . var ES : EdgeSet(X) .

eq N in N NS = true .
eq N in NS = false [owise] .
eq E in E ES = true .
eq E in ES = false [owise] .

endfm)

So there’s a lot to look at in this module. First, one may notice that X@Node and X@Edge don’t
appear to have been initiated as sorts, but in fact they come from the Node and Edge defined in
GRAPH. Also note that our two parameterized sorts need to carry that (X) with them at all times.
Finally, I’ve included the _in_ operator, which checks if a Node or Edge is part of a given
corresponding set, just so we have something to do with this example (a common exercise with
networks is a search function, which searches for a path between two nodes... the implementation
of this, however, is too tangential, and too complex, for the chapter, but is provided in the
Examples Appendix).

5.2.3 : The Parameter(s)

Overall, parameterization is really pretty simple: it’s just a matter of getting used to and
memorizing the syntax involved. And on that note, let’s look at some more syntax. We’ve got
the theory, we’ve got the parameterized module, now let’s look at the next requirement: a
module that defines the parameter. With respect to our network example, we’ll create a rather
arbitrary parameter, a graph where the nodes are Greek letters and the edges are natural numbers:

(fmod GREEK-GRAPH is
 pr NAT .

sort Letter .
ops alpha beta gamma delta epsilon lambda theta phi : -> Letter .
ops source target : Nat -> Letter .

eq source(1) = epsilon . eq target(1) = lambda .
eq source(2) = beta . eq target(2) = alpha .
eq source(3) = alpha . eq target(3) = gamma .

 61

eq source(4) = alpha . eq target(4) = delta .
eq source(5) = delta . eq target(5) = epsilon .
eq source(6) = theta . eq target(6) = phi .
eq source(7) = phi . eq target(7) = theta .

endfm)

Of course this is a bit simplistic, but it suffices. The module
basically describes the graph to the left. Note that we must
initiate the above sorts and operations in a module separate from
the parameterized module, because we will “plug it into” the
NETWORK module in a moment, with the help of a view.

5.2.4 : Views

So far, in our continuing mission to create an example of parameterization, we’ve 1) defined the
rules for the parameter, 2) declared and defined the parameterized sort, and 3) declared and
defined the parameter. As it stands, however, there is no link between the parameter and its
rules. After all, how is the Maude compiler supposed to realize that the sorts Letter and Nat
are meant to be the “X@Node” and “X@Edge,” respectively? Why not the other way around?
And what about those node1 and node2 operators? It probably comes as no surprise that the
answer lies in views, the subject of this section.

A view maps the sorts and operations defined in the theory to those in a given parameter. This
establishes a link between the two, which allows the compiler to understand the parameter sorts
as parameters. We create a view using the special syntax “view ViewName from THEORY
to MODULE is ... endv.” The name doesn’t have to be anything special, but it’s a good
idea to give the view a name related to the problem at hand, and a bad idea to give it the same
name as the module or theory. The theory and module names, obviously, are the names of the
theory and module to be linked within the view. Remember to enclose the view in parentheses.
The actual mapping occurs within the view, using the unexciting but essential key word to. This
key word allows us to map both sorts and operations in a theory to the corresponding sorts and
operations in a module. Returning to our network example:

(view Graph-GreekGraph from GRAPH to GREEK-GRAPH is
 sort Node to Letter .

sort Edge to Nat .
op node1 to source .
op node2 to target .

endv)

Notice that we still must include the sort and op key words to denote exactly what we are
mapping. Also note that the theory’s element always comes before the module’s element.
Views may also map operators to expressions, though this might prove a tad more complicated.
We use the construct op to term For example, if we had a theory PEANO with
sort Num that requires some starting point (like zero) and some sort of successor operator,

 62

(fth PEANO is
 sort Num .
 op 0 : -> Num . op s_ : Num -> Num .
endfth)

and a parameter THREE-NAT where all the elements are natural multiples of three,

(fmod THREE-NAT is
 pr NAT .
 sort 3Nat . subsort 3Nat < Nat .

var N : Nat .
 cmb N : 3Nat if N rem 3 == 0 .
endfm)

we could write as our view:

(view Peano-3Nat from PEANO to THREE-NAT is
 sort Num to 3Nat .
 var X : Num .
 op 0 to 0 . op s X to term X + 3 .
endv)

So, the final step is the one where we actually connect everything: the theory, the parameterized
module, the parameter, and the view. We do this in either of two ways: in the Maude
environment or within another module. In the Maude environment, all we have to do is attach
the view we want in parentheses to the parameterized module. Thus, the two commands below
will work:

Maude> (select NETWORK(Graph-GreekGraph) .)
Maude> (red in NETWORK(Graph-GreekGraph) : lambda in (alpha beta

lambda phi) .)

Recall that all commands in Full Maude must be enclosed by parentheses. If we choose to take
the module route, all we need to do is import the parameterized module with the selected view,
in the same way as above:

(fmod GREEK-NETWORK is
 protecting NETWORK(Graph-GreekGraph) .
 op alltargets : EdgeSet(Graph-GreekGraph) ->

NodeSet(Graph-GreekGraph) .
 op findedge : Letter EdgeSet(Graph-GreekGraph) -> Nat .
 ...
endfm)

Anywhere there was an(X) in the parameterized module, there’s a (View-Name) in the
instantiation module. The X@Sorts have all been replaced by the parameter’s sorts that
appeared in the view. I have omitted the rest of the operation definitions, because really all you
need to see here is an example of how to write the syntax of an instantiation module, but feel free
to embellish.

 63

So there you have it, the bare minimum of a complete parameterization example: one theory, one
parameterized module, one parameter, one view, and some sort of instantiation that makes use of
them all. In the next sections, we’ll see that we can expand to a much greater extent on this basic
design.

5.3 Multiple Parameters

The title says it all: we can parameterize sorts and modules so that they take not just one
parameter, but many. The syntax is similar, and only slightly more complicated. When we
parameterize a module, we separate those X :: THEORY declarations with a vertical bar | .
Take a look at the following example:

(fth OELT is

sort Elt .
op _>=_ : Elt Elt -> Bool .

endfth)

(fmod PAIRS(X :: OELT | Y :: TRIV) is
 sorts Pair(X | Y) PairList .
 subsort Pair(X | Y) < PairList .

 op _~_ : X@Elt Y@Elt -> Pair(X | Y) [ctor] .
 op _;_ : PairList PairList -> PairList [ctor assoc id: pnil] .
 op pnil : -> PairList [ctor] .
 op add : Pair(X | Y) PairList -> PairList .

 vars O1 O2 : X@Elt . vars A1 A2 : Y@Elt . var P : PairList .

 eq add((O1 ~ A1), (O2 ~ A2) ; P) = if O1 >= O2
 then (O2 ~ A2) ; add((O1 ~ A1), P)
 else (O1 ~ A1) ; (O2 ~ A2) ; P fi .
 eq add((O1 ~ A1), nil) = O1 ~ A1 .
endfm)

The goal in this case is to create a pair of elements where the first element of the pair can be
arranged in some order, whatever that may be. Then, we can create a list of the pairs according
to the order of their first elements. We use two theories: the first, OELT, which describes a sort
where order can be determined by the _>=_ operator. The second, TRIV, comes included in Full
Maude, and describes any thing. When we parameterize the module PAIRS according to both of
them, we use two different labels that follow their sorts around. Note that since TRIV and OELT
each have a sort Elt, the distinction of X@Elt, the Elt from OELT, and Y@Elt, the Elt from
TRIV, is rather important. Also note the syntax of Pair(X | Y) – again, the vertical bar. If we
were to model some sort of triplet, we’d declare the module like

(fmod TRIPLE(X :: TRIV | Y :: TRIV | Z :: TRIV) is ...

 64

and the parameterized sorts like

sort Triple(X | Y | Z) .

We can extend the method for as many parameters as we want. When instantiating the
parameters, we list the views separated by vertical bars. Say we had the following two views for
our parameters:

(view OElt-Nat from OELT to NAT is
 sort Elt to Nat . op _>=_ to _>=_ . endv)
(view Triv-String from TRIV to STRING is
 sort Elt to String . endv)

Then we’d connect them all like so:

Maude> (select PAIRS(OElt-Nat | Triv-String) .)

5.4 Parameterized Views and Theories

Parameterization in Full Maude is extremely powerful partly because it is extremely flexible. If
you can come up with some combination of modules, theories, and views that makes sense, then
Maude will allow it. In fact, it will also allow a whole number of combinations that make no
sense at all, but these won’t run. So we can throw that bare minimum model to the dogs, and, if
we want, take a look at some spectacularly weird examples of parameterization.

The game Spider Solitaire requires two decks of cards to play with; let’s say that we have one
red-backed deck and one blue-backed deck. If we have the module DECK-COLOR

(fmod DECK-COLOR is
 sort Color . ops red blue : -> Color .
 op _>=_ : Color Color -> Bool .
 eq red >= blue = true .
endfm)

and if we define a deck of cards as a Stack of Cards (the functional module for a stack is given
below):

(fmod STACK(X :: TRIV) is
 sort Stack(X) .
 subsort X@Elt < Stack(X) .
 op _;_ : Stack(X) Stack(X) -> Stack(X) [ctor assoc id: end] .
 op end : -> Stack(X) [ctor] .
 op top : Stack(X) -> X@Elt .
 op pop : Stack(X) -> Stack(X) .
 op push : X@Elt Stack(X) -> Stack(X) .
 var E : X@Elt . var S : Stack(X) .
 eq top(E ; S) = E .
 eq pop(E ; S) = S .

 65

 eq push(E, S) = E ; S .
endfm)

then we can represent our red and blue decks as Pairs with color being the orderable element
and a Stack of Cards as the second element. Obviously, we need the following two views:

(view Triv-Card from TRIV to CARD-DECK is
 sort Elt to Card . endv)
(view OElt-Color from OELT to DECK-COLOR is
 sort Elt to Color . op _>=_ to _>=_ . endv)

However, to match the Stack to the second parameter of Pair, we need a parameterized view:

(view Triv-Stack(X :: TRIV) from TRIV to STACK(X) is
 sort Elt to Stack(X) . endv)

And lastly, our SPIDER-SOLITAIRE module, which instantiates the whole mish-mash, would
start off something like this:

(fmod SPIDER-SOLITAIRE is
 pr PAIRS(OElt-Color | Triv-Stack(Triv-Card)) .
 ...

In the above declaration, we see exactly why the view needs to be parameterized, because
otherwise we would not be able to include the theory Triv-Card in the instantiation. One of
the most crucial traps of large parameterization systems can be avoided by making sure “all you
bases are covered,” i.e., that you’ve connected everything together with views, and all your
views are included in the instantiation.

We can also parameterize theories, which makes the syntax even more complex but still doable:

(fth FUNCTION(X :: TRIV | Y :: TRIV) is
 op f : X@Elt -> Y@Elt .
endfth)

So far, so good, right? The parameterized module, however, is frankly hideous:

(fmod FMAP(F :: FUNCTION(X :: TRIV | Y :: TRIV)) is
 sorts IndSet(X) DepSet(Y) .
 subsort X@Elt < IndSet(X) .
 subsort Y@Elt < DepSet(Y) .
 op __ : IndSet(X) IndSet(X) -> IndSet(X)

[ctor assoc comm id: ind-null] .
 op _;_ : DepSet(Y) DepSet(Y) -> DepSet(Y)

[ctor assoc comm id: dep-null] .
op ind-null : -> IndSet(X) [ctor] .
op dep-null : -> DepSet(X) [ctor] .

 op fmap : IndSet(X) -> DepSet(Y) .
 var N : X@Elt . var NS : IndSet(X) .

 66

 eq fmap(N NS) = f(N) ; fmap(NS) .
 eq fmap(ind-null) = dep-null .
endfm)

In the above module, we take our theory of a mapping function and extend it to map one set of
elements (the independent variable set) to another (the dependent variable set). The point,
though, is to highlight the syntax used: note all the labels and theories included in the declaration
of FMAP. Try tracing where each operator and sort hail from: whether within the parameterized
module itself, or from its various theories.

To illustrate how one might implement a parameterized theory, we use the following parameter:

(fmod NEGATIVE is
 pr NAT . pr INT .
 op _timesneg1 : Nat -> Int .
 var N : Nat .
 eq N timesneg1 = - N .
endfm)

This will fit nicely into the FUNCTION theory, but we still have to be careful when writing our
views. We need to connect TRIV to NAT and INT, first and foremost:

(view Triv-Nat from TRIV to NAT is sort Elt to Nat . endv)
(view Triv-Int from TRIV to INT is sort Elt to Int . endv)

and then to connect FUNCTION to NEGATIVE, we use a parameterized view:

(view Fun-Neg(X :: TRIV | Y :: TRIV)
from FUNCTION(X | Y) to NEGATIVE is

 op f to _timesneg1 . endv)

Notice how we map the parameterized theory: we declare the labels in the view name, and then
use them to describe the theory’s parameters. Also notice that we don’t say anything about sorts
X@Elt or Y@Elt, which we did in the original theory, because the views Triv-Nat and
Triv-Int will take care of those particular connections. We can write something like:

Maude> (red in FPAIR(Fun-Neg(Triv-Nat | Triv-Int) :

fmap(5 9 11 2 0) .)
rewrites: 4716 in 100ms cpu (100 ms real) ...
result DepSet`(Triv-Int`) : 0 ; -2 ; -5 ; –9 ; -11

Now, at this point, your head might be screaming out dozens of questions like, “Why not use a
half-instantiated view like (view Fun-Neg from FUNCTION(Triv-Nat | Triv-Int) to
NEGATIVE)?” or “can a parameter be parameterized as well?” – and if you’ve actually tried
programming a large parameterization system, then you’ve probably been frustrated by
something that looks like it should work but just doesn’t run. The thing to remember is that all
parameterization, and all Full Maude, is ruled by a set of modules written in Core Maude. This
means that what we think of “syntax” is really treated like an expression of terms, and as such,

 67

things like error-handling, parsing, and running are all going to be a lot looser, flimsier even,
than Core Maude syntax. To make an analogy, 5 * 3 + 2 will appear to the user, almost
automatically, as 17, but if the Maude modules that define the reduction of the expression
happen to have given _+_ a lower prec number than _*_, the expression will in fact reduce to
25. Just so, some wild and convoluted declaration of, say, a parameterized view of
parameterized theories with multiple parameterized parameters, may look like it’s correct to the
user, but then Maude will come along and interpret it completely differently. If you want a sure-
fire way to get the syntax correct, read the signature of Full Maude. Good luck. Though I
cannot give you a full description of the syntax of every combination of parameters and theories
and views, I have demonstrated some of the most common combinations above and will list
below a few common rules I have learned:

1. When declaring a parameterized module, view, or theory, you list all the theories
involved and give them labels right away.

√ (view V(F :: FUNCTION(X :: TRIV | Y :: TRIV) is ...
X (view V(F :: FUNCTION) is ...
X (view V(F :: FUNCTION(Triv-Nat | Triv-Int) is ...

2. Once you declare a label for a theory, that label has to follow around consistently every

sort or module (not operations, luckily) that you’ve associated with that theory. Anything
you want to depend on a theory, you label.

3. Keep track of your instantiations: make sure the right views go in the right places,

separate multiple parameters/views with the vertical bar, make sure you remember which
views are parameterized, etc.

Above all, keep trying. If your parameterized system of modules simply crashes, it doesn’t mean
you don’t understand Full Maude, it just means that Full Maude isn’t understanding you.
Experiment. Be flexible. Let’s be honest, parameterization is, at this stage, a few colons and
parentheses away from chaotic. Full Maude will allow you to do almost anything, but this
doesn’t mean that it will work.

Connecting and coordinating several modules is no trivial accomplishment. Pretty much every
large project will involve many modules that must work together to achieve something
meaningful. Parameterization is the most powerful method of connecting these modules from
within, from the “inside.” In the next chapter, we’ll look at how to connect modules from “the
outside,” some higher level: the meta-level.

 68

EXERCISES FOR CHAPTER 5

1. The bare minimum for a parameterization system is as follows: one ______________, to set

down the requirements of the parameters, one _____________, which connects the

_______________ to the parameter module, at least two modules (one being the parameter

module and the other the _________________ module) and some sort of

____________________ to collect everything together, whether that be within the Maude

environment or within another module.

2. Fill in the missing symbols and/or keywords:

 a) (_________ OElt-Queue(_______ OELT)

 from LIST(P) to QUEUE is ...

 b) (______ CLASSTHEORY is class ELT . ________)

 c) op X < Y ______________ X <= Y and X =/= Y .

 d) subsort ____________Elt < List(LABEL) .

 ***Hint: Elt comes from the theory TRIV

3. In this question, we’ll go step-by-step through your basic, no-tricks parameterization system.

The example is very simple: based on a theory that contains a function to double something,

we’ll write a parameterized module that raises something to the 2nth power.

 a) Write below the functional theory DOUBLE, which declares a sort Something and an

operator double.

 b) Write below a parameterized module called *POWER2, which, based on the theory

DOUBLE, declares and defines an operator *power2. The *power2 operator takes in

two arguments: the first, a Something, and second, a Nat.

 69

 i. Write the first half of the module, including the module name, the importations, and

the operator declaration:

 ii. Write the second half of the module, which includes the variable declarations and the

equations. We’ll define *power2 recursively so that, for every iteration, it calls

double on its Something argument and decrements its Nat argument by 1.

Don’t forget to include an equation that ends the recursion.

 c) Write a view to connect the following module to DOUBLE.

 (fmod INT*2 is

 pr INT .

 op _times2 : Int -> Int .

 eq N:Int times2 = N:Int * 2 .

 endfm)

 70

 d) Instantiate the above system, with INT as your parameter, in two ways:

 i. In the Maude environment, using the keyword select

 Maude> ____________________________________

 ii. In a module EIGHT, which declares and defines an operator *eight, which

multiples an integer by eight (using *power2, of course).

 71

6. META-PROGRAMMING

6.1 Ideology

Meta-programming is perhaps one of the most complex and powerful facets of Maude; even
though it’s not even a part of Core or Full Maude, but rather a standard library module. This
separation makes the learning of meta-programming much easier, for we can express and
understand the concepts of the meta-level in a language with which we have become quite
familiar over the past five chapters. Prepare yourself; this final chapter is twice as long as the
others, and with good reason. An appreciation of meta-programming is essential for an
appreciation of Maude.

When the prefix “meta” appears in computer programming, it denotes a sense of transcendence
or “beyond,” and thus metaprogramming extends beyond the ordinary programs with which all
previous chapters have concerned themselves. Simply put, a meta-module looks at modules like
a programmer, like us – not as a set of executable reduction and rewrite rules, but rather, as a
program that can be toyed around with by manipulating its contents. Instead of writing equations
and messages on Peano notations and tile-puzzles, we’ll be writing equations about the modules
PEANO-NAT and TILE-PUZZLE. In Maude, a meta-level module will govern iconic
representations of other Maude modules. Think of a meta-represented module as a sort of
voodoo doll, where corresponding parts on doll and human can be maneuvered and affected by a
higher, meta-level party. As the chapter develops and actual examples appear, this voodoo
mathematics will clarify itself.

In fact, Maude literally clarifies itself through the power of the meta-level, for the language may
actually be defined by itself. That is, we can write, in Maude, the module that interprets Maude
code. For example, consider the following declaration:

 op op_:_->_[_] : Qid QidList Qid AttrSet -> OpDecl [ctor] .

This is the perfect example of Maude defining itself: the very declaration itself can be
understood via the declaration. It is perfect circular logic, which is all right as long as we stay
within the circle. The above may be found in the signature of Maude, a module that expresses
the syntax of Maude... in the syntax of Maude. It’s just like a high-school English textbook,
which sets down the rules of English, in English. And just like the English language, in Maude
we can write about (model) pretty much anything we want, including other Maude modules.

It’s a neat trick, but it’s also a very powerful tool, as we will see once we understand the syntax
necessary to program at the meta-level.

6.2 The Syntax of the Meta-level

As mentioned before, there is a standard library of modules such as QID, STRING, NAT, etc. that
accompanies Maude. This library includes the module META-LEVEL, a module which defines
the meta-representation of functional and system modules (note: object-oriented modules,

 72

because they a component of Full Maude, are not meta-represented in the standard library).
META-LEVEL imports two other standard modules, META-TERM and META-MODULE, which,
respectively, provide the special syntax specifically for the representation of terms as meta-
terms, and modules as meta-modules.

The most important sort defined in META-TERM is Term. A term is a mathematical concept in set
theory (on which Maude heavily relies), but for the purposes of this tutorial one can define a
term as an expression formed from the constants and operations of an algebra. Thus, 0 and
s(s(0)) + N:Nat are examples of terms in PEANO-NAT-EXTRA, while 9 of Hearts and
CardSuit(K of Spades) are both terms in CARD-DECK (see Chapter 2). The META-LEVEL
module reifies, that is, coalesces, this mathematical concept in the sort Term, and its
corresponding list sort, TermList. Thus, the meta-representation of any term in an algebra will
be expressed with respect to Term and/or TermList. The specifications for these sorts follow
any typical list; note particularly the concatenation operation.

sorts Term TermList .
subsort Term < TermList .
op _,_ : TermList TermList -> TermList [assoc] .

The above is a cut-and-paste excerpt from the META-LEVEL module; only the relevant
information has been quoted. To meta-represent a term, we need to meta-represented the three
possible components of term: constants, variables, and operations. We represent a constant as a
quoted identifier with its name and sort separated by a period, e.g.: '0.Nat or 'K.Number.
Variables are just represented just like constants, except with colons where the period is:
'N:Nat etc. Finally, stringing all the variables and constants together are the operators, which
we express using the operator:

op _[_] : Qid TermList -> Term .

where the first argument is the name of the operator in quotes, and the second argument is the
TermList that meta-represents the operator’s arguments. So, we meta-represent K of Spades
as '_of_['K.Number , 'Spades.Suit], while s(s(0)) + N:Nat is '_+_['s['s
['0.Nat]] , 'N:Nat]. I have color-coded corresponding elements of the original
expression and the meta-representation, since all these quoted identifiers and TermLists can get
very ugly very fast. I seriously recommend colored pencils and scratch paper when meta-
programming.

So that’s how we do terms at the meta-level; let’s move on now to meta-representing entire
modules. A complete functional module necessitates a name, a list of imported modules, a set of
sort declarations, a set of subsort declarations, a set of operator declarations, a set of variable
declarations (more on this later), a set of membership axioms, and a set of equations. Returning
to our very first functional module example, the Peano notation of the natural numbers, we
notice that the name is PEANO-NAT-EXTRA, there is no import list, there is one sort declaration,
there are no subsort declarations, three operator declarations, one variable declaration, and a set
of two equations:

 73

fmod PEANO-NAT-EXTRA is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .
 op _+_ : Nat Nat -> Nat .
 vars M N : Nat .
 eq 0 + N = N .
 eq s(M) + N = s(M + N) .
endfm

The META-MODULE module defines two very important constructors, which define the meta-
representations of functional modules and system modules:

op fmod_is_sorts_.____endfm : Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet -> FModule [ctor] .

op mod_is_sorts_._____endfm : Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet RuleSet -> Module [ctor] .

The first thing that stands out is the special place for sort declarations. Unlike most of the other
arguments, which are all sets of declarations made with specially defined keywords, the third
arguments takes in a set (constructed with the concatenator _;_) of meta-represented sorts,
which are just the names of the sorts as quoted identifiers: 'Nat, 'Bool, 'State, etc. So, the
sort declaration sorts Number Suit Card . would appear as 'Number ; 'Suit ;
'Card in the third argument of the meta-module constructor.

The second thing that stands out is the lack of a variable declaration set. In fact, there’s no
syntax to meta-represent a variable declaration. We simply include the variables in the meta-
equations with their declared sort as demonstrated earlier, and META-MODULE will parse them
correctly as declared variables.

As for the rest, I’ll write it all down really quickly: the meta-representations of a declaration for
equations, importations, operations, rules, etc. all use the same key symbols as in normal
modules, save that module names and sorts are all quoted identifiers, and all expressions are
meta-represented Terms. Subsort declarations must be written one at a time. Rewrite rules do
not carry their label in front in brackets, but at the end as an attribute label('qid) in brackets.
The null constant for the sets is none and that for the lists, nil. Two examples of modules and
their meta-representations are written below:

 74

fmod PEANO-NAT-EXTRA is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .
vars M N : Nat .
eq N + 0 = N .
eq s(M) + N = s(M + N) .

endfm

mod STRING-NAT is
protecting NAT .
protecting STRING .

 op n : String -> Nat [ctor] .
 op c : Nat -> String [ctor] .
var N : Nat .
var S : String .
rl [convert] : n(S) =>

length(S) .
crl [back] : c(N) => char(N)
 if N := X:Nat * 2 .

endm

fmod 'PEANO-NAT-EXTRA is
nil
sorts 'Nat .
none
op '0 : nil -> 'Nat [ctor] .
op 's : nil -> 'Nat [ctor] .
op '_+_ : 'Nat 'Nat -> 'Nat

 [none] .
none
eq '_+_['N:Nat, '0.Nat] =
 'N:Nat [none] .
eq '_+_['s['M:Nat], 'N:Nat] =
 's['_+_['M:Nat, 'N:Nat]]

 [none] .
endfm

mod 'STRING-NAT is
protecting 'NAT .
protecting 'STRING .
sorts none .
none
op 'n : 'String -> 'Nat [ctor]

.
op 'c : 'Nat -> 'String [ctor]

.
none
none
rl 'n['S:String] =>

'length['S:String]
[label('convert)] .

crl 'c['N:Nat] => 'char['N:Nat]
 if 'N:Nat :=

'_*_['X:Nat,
's_['s_['0.Nat]]

]
[label('back)] .

endm

You might notice that all equations and operations have brackets for a set of attributes, even if
that set is none. This is required. Also take a look at how the constants are declared in PEANO-
NAT-EXTRA, with the nil where a blank usually would be. This nil is an empty QidList,
which would otherwise list the argument sorts of the operator. Take a look at the conditional
rewrite law. Not every condition will involve matching, of course, but I used this example to
show that any type of condition: matching, rewrite law, Boolean, etc., will be represented just as
it is in a normal module, except with meta-terms instead of expressions. If you’re still confused
or just curious about how to meta-representations of all the possible variations on modules, either

 75

sit back and study the examples that follow in the chapter, or look up the actual code of META-
MODULE in your standard library (prelude.maude).

6.3 The Descent Functions of the META-LEVEL Module

The META-LEVEL module defines three very important and very useful descent functions:
metaReduce, metaRewrite, and metaApply. As may be apparent from their names, they
simply perform reduction and rewriting of a meta-term, according to the equations and rules in
the corresponding meta-module, at the meta-level.

The operation metaReduce takes a Module and Term and returns a ResultPair, which
consists of a meta-representation of the answer (as a Term) and the meta-representation of the
answer’s sort. That is, one enters a certain meta-represented module and a meta-represented
term taken from the algebra set down in the module, and metaReduce returns the simplification
of the first Term using the rules set down in the (meta-) module. If the module itself (as opposed
to its meta-representation) has already been loaded into the Maude environment, the name of the
module, quoted and in brackets, may be entered as the Module argument instead of the full-
blown meta-representation. So the following two examples are equally valid.

Maude> red metaReduce(['PEANO-NAT-EXTRA],
'_+_['s['s['0.Nat]], '0.Nat]) .

result ResultPair: {'s['s['0.Nat]], 'Nat}

and

Maude> red metaReduce(fmod 'PEANO-NAT-MULT is
 including 'PEANO-NAT-EXTRA .
 sorts none .
 none

op '_*_ : 'Nat 'Nat -> 'Nat [none].
none

 eq '_*_['N:Nat, '0.Nat] = '0.Nat [none] .
 eq '_*_['N.Nat, 's['M.Nat]]
 = '_+_['N.Nat, '_*_['N.Nat,'M.Nat]] [none] .
 endfm,

'_*_['s['0.Nat],'s['s['0.Nat]]]) .
result ResultPair: {'s['s['0.Nat]], 'Nat}

In the first example, we assumed that we had already loaded the PEANO-NAT-EXTRA module,
and indeed we have written it down in full in this chapter. In the second example, we assume
that the PEANO-NAT-MULT module has not been loaded. Instead of creating a module in the file
directory and proceeding as in the first example, we simply included the meta-representation of
PEANO-NAT-MULT as the Module argument.

The operation metaRewrite is the counterpart of metaReduce and the meta analog of
rewrite. That is, as metaReduce simplifies expressions using equations on the meta-level,
metaRewrite transitions states using rewrite laws on the meta-level. The arguments for

 76

metaRewrite are a Module, a Term, and a Bound given either as a Nat or the constant
unbounded. The Module and Term arguments follow the same rules as those in metaReduce,
and the bound, as in rewrite, limits the number of rewrite laws that can be applied, in case of
non-terminating rewrite laws. If one plugs in unbounded for the third argument, the default
strategy is applied until termination, when no more rewrite laws can be applied. Needless to say,
this is not a good idea for non-terminating rewriting systems. Let’s return to the cigarette butts
example in Chapter 3. I have changed the number of butts needed to make a cigarette from four
butts to two butts.

mod CIGARETTES-2 is
sort State .

 op c : -> State [ctor] . *** cigarette
 op b : -> State [ctor] . *** butt
 op __ : State State -> State [ctor] .
 rl [smoke] : c => b .
 rl [makenew] : b b => c .
endm

Assuming that I’ve already loaded CIGARETTES-2 into the Maude environment, the following
two examples hold true:

Maude> red metaRewrite(['CIGARETTES-2],
 '__['b.State, '__['b.State, '__['b.State, 'b.State]]], 10) .
result ResultPair: {'b.State, 'State}

and

Maude> red meta-rewrite(['CIGARETTES-2],

'__['b.State, '__['b.State, '__['b.State, 'b.State]]], 3) .
result ResultPair: {'__['c.State, 'b.State], 'State}

In the first example, six uses of the rewrite laws occur: first, two of makenew, then two of
smoke, then one more makenew, and one more smoke. The Bound argument, in the first
example, allows for ten applications of rewrite laws, so all is well. However, the second
example, almost identical to the first, allows for only three uses of rewrite laws to occur. Thus,
the transitions terminate at the state shown.

There exists a third, very important descent function, metaApply, provided by the META-LEVEL
module. However, as its uses are too advanced for this section, we will leave the discussion of
this function until the end of the chapter. There are more descent functions, most notably
metaFrewrite (which meta-rewrites using the frewrite strategy) and metaSearch, which
searches at the meta-level (unfortunately, it only confirms whether or not one state can reach
another; it does not list the path). These descent functions are powerful but too complicated in
their application to explore in this basic tutorial. We will, however, return to metaApply.

 77

6.4 The Cosmetic Functions of Metaprogramming

As one might notice, the meta-representation of terms and modules become increasingly tedious
and complicated as the terms and modules become more complex. Thankfully, Full Maude has
provided two functions that make meta-representation and its opposite much simpler. That is,
the functions change reflection levels very easily. When we express a module at the meta-level,
or translate a meta-expression back down to normality, we change the level of reflection, that is,
the level of meta. Similarly, changing between the meta-level and the meta-meta-level is a
matter of reflection levels, and so on. To return to the point at hand, these two functions, up and
down, make the task of metaprogramming much smoother.

The up function takes a module and a term as its arguments and returns the meta-representation
of the term. Note the difference between Module and module, and between Term and term. The
up arguments are not Qids, nor Terms formed with the constructors. They are module names
and expressions. To demonstrate,

Maude> (red up(PEANO-NAT-EXTRA, s(s(0))) .)
result Term: 's['s['0.Nat]]

This certainly smoothes out the descent functions. Compare the tedious

Maude> red metaReduce(['PEANO-NAT-EXTRA],

 '_+_['s['s['0.Nat]], '0.Nat]) .
result ResultPair: {'s['s['0.Nat]], 'Nat}

with the much simpler

Maude> (red metaReduce(['PEANO-NAT-EXTRA], up(PEANO-NAT-EXTRA,

s(s(0)) + 0)) .)
result ResultPair: {'s['s['0.Nat]], 'Nat}

We can also use up on a module, to return its meta-representation:

Maude> (red in META-LEVEL : up(FM-CARD-DECK) .)

result Fmodule :
 fmod 'CARD-DECK is
 protecting 'BOOL .
 sorts 'Number ; 'Suit ; 'Card .
 none
 op 'A : nil -> 'Number [ctor] .
 op '2 : nil -> 'Number [ctor] .
 etc. etc. etc. ...
 op 'CardSuit : 'Card -> 'Suit [none] .
 none
 eq 'CardNum['_of_['N:Number,'S:Suit]] = 'N:Number [none] .
 eq 'CardSuit['_of_['N:Number,'S:Suit]] = 'S:Suit [none] .
 endfm

 78

I decided to skip most of the seventeen constant declarations, each of which must be written one
by one, in FM-CARD-DECK, which is just CARD-DECK from Chapter 2 with parentheses around it
so Full Maude can load it. Note that BOOL is imported automatically into every module – but
you don’t need to worry about that when meta-representing modules by hand.

The up function is complemented by the down_:_. function, which takes a module name and a
meta-represented expression, and returns the expression, written one reflective level lower. This
makes the our meta-reduce example even more intelligible, if we couple the two cosmetic
functions as follows:

Maude> (down PEANO-NAT-EXTRA : getTerm(metaReduce(
['PEANO-NAT-EXTRA],

up(PEANO-NAT-EXTRA, s(s(0)) + 0))) .)
result Nat: s(s(0))

The convenient power of up and down may be used as a potent method of checking one’s work.
For example, if I were to double-check my meta-expression of PEANO-NAT-MULT in Section 6.3,
I might load PEANO-NAT-MULT into Full Maude (with parentheses), and write

Maude> (red up(PEANO-NAT-MULT) .)

and check the result against my work. Or, I might copy and paste my work into the down
function, and check the result against PEANO-NAT-MULT.

6.5 The metaApply/metaXapply Descent Function

The third descent function, metaApply, is an extremely complex and extremely powerful
operation that deserves its own section, if not chapter. The metaApply basically takes a term
and a rewrite law in a given module, and then rewrites the term once by applying the specified
law. The Maude declaration of the function looks something like:

op metaApply : Module Term Qid Substitution Nat -> ResultTriple .

The first three arguments are easily understandable. The Module is the meta-representation of
the module that defines the terms and laws in question, the Term is the given term to be
rewritten, and the Qid is the name of the rewrite law to be applied. The remaining arguments
require a bit of a digression to make sense.

Even before we start the digression, let me point out that, for the most part, we’ll be using
metaXapply, which is almost the same as metaApply save for one crucial difference: the Term
argument of metaApply must match the left-hand side of the rewrite rule applied, and match it
exactly (modulo associativity, commutativity, etc.). When we rewrite using rew or
metaRewrite, we need not worry about this, because the default strategy always rewrites with
extension; that is, if any pieces of the expression match any rewrite law, it will apply that law.

 79

Not so with metaApply. To apply with extension, we use metaXapply, which takes – are you
ready – seven arguments and returns a quadruple:

op metaXapply : Module Term Qid Substitution Nat Bound Nat
-> Result4Tuple .

So let’s figure out that Substitution argument. When a rewrite law is applied, the variables
in the law are replaced with certain constants depending on its pre-rewrite state and the
inscrutable whims of the Maude environment. Recall the toy crane example back in Chapter 3;
for the forgetful, I have reproduced the ARCADE-CRANE system module below. For present
purposes, however, I have eliminated the crane itself, thereby reducing the number of rewrite
rules we need.

mod ARCADE-SANS-CRANE is
 protecting QID .
 sorts ToyID State .
 subsort Qid < ToyID .

 op floor : ToyID -> State [ctor] .
 op on : ToyID ToyID -> State [ctor] .
 op clear : ToyID -> State [ctor] .
 op 1 : -> State [ctor] .
 op _&_ : State State -> State [ctor assoc comm id: 1] .
 vars X Y Z : ToyID .

 rl[unstack] : clear(X) & on(X,Y) =>

floor(X) & clear(X) & clear(Y) .
 rl[stack] : floor(X) & clear(X) & clear(Y) =>
 clear(X) & on(X,Y) .
 rl[move] : clear(X) & clear(Y) & on(X,Z) =>
 clear(X) & on(X,Y) & clear(Z) .
endm

Consider the state represented in Box C below. Given this state, and the rewrite law stack (for
example), there are several options for the application of the law. One may stack 'dragondude
on 'soccerball, or on 'mothergoose; or one may stack 'mothergoose on 'dragondude
or 'soccerball. Thus, given simply the command

Maude> (red metaXapply(

['ARCADE-SANS-CRANE],
 up(ARCADE-SANS-CRANE,
clear('mothergoose) &
clear('soccerball) &
clear('dragondude) &
floor('mothergoose) &
floor('teddybear) &
floor('dragondude) &
on('soccerball, 'teddybear)),
'stack, none, 0, unbounded, 0) .)

 80

– that is, given the meta-representation of Box C, the rewrite law stack, and nothing else, there
are four different possible ways of applying stack. One may substitute either 'mothergoose
or 'dragondude for the variable X in the stack definition, and either 'soccerball or a
choice between 'mothergoose and 'dragondude (depending on X) for the variable Y. To
allay this ambiguity, META-LEVEL provides a sort Substitution, defined by the constructors

subsort Assignment < Substitution .
op _<-_ : Qid Term -> Assignment [ctor prec 63] .
op none : -> Substitution .
op _;_ : Substitution Substitution -> Substitution

[assoc comm id: none prec 65] .

The Substitution arguments of metaApply and metaXapply allows us to specify (if we want
to) any number of substitutions in order to narrow down the options for applying the rule. If we
write

Maude> (red metaXapply(['ARCADE-SANS-CRANE],
 up(ARCADE-SANS-CRANE,

clear('mothergoose) &
clear('soccerball) &
clear('dragondude) &
floor('mothergoose) &
floor('teddybear) &
floor('dragondude) &
on('soccerball, 'teddybear)),

'stack, ('X:ToyID <- ''dragondude.Qid), 0, unbounded, 0) .)

then this limits the application of stack to two different results, substituting either
'mothergoose or 'soccerball for Y. It would also be perfectly valid to enter

('X:ToyID <- ''dragondude.Qid) ; ('Y:ToyID <- ''mothergoose.Qid)

as the Substitution argument, which would narrow down the number of application options
of stack to one.

After all this, the explanation of the last Nat argument (for both metaApply and metaXapply)
is rather simple. The apply functions consider the outcomes of each and every substitution; that
is, it evaluates all application options. It evaluates each application in some order, and returns
the result of the first application. However, given a Nat N as the fifth/seventh argument, the
operation will return the (N+1)th application’s result. Thus, plugging into metaXapply the
module ARCADE-SANS-CRANE, the meta-representation of the state in Box C, the rewrite law
stack, with no substitutions, 0 and unbounded (more on these soon), and then, say, two, the
operation will return the result of the third of the four application options listed previously. Note
that if one enters the default, zero, as the seventh argument, the result is simply the first of the
applications, as the default should be. This optional argument is commonly used in recursive
loops, as shall be seen later.

 81

So that takes care of the metaApply arguments, but what about the fifth and sixth arguments of
metaXapply? These natural numbers are the lower and upper bounds on how “deep” we look
for matches for the left-hand side of our rewrite rule. Since we’re rewriting with extension, a
match can in all possibility occur nested within several other operators. For example, if we have
a module such as the one below:

mod ABCDEFG is
 pr NAT .
 sort State .

subsort Nat < State .
 ops a b c d e f g : State -> State .
 var X : Nat .
 rl [plus1] : f(X) => X + 1 .
endm

we can write an expression of states such that the rewrite law applies only to a phrase nested five
times over, i.e., a(b(c(d(e(f(37)))))). This, using metaXapply, will usually rewrite to
a(b(c(d(e(38))))). But if we put an upper limit on how deep we can extend to rewrite,

Maude> red metaXapply(['ABCDEFG],
'a['b['c['d['e['f['s_^37['0.Nat]]]]]]], 'plus1, none, 0, 3, 0) .

result Result4Tuple?: (failure).Result4Tuple?

Here, we can only search at most three levels of nesting deep for a match, and since the f
operator is five levels deep, the function returns a failure, and will do so, for all values of the
sixth argument less than five. We usually give unbounded for this argument, so that
metaXapply may find matches for the left-hand side no matter how deeply nested they are.
Similarly, we can limit how “shallow” we start our search with the first argument. Usually, we
want to start at the top of a phrase and enter in 0, but sometimes we only want to rewrite the
inside. In the above example, if we gave a lower bound greater than five, we’d bypass the f
state-operator completely and get another failure:

Maude> red metaXapply(['ABCDEFG],
'a['b['c['d['e['f['s_^37['0.Nat]]]]]]], 'plus1, none, 6,
unbounded, 0) .

result Result4Tuple?: (failure).Result4Tuple?

You might have noticed that our arcade-sans-crane example involves a lot of nested '_&_
operators. metaXapply counts a string of associative concatenation operators, such as the
ampersand in our example, as one level of nesting, so even though our arcade example looks
nested up the wazoo, each ToyID is nested only twice: first, inside the operators floor, clear,
and on, and second, inside the concatenation operators '_&_.

Finally, one must ask, what exactly the result of these functions is. For metaApply, it is a
ResultTriple, a META-LEVEL sort defined by

 82

op {_,_,_} : Term Type Substitution -> ResultTriple .

The Term element of the ResultTriple is simple enough: it is the meta-representation of the
(N+1)th term resulting from applying the given rewrite law to the given term in the given module
with the given substitutions. In other words, it’s the resulting term. The Type is the meta-
representation of the result’s sort, just like in the other descent functions. The Substitution
element is the concatenation of all the substitutions used in the application of the rewrite rule.
Thus, if the metaApply function applied stack by stacking 'dragondude on 'soccerball,
the Substitution element of the resulting ResultTriple would be

'X:ToyID <- 'dragondude.ToyID ; 'Y:ToyID <- 'soccerball.ToyID

The result of metaXapply is a Result4Tuple, which contains all the above and one more
argument, the Context. When we apply a rewrite law with extension, we’re working with just a
piece of the expression, and the Context returned in our Result4Tuple is ‘THE REST,’ the
pieces of the expression that we didn’t work with.

Maude> (red metaXapply(['ARCADE-SANS-CRANE], up(ARCADE-SANS-CRANE,
clear('mothergoose) &
clear('soccerball) &
clear('dragondude) &
floor('mothergoose) &
floor('teddybear) &
floor('dragondude)&
on('soccerball, 'teddybear)),

'stack,
('X:ToyID <- ''dragondude.Qid) ;
('Y:ToyID <- ''mothergoose.Qid), 0, unbounded, 0) .)

result Result4Tuple: {'_&_['floor[''mothergoose.Qid],

'floor[''teddybear.Qid],
'on[''dragondude.Qid,
''mothergoose.Qid],
'on[''soccerball.Qid, ''teddybear.Qid],
'clear[''dragondude.Qid],
'clear[''soccerball.Qid]],

'State,
'X:ToyID <- ''dragondude.Qid ;
'Y:ToyID <- ''mothergoose.Qid,

'_&_['clear[''soccerball.Qid],
'floor[''mothergoose.Qid],
'floor[''teddybear.Qid],
'on[''soccerball.Qid, ''teddybear.Qid], []]}

Those last double brackets, which contain nothing, signify the piece of the expression that you
used in metaXapply. And, of course, Maude won’t print it out as nicely as I have. As you can
see, and as I have pointed out many times earlier, the metaApply and metaXapply functions
are extremely complex. However, this complexity lends versatility and flexibility, and allows for
the development of internal strategies, the subject of this next and last section.

 83

6.6 Internal Strategies

In Chapter 3, I mentioned that the Maude command rewrite is the default rewrite strategy
provided by the environment. This strategy, which dictates the order in which rewrite laws of a
module are to be applied, matters little in its specifics; suffice to say that it is the default, and is
often wholly insufficient for the purposes of a given application. frewrite is a step up, but still
often insufficient as well. For this reason, Maude enables the user to create his/her own strategy
from within a module, using meta-level reflection and the descent functions. For example,
consider the following set of rewrite laws:

rl [A] : a => b .
rl [B] : b => a .
. . .

Needless to say, the default strategy would most likely handle this set poorly, and the current
state would alternate between a and b in a non-terminating fashion, until the natural number limit
set down by the user expires. However, we can make use of the META-LEVEL functions to create
our own strategy. For example, we can create an operation to remove an offensive rewrite law
and rewrite according to the default strategy, minus the one rewrite law.

fmod REWRITE-EXCEPT is
 protecting META-LEVEL .

 op name : Rule -> Qid .
 op rmv : RuleSet Qid -> RuleSet .
 op rewriteExcept : Module Term Qid Nat -> ResultPair .

vars L Q : Qid . var I : ImportList .
 var S : SortSet . var SS : SubsortDeclList .
 var O : OpDeclSet . var M : MembAxSet . var E : EquationSet .

var RS : RuleSet . var R : Rule . vars T1 T2 : Term .
 var N : Nat .

 eq name(rl T1 => T2 [label(Q) A:AttrSet] .) = Q .
 eq name(crl T1 => T2 if C:Condition [label(Q) A:AttrSet] .) = Q .

eq rmv(R RS, L) = if name(R) == L then RS else R rmv(RS, L) fi .
 eq rmv(none , L) = none .

eq rewriteExcept(mod Q is I sorts S . SS O M E RS endm,
T1, L, N) =

metaRewrite(mod Q is I sorts S . SS O M E rmv(RS, L) endm,
T1, N) .

endfm

The strategy represented in rewriteExcept simply creates a module without the given rewrite
law, and calls upon the default strategy (in metaRewrite) to rewrite the given term according to

 84

the rules of this new module. Going back to the hypothetical rewrite laws A and B postulated
earlier, one may avoid non-terminating rubbish by calling rewriteExcept with either 'A or 'B
plugged in as the label of the rule to be excluded.

We can play around with more than just rewrite rules. There exist in Maude a host of statement
attributes, which I left out of Chapter 2 because it’s only at the meta-level that they serve any
purpose. For example, equations and membership axioms can have names too. Now, why
anybody would want to name an equation seems absolutely baffling, except at the meta-level.
Consider the following improvement on the rewriteExcept, “sans,” which extracts a list of
rules, equations, or membership axioms from a module:

fmod SANS is
 protecting META-LEVEL .

 op sans : Module QidList -> Module .
 op rmvM : MembAxSet Qid -> MembAxSet .
 op rmvE : EquationSet Qid -> EquationSet .
 op rmvR : RuleSet Qid -> RuleSet .

 vars N Q : Qid . var QL : QidList . var I : ImportList .
 var S : SortSet . var SS : SubsortDeclSet .

var O : OpDeclSet . vars T1 T2 : Term . var A : AttrSet .
var M : MembAx . var MS: MembAxSet . var X : Sort .
var E : Equation . var ES : EquationSet .
var R : Rule . var RS : RuleSet . var C : Condition .

 eq sans(mod N is I sorts S . SS O MS ES RS endm, Q QL) =

sans(mod N is I sorts S . SS O
rmvM(MS, Q) rmvE(ES, Q) rmvR(RS, Q) endm, QL) .

eq sans(Z:Module, nil) = Z:Module .

eq rmvM(mb T1 : X [label(Q) A] . MS, Q) = MS .
eq rmvM(cmb T1 : X if C [label(Q) A] . MS, Q) = MS .

 eq rmvM(M MS, Q) = M rmvM(MS, Q) [owise] .
 eq rmvM(none, Q) = none .

eq rmvE(eq T1 = T2 [label(Q) A] . ES, Q) = ES .
eq rmvE(ceq T1 = T2 if C [label(Q) A] . ES, Q) = ES .

 eq rmvE(E ES, Q) = E rmvE(ES, Q) [owise] .
 eq rmvE(none, Q) = none .

eq rmvR(rl T1 => T2 [label(Q) A] . RS, Q) = RS .
eq rmvR(crl T1 => T2 if C [label(Q) A] . RS, Q) = RS .

 eq rmvR(R RS, Q) = R rmvR(RS, Q) [owise] .
 eq rmvR(none, Q) = none .
endfm

Now, we can reduce or rewrite sans (without) any particular rule or equation or membership
axiom we choose. This can be especially useful for proving certain things about our modules. If

 85

we wanted to prove that, out of the following equations, only the first two are necessary to define
addition:

eq [huey] : N + 0 = N .
eq [duey] : N + s(M) = s(N + M) .
eq [louie] : s(N) + s(M) = s(s(N + M)) .

we could run the following tests in SANS:

Maude> red metaReduce(sans(Z, 'huey), '_+_['s_^7['0.Nat],
's_^11['0.Nat]]) .

Maude> red metaReduce(sans(Z, 'duey), '_+_['s_^7['0.Nat],
's_^11['0.Nat]]) .

Maude> red metaReduce(sans(Z, 'louie), '_+_['s_^7['0.Nat],
's_^11['0.Nat]]) .

– the only stipulation being, of course, that we replace Z with the Module containing huey,
duey, and louie (note that, in this case, it must be the actual module, not ['Z]). In any case,
the utility of the equation names is visible. But there’s another statement attribute, even more
useful, called metadata, which allows us to attach a sort of comment (as a String) to any
statement we choose:

eq [juliet] : smell(rose(N:Name)) = sweet .
 [metadata "A rose by any other name..."] .

Sure, it’s good for a laugh, but can be incredibly powerful at the meta-level. Let’s say we
wanted to whip up our arcade-crane into shape, so that, at last, we can build towers instead of
just throwing everything on the floor. We could use metadata to label certain rewrite rules as
‘constructive’ and ‘destructive,’ and then define some operator to look for the ‘constructive’ tag
and execute those rewrite laws (using metaXapply) with priority.

One can create internal strategies for extremely complex problems, including theorem proving,
searches, and optimization problems. Let us consider an optimization problem. Returning one
last time to our cigarette-smoking hobo, we add a new qualification: a more expensive brand of
cigarette will contain more tobacco. Thus, the hobo will need fewer cigarette butts to make a
new cigarette if he buys the expensive brand, and a greater number of cigarette butts to make a
new cigarette if he buys the cheap brand. The question therefore posed is: out of the given
brands, out of which brand will the hobo get the most tobacco for his money? First, let us set up
our new cigarette module.

mod CIGARETTES-3 is
 protecting NAT .
 sorts Brand State .

 ops DROMEDARY OLDPORT SCARBOROUGH-MAN MISSOURI-FATS

fail : -> Brand [ctor] .
 op c : Brand Nat -> State [ctor] .

op b : Brand Nat -> State [ctor] .

 86

 op __ : State State -> State [ctor assoc comm id: 1] .
 op 1 : -> State [ctor] . op price : Brand -> Nat .

vars V W X Y Z : Nat .
var B : Brand .

eq price(DROMEDARY) = 312 . eq price(OLDPORT) = 312 .
eq price(SCARBOROUGH-MAN) = 364 . eq price(MISSOURI-FATS) = 418 .
eq price(fail) = 0 .

 rl [smoke] : c(B, X) => b(B, X + 1) .

rl [makenew] : b(DROMEDARY, V) b(DROMEDARY, W) b(DROMEDARY, X)
b(DROMEDARY, Y) b(DROMEDARY, Z) =>

c(DROMEDARY, V + W + X + Y + Z) .

rl [makenew] : b(OLDPORT, W) b(OLDPORT, X) b(OLDPORT, Y)
 b(OLDPORT, Z) =>

c(OLDPORT, W + X + Y + Z) .

rl [makenew] : b(SCARBOROUGH-MAN, X) b(SCARBOROUGH-MAN, Y)
 b(SCARBOROUGH-MAN, Z) =>

c(SCARBOROUGH-MAN, X + Y + Z) .

rl [makenew] : b(MISSOURI-FATS, Y) b(MISSOURI-FATS, Z) =>
c(MISSOURI-FATS, Y + Z) .

endm

This modification of the COUNTING-CIGARETTES module in Chapter 3 is pretty straightforward.
The only new concept here is the presence of four rewrite rules with the same label. Such an
arrangement is perfectly valid, and certainly a convenience in this example. The above rewrite
laws state that a new Dromedary cigarette can be made from five Dromedary butts, a new
Oldport from four Oldport butts, a new Scarborough Man from three butts, and a new Missouri
Fats from two butts. Also, the price equations give the price of the pack in cents. Next, we
create a module to describe the exact scenario with which the hobo is faced: whether to buy a
pack of Dromedaries, Oldports, Scarboroughs, or Missouri Fats. Hence the module below:

mod CIGARETTE-VENDING-MACHINE is
 protecting CIGARETTES-3 .

 sort BrandSet .
 subsort Brand < BrandSet .

 op vendor : BrandSet -> State .
 op null : -> BrandSet [ctor] .
 op _&_ : BrandSet BrandSet -> BrandSet

[ctor assoc comm id: null] .

 var B : Brand . var BS : BrandSet .

 87

 rl [buypack] : vendor(B & BS) =>
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)

c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)
c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)
c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) .

endm

Note that the above rewrite law specifies no particular brand; the idea is to repeat metaApply
while incrementing the solution number, so that we select a different brand to substitute as B for
each iteration. We may rewrite each one of these different applications of buypack in
succession and then figure out the total cent per cigarette value.

fmod CIGARETTE-TEST is
 protecting META-LEVEL .

protecting CIGARETTE-VENDING-MACHINE .

 sorts CigTotal CigTotalSet .
 subsort CigTotal < CigTotalSet .

 op ct : Term Term -> CigTotal [ctor] .
 op __ : CigTotalSet CigTotalSet -> CigTotalSet
 [ctor assoc comm id: none] .
 op none : -> CigTotalSet [ctor] .

 op goTest! : -> CigTotalSet .
 op cigApply : Nat -> ResultTriple .
 op cigTest : Nat -> CigTotalSet .

*** auxiliary operations
 op total : ResultTriple -> CigTotal .
 op getbrand : Substitution -> Term .
 op getnum : ResultPair -> Term .

 var T : Term . var Y : Type . var SB : Substitution .
 vars Q1 Q2 : Term . var TL : TermList .

var M : Module . var N : Nat .

 eq goTest! = cigTest(0) .
 eq cigApply(N) = metaApply(['CIGARETTE-VENDING-MACHINE],
 'vendor['_&_['DROMEDARY.Brand,

'_&_['OLDPORT.Brand,
'_&_['SCARBOROUGH-MAN.Brand,
'MISSOURI-FATS.Brand]]]],

'buypack, none, N) .

***key function: CigTest. Note especially the recursive loop.
 eq cigTest(N) = if cigApply(N) == (failure).ResultTriple?
 then none

 else total(cigApply(N)) cigTest(N + 1)
 fi .

 88

eq total({ T , Y , SB }) = ct(getbrand(SB), getTerm(

 metaReduce(['CIGARETTES-3],
'_/_['price[getbrand(SB)],

getnum(metaRewrite(['CIGARETTES-3], T, 1000))])
)

) .

eq getbrand((Q1 <- Q2) ; SB) = if Q1 == 'B:Brand
 then Q2 else getbrand(SB) fi .
 eq getbrand(none) = 'fail.Brand .

eq getnum({'__['b[Q1 , Q2] , TL] , Y }) =
'_+_[Q2 , getnum({ TL , Y })] .

 eq getnum({'__['b[Q1 , Q2] , T] , Y }) =
'_+_[Q2 , getnum({ T , Y })] .

 eq getnum({('b[Q1 , Q2] , TL) , Y }) =
'_+_[Q2 , getnum({ TL , Y })] .

eq getnum({'b[Q1 , Q2] , Y }) = Q2 .

 eq ct('fail.Brand , T) = none .
endfm

Consider this the “grand finale” of Maude examples. This particular example has a unique
intrinsic stipulation: because the auxiliary functions all use descent functions, the equations
defining these auxiliaries must all operate at the meta-level. Because getnum is fed a
ResultTriple from metaRewrite, it must deal not with _quo_ and Nats but rather with the
meta-representations of these terms.

The use of metaApply in this example takes center stage because it creates the internal strategy,
but metaRewrite and metaReduce actually calculate the answers. Our strategy is this: the
operation cigTest creates a recursive loop which applies 'buypack by substituting a given
brand for the variable B of 'buypack, returns the corresponding ResultTriple, then moves on
to the next brand and concatenates the results. This sequential substitution of brands is
accomplished by incrementing the fourth argument, the Nat, with every recursive iteration.
Thus, if we write

Maude> red goTest! .

then the end result will list the first CigTotal (using the first brand chosen by the Maude
default strategy), then the second CigTotal (using the second brand), and so forth, until the
recursive loop terminates as metaApply exhausts the possible substitutions.

So now that we’ve analyzed this example thoroughly, what is the solution to the hobo’s
dilemma? My guess would be to buy Oldports, for they tie Dromedaries as the cheapest, yet
have more tobacco than Dromedaries. However, when we run the cigarette test, it turns out that
the Missouri Fats are the best value in terms of cents per cigarette smoked. True, a pack of Fats
costs $1.06 more than Oldports, but from twenty Fats one can smoke a total of thirty-nine
cigarettes, while Oldports produce twenty-six smokes out of one pack. The totals are

 89

 Dromedaries: 13¢ per smoke Oldports: 12¢ per smoke

Scarboroughs: 12¢ per smoke Missouri Fats: 10¢ per smoke

Realize, of course, that the _quo_ (or rather, meta-_quo_) from NAT will round down to the
nearest integer, but still, the test will show us which is the cheapest. And as you can see above,
the hobo would be better off spending the extra dollar for the Missouri Fats.

I’m not keen on extending this gargantuan chapter any more, but I do hate to end the tutorial
with a discussion of addictive carcinogens. Recall the warning at the beginning of the chapter,
that meta-programming, though very powerful, is also extremely complex. One should do as
much as possible to increase the intelligibility of a meta-program module, making use of
techniques such as color-coded Terms, plenty of auxiliary operations, and so on, so as to avoid
the pitfalls that appear so readily in a complex programming scenario. On a more positive note,
meta-programming provides solutions to intricate problems and can create extraordinary
programs, and is an essential subject for any Maude adept.

It is my hope that this paper has proved an effective introduction to the syntax and design
strategies of Maude. This tutorial focuses on getting people to program in Maude effectively, as
opposed to other papers that focus on the math behind it. Both facets are equally important:
Maude is both a programming language and a mathematical tour de force. Now that you have
successfully battled through the swamps of source code and syntax, I would urge you curl up in
the easy chair with some classic Alonzo Church, or simply turn to the papers of the Maude team
(see References) and dive into the math that makes all the above happen.

 90

EXERCISES FOR CHAPTER 6

1. There standard library module ________________________ sets down the sorts, operators,

and rules for metaprogramming. The basic sort ______________ can be constructed in three

ways using special key symbols: for constants, as 'name__Sort, variables, as

'Name__Sort, and operators, 'opname__TermList__ . We also have as a resource

the ___________________ functions, which reduce, rewrite, search, and apply rules, all at

the meta-level.

2. Fill in the appropriate sorts in the following meta-programming operator declarations:

op fmod_is_sorts_.____endfm :

a) _______ b) ___________________ c) _____________________

d) _____________________________ e) __________________________

f) ______________________________ g) ______________________________

-> FModule [ctor] .

 op crl_=>_if_[_] :

h) _______________ i) _________________ j) ___________________________

 k) _________________________ -> Rule [ctor] .

 op metaXapply :

 l) ___________________ m) ___________________ n) ____________

 o) ______________________ p) __________ q) _______________ r) ____________

 -> r) ___________________________

 Given the context of these operator declarations, write the corresponding null constant or

default constant for each sort requested below (note: this will not include all the sorts above):

 b) __________

 c) __________

 d) __________

 e) __________

 f) __________

 g) __________

k) __________

o) __________

p) _______

q) _____________________

r) ________

s) ______________________

 91

3. The module CELLS below creates an algebra for classifying cells. The operators do not

actually change the cell, but rather describe its characteristics: a cell can be eukaryotic or

prokaryotic (animal cell or single-celled organism), and it can be a muscle cell, a neuron, a

blood cell, a bacteria, or a phagocyte (defense cells which destroy other cells).

 mod CELLS is

 sort Cell .

 ops eukaryote prokaryote bacteria bloodcell neuron

 phagocyte muscle : Cell -> Cell [ctor] .

 op C : -> Cell .

 op 1 : -> Cell [ctor] .

 op _&_ : Cell Cell -> Cell [ctor assoc comm id: 1] .

 var X : Cell .

 rl [mitosis] : X => X & X [metadata "two’s company"] .

 endm

 Study the transcript of a series of metaXapply trials given below, and answer the questions

that follow. The first few lines defines a constant function Z as the meta-module 'CELLS (a

technique which often proves very helpful).

 Maude> fmod CELL-TEST is

 > inc META-LEVEL .

 > op Z : -> Module [memo] .

> eq Z = (mod 'CELLS is

> nil

> sorts 'Cell .

> none

> op 'eukaryote : 'Cell -> 'Cell [ctor] .

> op 'prokaryote : 'Cell -> 'Cell [ctor] .

 etc. etc. etc ...
> op 'C : nil -> 'Cell [none] .

> op '1 : nil -> 'Cell [ctor] .

> op '_&_ : 'Cell 'Cell -> 'Cell

 92

> [ctor assoc comm id('1.Cell)] .

> none

> none

> ...(a)..

> endm) .

> endfm

Maude>

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C.

Cell]]], 'mitosis, none, 0, unbounded, 0) .

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second)

result Result4Tuple: {'_&_['phagocyte['bloodcell['eukaryote

['C.Cell]]], 'phagocyte['bloodcell['eukaryote['C.Cell]]]],

'Cell,

 'X:Cell <-(b).., []}

Maude>

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C.

Cell]]], 'mitosis, none,(c).........................) .

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second)

result Result4Tuple: {'phagocyte['bloodcell['_&_['eukaryote

['C.Cell], 'eukaryote['C.Cell]]]], 'Cell,

 'X:Cell <- 'eukaryote['C.Cell],(d)..............................}

a) I’ve left out the declarations of most of the descriptive operators, because they are almost

identical to the two shown. But the dotted blank marked (a) holds the meta-

representation of the rewrite rule mitosis, which is crucial. Given the original rewrite rule

in the module CELLS, write the meta-representation of this rule below, leaving nothing

out.

 93

b) Remember, the Result4Tuple returned by metaXapply includes, in order, the

result term, the meta-sort of the result term, the substitution used in the rewrite, and the

context. Based on the Result4Tuple returned in the first trial, fill in the dotted blank

marked (b) below:

c) The second trial of metaXapply is missing its fifth, sixth, and seventh arguments.

Based on the result of this trial, which of the following triplets of numbers could possibly

have filled the dotted blank marked (c)?

 a. 0 , unbounded , 0 c. 2 , unbounded , 1

 b. 1 , 2 , 1 d. 1 , 2 , 2

d) Which of the following replaces the dotted blank marked (d)?

 a. 'phagocyte[[]]

b. 'bloodcell[]

 c. 'phagocyte[bloodcell[]]

d. 'phagocyte[bloodcell[[]]]

e) What’s the result of:

metaXapply(Z, 'neuron['C.Cell], 'mitosis, 'X:Cell <-

'C.Cell, 0, unbounded, 1)?_______________________________________

4. On Opposite Day, black is white, ‘yes’ means ‘no,’ and everything is the exact reverse of

what it is. In the module OPPOSITE-DAY, we define an operation opp-day that takes a

system Module and reverses all its rewrite laws, so that a => b becomes b => a.

 a) Assume the following variable declarations:

 var R : Rule . var RS : RuleSet .

 94

 vars T1 T2 : Term . var C : Condition .

 var A : AttrSet .

 Write a set of equations that define the operator reverse, which takes a RuleSet and

returns that RuleSet with all the rewrite laws reversed (as seen above). Don’t forget to

reverse conditional equations as well.

b) Write the equation that defines opp-day. Just for practice, declare all your variables

on-the-fly.

c) Declare and define an operation oppRewrite, which takes a Module, Term, and

Bound, and rewrites the Term according to the default Maude strategy, except with all

the rewrite rules in the Module reversed. Declare your variables however you like.

Your operator should return a ResultPair.

 95

ANSWERS TO CHAPTER EXERCISES

ANSWERS TO CHAPTER 1 EXERCISES

1. The three types of modules in Maude are declared as _fmod_________, ___mod_______, and ___omod_____.

They syntactically stand for _functional____ module, _system_______ module, and _object-oriented_______

module, respectively. The only type of module that is not in Core Maude, but is in Full Maude, is the

_omod_______________.

2. Identify the following operations as prefix, mixfix, or constant:

 op _^_ : Nat Nat -> Nat . __mixfix___________

 op smile : -> Expression . __constant_________

 op to_from_ : Name Name -> Valentine . __mixfix___________

 op grab : Thing -> Action . __prefix___________

3. When defining the division operator for the natural numbers, one must address the problem of dividing by zero.

Do the following on the lines below. a) Define two sorts, Nat and NzNat, which stands for a non-zero natural

number. b) Declare NzNat a subsort of Nat. c) Define a division operation that takes a Nat and an NzNat,

and returns a Nat.

 a) __sorts Nat NzNat ._______________

 b) __subsort NzNat < Nat .________

 c) __op _/_ : Nat NzNat -> Nat ._____

4. Say I want to make an operation that takes a person’s name and age, and returns a statement such as “Johnny is

3 years-old”.

 a) Choose two standard modules you think I should import for this operation:

 ___NAT______ and ___QID__(STRING is also a right answer)___

 b) Fill in the blanks for the operation declaration with the correct standard sorts:

 op _is_years-old : _Qid (or String)_ ___NAT_____

-> AgeStatement [ctor] .

c) Assume that this is the only operation that uses the two imported modules. How should I import them: using

including or protecting? _protecting_____________

5. Let us define two sorts, Queue and Grab-bag. In a Queue, the order of the elements matter, and so we want

to exclude commutativity from the list of its properties. In a Grab-bag, order doesn’t matter, so we want

 96

commutativity as a property. Furthermore, we want an identity property defined for both, with respect to the

nothing constant. Associativity we definitely want for both.

 Below are two constructors, one for Queue and another for Grab-bag. Fill in the blanks between the

brackets, putting in all the syntax necessary to fulfill the above requirements.

 op __ : Queue Queue -> Queue [_assoc id: nothing_______] .

 op __ : Grab-bag Grab-bag -> Grab-bag

[_assoc comm id: nothing__] .

6. The combined use of subsorts with operation declarations can be very powerful, and consequently rather tricky.

By defining an operation for a sort, one defines it for all of its subsorts. One can think of the < symbol as short

for “qualifies as a,” e.g., integer qualifies as a rational. With this in mind, and given the following sort

and operation declarations,

sorts Plea Inquiry Assertion Question Speech .

sort LogEntry .

subsorts Inquiry < Question < Plea .

subsorts Assertion Question < Speech .

op respond : Question -> Speech .

op record : Speech Speech -> LogEntry .

ops p1 p2 : -> Plea . ops i1 i2 : -> Inquiry .

ops a1 a2 : -> Assertion . ops q1 q2 : -> Question .

ops s1 s2 : -> Speech .

mark which expressions will parse correctly, i.e., which will follow the rules of the declarations above.

__x__ respond(q1) ___Speech_____________

__x__ record(q1, i1) ___LogEntry___________

_____ respond(record(q1, i1)) ___no parse __________

__x__ record(q1, respond(q1)) ___LogEntry___________

 97

_____ respond(p1) ___[Speech, Plea]_____

_____ record(p1, p2) ___[LogEntry]_________

__x__ record(respond(i1), s1) ___LogEntry___________

__x__ record(i1, respond(i1)) ___LogEntry___________

_____ respond(s1) ___[Speech, Plea]_____

_____ respond(respond(q1)) ___[Speech, Plea]_____

In the second blanks, mark which sort or kind will be the result of the expression, or no parse for those terms that

will simply not parse at all.

ANSWERS TO CHAPTER 2 EXERCISES

1. There are four, actually five basic requirements for an equation. It must begin with the keyword _eq___, it

must have the key symbol __=___ somewhere in it, it must have a __period__ at the end, and it must have

within it mathematical phrases consisting of variables and __operators___. Finally, for an equation to be worth

its weight, the right-hand side of the equation must be ___simpler______ than the left-hand side.

2. Decide what the following expressions are by writing in the necessary keyword:

a) __ceq__ N mod M = (N – M) mod M if M <= N.

b) __cmb__ N mod M : NzNat if N =/= M

/\ (N – M) mod M :: NzNat .

c) __eq___ N mod M = (N – M) mod M .

d) __mb___ s(0) mod M : NzNat .

e) __eq___ N mod M = if M <= N then (N – M) mod M else N fi .

3. The modulus operator mod returns the remainder of an integer division: for example, 11 mod 3 = 2, 4 mod 3 =

1, and 30 mod 8 = 6. Given the following module (for the NAT-BOOL and PEANO-NAT modules, see 2.2 and

1.4, respectively),

 1 fmod MODULUS is

2 protecting NAT-BOOL .

 98

3 sorts NzNat Zero .

4 subsorts NzNat Zero < Nat .

5 op 0 : -> Zero [ctor] .

 6 op _–_ : Nat Nat -> Nat [right id: 0].

 7 op _mod_ : Nat NzNat -> Nat [...........................] .

 8 vars X Y : Nat . var M : NzNat .

 9 cmb X : NzNat if X =/= 0 .

 10 eq s X – s Y = if s X > s Y

 11 then X – Y else 0 fi .

 12 …………………………………………..

 13 endfm

 a) Which expression from question #2 would best fill in the dotted blank on line (12) if you want to reduce the

following statement?

 red in MODULUS

(s s s s s 0 mod s s s 0) mod s s 0 .

 ______(e)______

 b) Write the equation that the identity flag on line (6) replaces.

 ___eq X – 0 = X .____________________________________

 c) Lines (10) and (11), which, along with line (6), define the subtraction operator, could be replaced by the

following two equations:

 ceq s X – s Y = X – Y if s X > s Y .

 eq = 0 [............] .

 Choose the expression-and-flag pair that best fills in the two dotted blanks.

 a. s X – s Y ... memo C. s X – s Y ... owise

 b. X – Y ... owise d. X – Y ... gather (& e)

 d) The constant operator 0 in line (5) is an example of __subsort_______ overloading.

 e) What flag(s) should fill the dotted blank on line (7) so that 14 mod 5 mod 3 reduces to 0?

 a. assoc c. gather (E e)

 B. gather (e E) d. gather(& &)

4. The sort Deck is a list of cards (refer to the CARD-DECK module in 2.1) defined by the subsort declaration

 99

 subsort Card < Deck .

 and the operator _;_, defined by

 op _;_ : Deck Deck -> Deck [ctor assoc id: null] .

 op null : -> Card [ctor] .

 a) Write an equation that defines the operation topcard, which takes a Deck and returns the top card (i.e.,

the first element.) Assume that the variable C of sort Card has already been declared.

 eq topcard(C ; D:Deck) = C .

 b) Let sort FemCard be defined with the subsort relation FemCard < Card. Write one (or more)

membership axiom(s), conditional if you wish, that makes a Card a FemCard if the suit is Hearts or the

card is a Queen. You might want to use the operations CardNum and CardSuit defined in CARD-

DECK, but then again you might not. Feel free to declare your variables any way you like.

 mb N:Number of Hearts : FemCard .

 mb Q of S:Suit : FemCard .

 c) Write one or more equation(s) that define(s) the operator firstFemCard, which returns the first

FemCard drawn from a deck. You must use recursion.

 i. Write it using the if_then_else_fi operator.

 var C : Card . var D : Deck .

 eq firstFemCard(C ; D) = if CardNum(C) == Q or

 CardSuit(C) == Hearts

 then C

 else firstFemCard(D) fi .

 eq firstFemCard(null) = null .

 ii. Write it using a conditional equation and the _::_ operator.

 ceq firstFemCard(C ; D) = C if C :: FemCard .

 eq firstFemCard(C ; D) = firstFemCard(D) [owise] .

 eq firstFemCard(null) = null .

 iii. Write it using a conditional equation and pattern matching.

 ceq firstFemCard(C ; D) = C if Q of S:Suit := C .

 ceq firstFemCard(C ; D) = C if N:Number of Hearts := C .

 eq firstFemCard(C ; D) = firstFemCard(D) [owise] .

 eq firstFemCard(null) = null .

 100

ANSWERS TO CHAPTER 3 EXERCISES

1. While __equations______ describe rules of simplification (writing the same thing a different way), a _rewrite

law__ maps a ___transition___ between two states (a change in constitution). And while the right-hand side of

a(n) ___equation______ should be simpler than the left-hand side, this is not necessarily true for the other. This

latter uses the key symbol => to emphasize its _irreversibility____, that is, the fact that it only works in one

direction.

 Both equations and rewrite laws may be found in a _system_____ module, initiated with the keyword _mod___.

2. The following module sets down the rules for a rewrite game, called “Zip-Zap-Zop.” Whenever the constants

zip, zap, and zop appear in that order, they become a win. And wins can change into all sorts of

combinations of the three. In addition, four zops in a row ends the game. The goal is, then, to apply the

correct rewrite rules so that we end with one win. Look over the module and answer the questions that follow:

 1 mod ZIP-ZAP-ZOP is

 2 sort GameState .

 3 op _>_ : GameState GameState ->

 4 GameState [ctor assoc id: 1] .

 5 op 1 : -> GameState [ctor] .

 6 ops zip zap zop : -> GameState [ctor] .

 7 ops win gameover : -> GameState [ctor] .

 8

 9 rl [winner!] : zip > zap > zop => win .

 10 rl [scatter1] : win => zop > zip .

 11 rl [scatter2] : win => zip > zap .

 12 rl [scatter3] : win => zop > zop .

 13 rl [gameend] : .. .

 14 endm

a) What’s missing from line (4) that would allow Maude to rewrite zop > zap > zip ?

____comm_____________

b) Fill in the dotted blank on line (13):

__zop > zop > zop > zop => gameover___________

c) Consider the expression win zop win :

i. Does an unbounded rewrite of this expression always terminate? __yes_____

 101

ii. What are the five rewrites, in order of application, that must occur in order for the above expression to

reach a gameover? In the first blank, put the label of the rewrite law you apply, and in the second,

the state that results.

 win > zop > win

 1. __scatter3____ => _win > zop > zop > zop________

 2. __scatter2____ => _zip > zap > zop > zop > zop__

 3. __winner!_____ => _win > zop > zop_______________

 4. __scatter3____ => _zop > zop > zop > zop__________

 5. __gameend______ => __gameover________________________

d) Let’s say we want to add a rule that will change zap into zip as long as this immediately produces a win

in the expression. Write a conditional rewrite law change that transforms zap > S into zip > S, and

the condition is another rewrite law. Assume variables S and P of GameState have already been

declared.

 crl [change] : zap > S => zip > S

 if zip > S => win > P .

3. Two separate searches were performed with the complete ZIP-ZAP-ZOP module (that is, including the

conditional rewrite law change), and the transcription appears below. The ellipses appear in the place of

unimportant information, so don’t worry about those, but some important parts have been substituted by dotted

blanks. Study the searches carefully and answer the questions below.

First search:

Maude> search zap > zap > zip > zap > zop(a).... win .

...

No solution.

states: 22 rewrites: 106 ...

Second search:

Maude> search zap > zap > zip > zap > zop(a).... win .

...

Solution 1 (state 18)

states: 19 rewrites: 103 ...

empty substitution

 102

No more solutions.

states: 22 rewrites: 106 ...

Maude> show(b)..................... .

state 0, GameState: zap > zap > zip > zap > zop

==[rl zip > zap > zop => win [label winner!] .]===>

state 1, GameState: zap > zap > win

==[rl win => zop > zop [label scatter3] .]===>

state 3, GameState: zap > zap > zop > zop

==[crl ... [label change] .]===>

state 9, GameState:(c)..

==[rl zip > zap > zop => win [label winner!] .]===>

state 11, GameState: win > zop

==[rl(d)...................... [label(d).............] .]===>

state 16, GameState: zip > zap > zop

==[rl zip > zap > zop => win [label winner!] .]===>

state 19, GameState: win

a) As you can see, the first and the second searches are almost identical, except for the symbol that goes in the

two dotted blanks labeled (a).

 i. What symbol must have been used for the first search? ____=>!________

 ii. What symbol must have been used for the second search? ___=>+_______

iii. If we had written zop > zop > zop instead of win in the first search, would Maude have found a

solution? __yes_____

iv. If we had written zop > zop > zop instead of win in the second search, would Maude have

found a solution? __yes_____

b) Fill in the dotted blank labeled (b): ____path 18______________________

 If you had entered in show path 11 . instead, what would the last line of your result be? ___state

11, GameState: win > zop_________

c) Refer to question 2.d) and the rest of the search transcript. How should you fill the dotted blank labeled

(c)? ____zip > zap > zop > zop ________

d) Based on the evidence of states 11 and 16, what must go in the two dotted blanks labeled (d)?

 ____win => zip > zap_______________

 and

 ____scatter2___________

 103

ANSWERS TO CHAPTER 4 EXERCISES

1. Full Maude is an ____extension______________ of Core Maude, mimicking the Maude syntax within its own

modules but defining a few extra capabilities, most notably _object-oriented_______ modules, declared with

the keyword _omod____ at the beginning and __endom____ at the end, and __parameterization_________,

the subject of Chapter 5. All modules and commands to be loaded into Full Maude must be enclosed in

____parentheses_____________, because Full Maude is written using the input-output capabilities of the

provided module _LOOP-MODE__________.

2. The following lines are from different object-oriented modules, and none of them parse correctly. Write the

appropriate revision to each statement or declaration that will fix the error(s).

 a) Msgs debit credit : Oid Nat -> msg .

 msgs debit credit : Oid Nat -> Msg .

 b) rl [switchnums] : A switch B

 < A : NUMOBJ | n : N >

 < B : NUMOBJ | n : M >

 => < A : NUMOBJ | n : M >

 < B : NUMOBJ | n : M > .

 rl [switchnums] : (A switch B)

 < A : NUMOBJ | n : N >

 < B : NUMOBJ | n : M >

 => < A : NUMOBJ | n : M >

 < B : NUMOBJ | n : M > .

 c) object PERSON | age : Nat sign : Zodiac .

 class PERSON | age : Nat , sign : Zodiac .

 d) rl [older] : ++age(A) < A | age : N , sign : Z >

 => < A | age : s N , sign : Z > .

 104

 rl [older] : ++age(A) < A : PERSON | age N >

 => < A : PERSON | age s N > .

3. The following object-oriented module defines a basketball scoresheet model, where each player, identified by

their jersey number, has a line with their name, scoring record (how many three-pointers, two-pointers, and free

throws they’ve attempted and made) and the number of fouls they’ve accrued. Examine the module below and

answer the questions that follow. You can assume that throw is defined somewhere else such that true and

false are equally probable results.

1 (omod BASKETBALL-SCORESHEET is

2 pr NAT . pr STRING .

3 sorts History JerseyNumber .

4 .. .

5

6 op _for_ : Nat Nat -> History [ctor] .

7 op throw : Oid -> Bool .

8

9 class LINE | name : String , threes : History ,

10 twos : History , fts : History ,

11 fouls : Nat .

12

13 msgs ... : Oid Bool -> Msg .

14 msg foul : Oid -> Msg .

15 msg _fouled_ : Oid Oid -> Msg .

16

17 vars J K : JerseyNumber . vars X Y N : Nat .

18 var B : Bool . var S : String .

19

20 rl [f] : foul(J)

21 < J : LINE | name : S , fouls : N >

22 => < J : LINE | name : S , fouls : s N > .

23 rl [3] : 3A(J, B) < J : LINE | threes : X for Y >

24 => < J : LINE | threes : if B

25 then (s X) for (s Y)

26 else X for (s Y) fi > .

27 rl [2] : 2A(J, B) < J : LINE | twos : X for Y >

28 => < J : LINE | twos : if B

29 then (s X) for (s Y)

30 else X for (s Y) fi > .

 105

31 rl [ft] : ftA(J, B) < J : LINE | fts : X for Y >

32 => < J : LINE | fts : if B

33 then (s X) for (s Y)

34 else X for (s Y) fi > .

35 rl [foulcalled] : (J fouled K)

36 < J : LINE | > < K : LINE | >

37 => foul(J) < J : LINE | >

38 ftA(K, throw(K)) fta(K, throw(K))

39 < K : LINE | > .

40 endom)

a) What declaration has to go on line 4 so that JerseyNumber, which is really just a Nat, counts as an

object identifier?

 subsorts Nat < JerseyNumber < Oid .

b) Fill in the dotted blank on line 13: ___ 3A 2A ftA ___________________

c) On lines 20-22, the message foul is defined using a rewrite rule.

 i. Is the attribute name necessary to include in the rule? ______yes_________

 ii. Is the attribute fouls necessary to include in the rule? _____no___________

d) The following was entered into the Maude environment after having loaded the above module, except the

messages have been deleted from the input. What three messages must have occupied the dotted blank to

produce the following result?

Maude> (rew < 8 : LINE | name : "Kobe" , fouls : 1,

 threes : 0 for 0, twos : 6 for 8, fts : 4 for 4 >

 < 34 : LINE | name : "Shaq" , fouls : 3,

 threes : 0 for 0, twos : 9 for 9, fts : 0 for 8 >

 < 3 : LINE | name : "Iverson" , fouls : 2,

 threes : 2 for 3, twos : 3 for 4, fts : 2 for 4 >

 .. .)

rewrites: 1503 in 20ms cpu (20ms real) (75650 rewr/s)

result Configuration :

< 3 : LINE | fouls : 3,fts : 2 for 4,twos : 3 for 5,threes : 2

for 3,name : "Iverson" > < 8 : LINE | fouls : 1,fts 4 for 4,twos

 106

: 6 for 8,threes : 1 for 1,name : "Kobe" > < 34 : LINE | fouls :

3,fts : 1 for 10,twos : 9 for 9,threes : 0 for 0,name : "Shaq" >

 (3 fouled 34) 3A(8, true) 2A(3, false)

ANSWERS TO CHAPTER 5 EXERCISES

1. The bare minimum for a parameterization system is as follows: one _theory_______, to set down the

requirements of the parameters, one __view_______, which connects the __theory_______ to the parameter

module, at least two modules (one being the parameter module and the other the __parameterized__ module)

and some sort of __instantiation____ to collect everything together, whether that be within the Maude

environment or within another module.

2. Fill in the missing symbols and/or keywords:

 a) (__view___ OElt-Queue(_P ::__ OELT)

 from LIST(P) to QUEUE is ...

 b) (_oth__ CLASSTHEORY is class ELT . _endoth_)

 c) op X < Y __to term_____ X <= Y and X =/= Y .

 d) subsort __LABEL@Elt < List(LABEL) .

 ***Hint: Elt comes from the theory TRIV

3. In this question, we’ll go step-by-step through your basic, no-tricks parameterization system. The example is

very simple: based on a theory that contains a function to double something, we’ll write a parameterized module

that raises something to the 2nth power.

 a) Write below the functional theory DOUBLE, which declares a sort Something and an operator double.

 (fth DOUBLE is

 sort Something .

 op double .

 endfth)

 b) Write below a parameterized module called *POWER2, which, based on the theory DOUBLE, declares and

defines an operator *power2. The *power2 operator takes in two arguments: the first, a Something,

and second, a Nat.

 i. Write the first half of the module, including the module name, the importations, and the operator

declaration:

 107

 (fmod *POWER2(X :: DOUBLE) is

 protecting NAT .

 op _*power2_ : X@Something Nat

 -> X@Something .

 ii. Write the second half of the module, which includes the variable declarations and the equations. We’ll

define *power2 recursively so that, for every iteration, it calls double on its Something argument

and decrements its Nat argument by 1. Don’t forget to include an equation that ends the recursion.

 var N : Nat . var S : X@Something .

 eq S *power2 (s N) = double(S) *power2 N .

 eq S *power2 0 = S .

 endfm)

 c) Write a view to connect the following module to DOUBLE.

 (fmod INT*2 is

 pr INT .

 op _times2 : Int -> Int .

 eq N:Int times2 = N:Int * 2 .

 endfm)

 (view Double-Int from DOUBLE to INT*2 is

 sort Something to Int .

 op double to _times2 .

 endv)

 d) Instantiate the above system, with INT as your parameter, in two ways:

 i. In the Maude environment, using the keyword select

 Maude> (select *POWER2(Double-Int) .)_______

 ii. In a module EIGHT, which declares and defines an operator *eight, which multiples an integer by

eight (using *power2, of course).

 (fmod EIGHT is

 108

 protecting *POWER2(Double-Int) .

 op *eight : Int -> Int .

 eq X:Int *eight = X:Int *power2 3 .

 endfm)

ANSWERS TO CHAPTER 6 EXERCISES

1. There standard library module ___META-LEVEL________ sets down the sorts, operators, and rules for

metaprogramming. The basic sort ____Term______ can be constructed in three ways using special key

symbols: for constants, as 'name.Sort, variables, as 'Name:Sort, and operators, 'opname[TermList]

. We also have as a resource the ____descent________ functions, which reduce, rewrite, search, and apply

rules, all at the meta-level.

2. Fill in the appropriate sorts in the following meta-programming operator declarations:

op fmod_is_sorts_.____endfm :

a) __Qid__ b) _ImportList________ c) _SortSet_____________

d) __SubsortDeclSet_____________ e) __OpDeclSet_______________

f) ___MembAxSet__________________ g) ____EquationSet_____________

-> FModule [ctor] .

 op crl_=>_if_[_] :

h) __Term_________ i) ____Term_________ j) ____Condtion_____________

 k) __AttrSet________________ -> Rule [ctor] .

 op metaXapply :

 l) ___Module__________ m) ___Term____________ n) __Qid_______

 o) __Substitution____ p) __Nat____ q) __Bound____ r) ___Nat____

 -> s) ___Result4Tuple______

 Given the context of these operator declarations, write the corresponding null constant or default constant for

each sort requested below (note: this will not include all the sorts above):

 b) __nil_____

 c) __none____

 d) __none____

 e) __none____

 f) __none____

 g) __none____

k) __none____

o) __none____

p) __0__

q) __unbounded__________

r) __0__

s) (failure).Result4Tuple?

 109

3. The module CELLS below creates an algebra for classifying cells. The operators do not actually change the

cell, but rather describe its characteristics: a cell can be eukaryotic or prokaryotic (animal cell or single-celled

organism), and it can be a muscle cell, a neuron, a blood cell, a bacteria, or a phagocyte (defense cells which

destroy other cells).

 mod CELLS is

 sort Cell .

 ops eukaryote prokaryote bacteria bloodcell neuron

 phagocyte muscle : Cell -> Cell [ctor] .

 op C : -> Cell .

 op 1 : -> Cell [ctor] .

 op _&_ : Cell Cell -> Cell [ctor assoc comm id: 1] .

 var X : Cell .

 rl [mitosis] : X => X & X [metadata "two’s company"] .

 endm

 Study the transcript of a series of metaXapply trials given below, and answer the questions that follow. The

first few lines defines a constant function Z as the meta-module 'CELLS (a technique which often proves very

helpful).

 Maude> fmod CELL-TEST is

 > inc META-LEVEL .

 > op Z : -> Module [memo] .

> eq Z = (mod 'CELLS is

> nil

> sorts 'Cell .

> none

> op 'eukaryote : 'Cell -> 'Cell [ctor] .

> op 'prokaryote : 'Cell -> 'Cell [ctor] .

 etc. etc. etc ...
> op 'C : nil -> 'Cell [none] .

> op '1 : nil -> 'Cell [ctor] .

> op '_&_ : 'Cell 'Cell -> 'Cell

> [ctor assoc comm id('1.Cell)] .

> none

> none

> ...(a)..

> endm) .

> endfm

 110

Maude>

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C.

Cell]]], 'mitosis, none, 0, unbounded, 0) .

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second)

result Result4Tuple: {'_&_['phagocyte['bloodcell['eukaryote

['C.Cell]]], 'phagocyte['bloodcell['eukaryote['C.Cell]]]], 'Cell,

 'X:Cell <-(b).., []}

Maude>

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C.

Cell]]], 'mitosis, none,(c).........................) .

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second)

result Result4Tuple: {'phagocyte['bloodcell['_&_['eukaryote

['C.Cell], 'eukaryote['C.Cell]]]], 'Cell,

 'X:Cell <- 'eukaryote['C.Cell],(d)..............................}

a) I’ve left out the declarations of most of the descriptive operators, because they are almost identical to the

two shown. But the dotted blank marked (a) holds the meta-representation of the rewrite rule mitosis,

which is crucial. Given the original rewrite rule in the module CELLS, write the meta-representation of

this rule below, leaving nothing out.

 rl 'X:Cell => '_&_['X:Cell, 'X:Cell] [label('mitosis)

 metadata("two’s company")] .

b) Remember, the Result4Tuple returned by metaXapply includes, in order, the result term, the meta-

sort of the result term, the substitution used in the rewrite, and the context. Based on the Result4Tuple

returned in the first trial, fill in the dotted blank marked (b) below:

 'phagocyte['bloodcell['eukaryote['C.Cell]]]

c) The second trial of metaXapply is missing its fifth, sixth, and seventh arguments. Based on the result of

this trial, which of the following triplets of numbers could possibly have filled the dotted blank marked (c)?

 a. 0 , unbounded , 0 c. 2 , unbounded , 1

 B. 1 , 2 , 1 d. 1 , 2 , 2

 111

d) Which of the following replaces the dotted blank marked (d)?

 a. 'phagocyte[[]]

b. 'bloodcell[]

 c. 'phagocyte[bloodcell[]]

D. 'phagocyte[bloodcell[[]]]

e) What’s the result of:

metaXapply(Z, 'neuron['C.Cell], 'mitosis, 'X:Cell <- 'C.Cell, 0,

unbounded, 1)?___(failure).Result4Tuple?_______

4. On Opposite Day, black is white, ‘yes’ means ‘no,’ and everything is the exact reverse of what it is. In the

module OPPOSITE-DAY, we define an operation opp-day that takes a system Module and reverses all its

rewrite laws, so that a => b becomes b => a.

 a) Assume the following variable declarations:

 var R : Rule . var RS : RuleSet .

 vars T1 T2 : Term . var C : Condition .

 var A : AttrSet .

 Write a set of equations that define the operator reverse, which takes a RuleSet and returns that

RuleSet with all the rewrite laws reversed (as seen above). Don’t forget to reverse conditional equations

as well.

 eq reverse(rl T1 => T2 [A] . RS) =

 rl T2 => T1 [A] . reverse(RS) .

 eq reverse(crl T1 => T2 if C [A] . RS) =

 crl T2 => T1 if C [A] . reverse(RS) .

 eq reverse(none) = none .

b) Write the equation that defines opp-day. Just for practice, declare all your variables on-the-fly.

 eq opp-day(mod Q:Qid is I:ImportList sorts S:SortSet .

 SS:SubsortDeclSet O:OpDeclSet M:MembAxSet

 E:EquationSet RS:RuleSet endm) = mod Q:Qid is

 I:ImportList

 sorts SortSet .

 SS:SubsortDeclSet

 O:OpDeclSet

 M:MembAxSet

 112

 E:EquationSet

 reverse(RS:RuleSet)

 endm .

c) Declare and define an operation oppRewrite, which takes a Module, Term, and Bound, and rewrites

the Term according to the default Maude strategy, except with all the rewrite rules in the Module

reversed. Declare your variables however you like. Your operator should return a ResultPair.

 op oppRewrite : Module Term Bound -> ResultPair .

 var M : Module . var T : Term . var B : Bound .

 eq oppRewrite(M, T, B) =

 metaRewrite(opp-day(M), T, B) .

 113

Appendix : Examples

*** Chapter 1 - Foundation
*** Section 4: Constructors and Operator Attributes

*** PEANO-NAT : sets down the algebra for the Peano notation of the
*** natural numbers, using two constructors - the successor s and 0.

fmod PEANO-NAT is

 sort Nat .

 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .

endfm

*** Chapter 1 - Foundation
*** Section 4: Constructors and Operator Attributes

*** SETS-AND-LISTS: sets down the fundamentals for the Set and List
*** sorts, including the main binary operator attributes "assoc,"
*** "comm," and "id: "

fmod SETS-AND-LISTS is

 sorts Set List Elt .
 subsort Elt < Set .
 subsort Elt < List .

 op nil : -> List [ctor] .
 op none : -> Set [ctor] .

 op _;_ : List List -> List [ctor assoc id: nil] .
 op __ : Set Set -> Set [ctor assoc comm id: none] .

endfm

**
*** Chapter 1 - Foundation
*** Section 5: Kinds

*** ANIMALS : illustrates the use of kinds within connected
*** components using a dog-breeding model.

 114

**

fmod ANIMALS is

 sorts Animal Vegetable Dog .
 sorts Terrier Hound Toy Sporting .

 subsort Dog < Animal .
 subsorts Terrier Hound Toy Sporting < Dog .

 ops bloodhound
 collie
 dalmatian
 pitbull
 schnauzer : -> Dog .

 ops penguin
 frog : -> Animal .

 op bromeliad : -> Vegetable .

 op breed : Dog Dog -> Dog [ctor] .

endfm

*** Chapter 2 - Functional Modules
*** Section 1 : Equations

*** PEANO-NAT-EXTRA : illustrates the fundamentals of equation
*** writing with the addition operator defined with Peano notation.

fmod PEANO-NAT-EXTRA is

 sort Nat .

 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor iter] .
 op _+_ : Nat Nat -> Nat .

 vars M N : Nat .

 eq 0 + N = N .
 eq s(M) + N = s(M + N) .

endfm

 115

*** Chapter 2 - Functional Modules
*** Section 1 : Equations

*** PEANO-NAT-MULT : multiplication operator for the Peano
*** natural numbers, a good illustration of recursive
*** algorithms in Maude.

fmod PEANO-NAT-MULT is

 protecting PEANO-NAT-EXTRA .

 op _*_ : Nat Nat -> Nat .

 vars M N : Nat .

 eq N * 0 = 0 .
 eq N * s(M) = N + (N * M) .

endfm

set trace select on .

trace select (_*_) .

set trace on .

red s^3(0) * s^5(0) .

set trace off .

*** Chap 2 - Functional Modules
*** Section 1 : Equations

*** LIST-SIZE : another example of recursive equation-writing
*** for lists.

fmod LIST is

 sorts Elt List .
 subsort Elt < List .

 op nil : -> List [ctor] .
 op __ : List List -> List [ctor assoc id: nil] .

endfm

 116

fmod LIST-SIZE is

 protecting LIST .
 protecting PEANO-NAT .

 op size : List -> Nat .

 var E : Elt . var L : List .

 eq size(nil) = 0 .
 eq size(E L) = s(size(L)) .

endfm

*** Chapter 2 - Functional Modules
*** Section 1 : Equations

*** CARD-DECK : your basic deck-o'-cards module, illustrating the
*** sort of "access" function that picks apart a constructor, with
*** CardNum and CardSuit.

fmod CARD-DECK is

 sorts Number Suit Card .

 ops A 2 3 4 5 6 7 8 9 10 J Q K : -> Number [ctor] .
 ops Clubs Diamonds Hearts Spades : -> Suit [ctor] .
 op _of_ : Number Suit -> Card [ctor] .

 op CardNum : Card -> Number .
 op CardSuit : Card -> Suit .

 var N : Number . var S : Suit .

 eq CardNum(N of S) = N .
 eq CardSuit(N of S) = S .

endfm

 117

*** Chapter 2 - Functional Modules
*** Section 2 : Conditional Equations

*** IRRITABLE-PROFESSOR : illustrates the two uses of pattern
*** matching - as a search method or as a value assignment.

fmod IRRITABLE-PROFESSOR is

 protecting STRING .

 sorts Question Exclamation Interruption .
 subsorts Question Exclamation < Interruption .

 op _? : String -> Question [ctor] .
 op _! : String -> Exclamation [ctor] .

 op reply : Interruption -> String .

 var I : Interruption .

 ceq reply(I) = "Questions after class, please" if (S:String) ? := I .
***eq reply(S:String ?) = "Questions after class, please" .
 ceq reply(S:String !) = T:String if T:String := "Please be quiet!" .

endfm

*** Chapter 2 - Functional Modules
*** Section 4 : Membership Axioms

*** CRAZY-EIGHTS : illustrates the use of conditional membership
*** axioms using our card-deck example.

*** SUICIDE-KING : illustrates the use of membership axioms using
*** our card-deck example.

fmod CRAZY-EIGHTS is

 protecting CARD-DECK .

 sort WildCard .
 subsort WildCard < Card .

 var C : Card .

 cmb C : WildCard if CardNum(C) == 8 .

endfm

 118

fmod SUICIDE-KING is

 protecting CARD-DECK .

 sort SuicideKing .
 subsort SuicideKing < Card .

 mb K of Hearts : SuicideKing .

endfm

**
*** Chapter 2 - Functional Modules
*** Section 4 : Membership Axioms

*** CARD-PAIR : uses the matching condition in a conditional
*** membership axiom.

**

fmod CARD-PAIR is

 protecting CARD-DECK .

 sorts Pair PokerPair .
 subsort PokerPair < Pair .

 op <_;_> : Card Card -> Pair [comm] .

 var N : Number . var P : Pair .

 cmb P : PokerPair if < N of S:Suit ; N of S':Suit > := P .

endfm

 119

*** Chapter 2 - Functional Modules
*** Section 5 : Operator and Statement Attributes

*** TENNIS : illustrates the use of prec and gather flags with the
*** non-associative versus operator.

fmod TENNIS is

 sort Player .

 op _vs_ : Player Player -> Player [comm prec 33 gather (e E)] .
 op _murders_ : Player Player -> Player [prec 31] .
 op _teases_ : Player Player -> Player [prec 34] .

 ops sampras agassi roddick : -> Player [ctor] .

 vars P1 P2 : Player .

 eq sampras vs agassi = sampras .
 eq sampras vs roddick = roddick .
 eq agassi vs roddick = agassi .

 eq P1 murders P2 = P1 .
 eq P1 teases P2 = P2 murders P1 .

endfm

*** Chapter 2 - Functional Modules
*** Section 6 : Expanding on Chapter 1

*** DOG-RACING : expands on the ANIMALS example from Chapter 1 to
*** illustrate some of the usefulness of kinds.

fmod DOG-RACING is

 protecting ANIMALS .
 protecting NAT .

 op race : Dog Dog -> Dog .
 op speed : Dog -> Nat .

 op jackRusselTerrier : -> Terrier .

 vars N M : [Dog] .

 eq speed(bloodhound) = 20 .
 eq speed(collie) = 25 .

 120

 eq speed(dalmatian) = 30 .
 eq speed(pitbull) = 15 .
 eq speed(schnauzer) = 30 .
 eq speed(jackRusselTerrier) = 10 .

 eq speed(frog) = 5 .
 eq speed(penguin) = 5 .

 eq speed(breed(N, M)) = (speed(N) + speed(M)) quo 2 .

 ceq race(N, M) = N if speed(N) > speed(M) .
 eq race(N, M) = M [owise] .

endfm

*** Chapter 3 - System Modules
*** Section 1 : Rewrite Laws

*** CLIMATE : illustrates the fundamentals of a rewrite law.

mod CLIMATE is

 sort weathercondition .

 op sunnyday : -> weathercondition .
 op rainyday : -> weathercondition .

 rl [raincloud] : sunnyday => rainyday .

endm

*** Chapter 3 - System Modules
*** Section 1 : Rewrite Laws

*** CIGARETTES - this example of rewrite laws will be a running
*** example throughout the rest of the chapter and tutorial.

mod CIGARETTES is

 sort State .

 ops c b : -> State [ctor] . *** cigarettes and butts
 op __ : State State -> State [ctor assoc comm] .

 rl [smoke] : c => b .

 121

 rl [makenew] : b b b b => c .

endm

*** Chapter 3 - System Modules
*** Section 1 : Rewrite Laws

*** COUNTING-CIGARETTES : an expansion on the cigarettes example

mod COUNTING-CIGARETTES is

 protecting NAT .

 sort State .

 ops c b : Nat -> State [ctor] . ***cigarettes and butts
 op __ : State State -> State [ctor assoc comm] .

 vars W X Y Z : Nat .

 rl [smoke] : c(X) => b(X + 1) .
 rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) .

endm

**
*** Chapter 3 - System Modules
*** Section 1 : Rewrite Laws

*** ARCADE-CRANE : our other running example of a rewrite system, but this
one
*** doesn't terminate.

**

mod ARCADE-CRANE is

 protecting QID .

 sorts ToyID State .
 subsort Qid < ToyID .

 op floor : ToyID -> State [ctor] .
 op on : ToyID ToyID -> State [ctor] .
 op clear : ToyID -> State [ctor] .
 op hold : ToyID -> State [ctor] .

 122

 op empty : -> State [ctor] .

 op 1 : -> State [ctor] .

 op _&_ : State State -> State [ctor assoc comm id: 1] .

 vars X Y : ToyID .

 rl [pickup] : empty & clear(X) & floor(X) => hold(X) .
 rl [putdown] : hold(X) => empty & clear(X) & floor(X) .
 rl [unstack] : empty & clear(X) & on(X, Y) => hold(X) & clear(Y) .
 rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X, Y) .

endm

**
*** Chapter 3 - System Modules
*** Section 2 : Conditional Rewrite Laws

*** CONDITIONAL-RULES : illustrates the several different types of
*** conditions that work for a rewrite rule.

**

mod CONDITIONAL-RULES is

 protecting NAT .

 sort State .

 ops a b c : Nat -> State [ctor] .
 op __ : State State -> State [ctor] .

 op _-_ : Nat Nat -> Nat .

 vars X Y : Nat .

 eq X - Y = if X > Y then sd(X, Y) else 0 fi .

*** crl [equation1] : a(X) => b(X - 1) if X > 0 .
*** crl [equation2] : a(X) => b(X - 1) if X > 0 == true .
*** crl [equation3] : a(X) => b(X - 1) if X > 0 = true .
*** crl [membership1] : a(X) => b(X - 1) if X :: NzNat .
*** crl [membership2] : a(X) => b(X - 1) if X : NzNat .
 crl [patternmatch] : a(X) => b(X - 1) if s(N:Nat) := X .
 crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) .

endm

 123

**
*** Chapter 4 - Full Maude & Object-Oriented Modules
*** Section 1 : Full Maude

*** SMILE-LOOP : illustrates the use of LOOP-MODE in a simple
*** input/output example

**

mod SMILE-LOOP is

 inc LOOP-MODE .

 subsort QidList < State .

 op startsmiling : -> System .
 op none : -> State .

 eq startsmiling = [nil, none, nil] .

 var S : State . vars I O : QidList .

 rl [smile] : ['smile I, S, O] => [I, S, O ' ': '- '`)] .
 rl [wink] : ['wink I, S, O] => [I, S, O ' '; '- '`)] .
 rl [gawp] : ['gawp I, S, O] => [I, S, O ' '8 '- '0] .
 rl [elvis] : ['elvis I, S, O] => [I, S, O ' '? 'B '- '`)] .

endm

**
*** Chapter 4 - Full Maude & Object-Oriented Modules
*** Section 1 : Full Maude

*** MOOD-LOOP : a more complex version of the smile loop, which
*** makes use of the State argument of the i/o constructor.

**

mod MOOD-LOOP is

 inc LOOP-MODE .

 sort Mood .

 op <_;_> : Mood Mood -> State [ctor] .
 op init : -> System .

 ops happy shocked playful : -> Mood .
 op # : -> Mood .

 eq init = [nil, < # ; # >, nil] .

 vars I O : QidList . var S : State .

 124

 rl [in-smile] : ['smile I, S, O] => [I, < happy ; # >, O] .
 rl [in-gape] : ['gape I, S, O] => [I, < shocked ; # >, O] .
 rl [in-wink] : ['wink I, S, O] => [I, < playful ; # >, O] .

 rl [out-smile] : [I, < # ; happy >, O] => [I, < # ; # >, O ' ': '- '`)] .
 rl [out-gape] : [I, < # ; shocked >, O] => [I, < # ; # >, O ' '8 '- '0] .
 rl [out-wink] : [I, < # ; playful >, O] => [I, < # ; # >, O ' '; '- '`)] .

 rl [wow!] : < happy ; # > => < # ; shocked > .
 rl [hehe] : < happy ; # > => < # ; playful > .
 rl [hey!] : < playful ; # > => < # ; shocked > .

endm

**
*** Chapter 4 - Full Maude & Object-Oriented Modules
*** Section 5 : Rewrite Laws in Object-Oriented Modules

*** RESTAURANT : illustrates the basics of messages and rewriting

**

(omod RESTAURANT is

 protecting NAT .

 class TABLE | occupied : Bool , chairs : Nat .
 class OutDoorTABLE | next2heater : Bool .
 subclass OutDoorTABLE < TABLE .

 ops One Two Three : -> Oid .

 msgs sit@ heaterswitch : Oid -> Msg .
 msgs _borrowchairfrom_ changetables : Oid Oid -> Msg .

 vars A B : Oid . vars M N : Nat .

 rl [sit] : sit@(A) < A : TABLE | occupied : false >
 => < A : TABLE | occupied : true > .

 rl [switchoff] : heaterswitch(A) < A : OutDoorTABLE | next2heater : true >
 => < A : OutDoorTABLE | next2heater : false > .

 rl [switchon] : heaterswitch(A) < A : OutDoorTABLE | next2heater : false >
 => < A : OutDoorTABLE | next2heater : true > .

 rl [move] : changetables(A, B) < A : TABLE | occupied : true >
 < B : TABLE | occupied : false >
 => < A : TABLE | occupied : false >
 < B : TABLE | occupied : true > .

 rl [takechair] : (A borrowchairfrom B) < A : TABLE | chairs : M >
 < B : TABLE | chairs : s N >

 125

 => < A : TABLE | chairs : s M >
 < B : TABLE | chairs : N > .

endom)

*** Chapter 4 - Full-Maude & Object-Oriented Modules
*** Section 5 - Rewrite Laws in Object-Oriented Modules

*** TILE-PUZZLE : illustrates some of the power of object-oriented
*** programming

(omod TILE-PUZZLE is

 sorts Num Value Coord .
 subsort Num < Value .

 ops One Two Three Four Five Six Seven Eight : -> Num .
 op empty : -> Value .

 ops 0 1 2 : -> Coord .

 ops s_ p_ : Coord -> Coord .

 op `(_`,_`) : Coord Coord -> Oid [ctor] .

 eq s 0 = 1 .
 eq s 1 = 2 .
 eq p 1 = 0 .
 eq p 2 = 1 .

 class TILE | val : Value .

 msg move : Oid Oid -> Msg .

 vars R1 R2 C1 C2 : Coord . var V : Num .

 crl [goleft] : move((R1, C1), (R1, C2))
 < (R1, C1) : TILE | val : V >
 < (R1, C2) : TILE | val : empty >
 => < (R1, C2) : TILE | val : V >
 < (R1, C1) : TILE | val : empty >
 if C2 == p C1 .

 crl [goright] : move((R1, C1), (R1, C2))
 < (R1, C1) : TILE | val : V >
 < (R1, C2) : TILE | val : empty >
 => < (R1, C1) : TILE | val : empty >
 < (R1, C2) : TILE | val : V >
 if C2 == s C1 .

 crl [goup] : move((R1, C1), (R2, C1))

 126

 < (R1, C1) : TILE | val : V >
 < (R2, C1) : TILE | val : empty >
 => < (R2, C1) : TILE | val : V >
 < (R1, C1) : TILE | val : empty >
 if R2 == p R1 .

 crl [godown] : move((R1, C1), (R2, C1))
 < (R1, C1) : TILE | val : V >
 < (R2, C1) : TILE | val : empty >
 => < (R2, C1) : TILE | val : V >
 < (R1, C1) : TILE | val : empty >
 if R2 == s C1 .

endom)

**
*** Chapter 5 - Parameterization

*** GRAPH etc. : the complete parameterization system
*** for the Graph example. This is the example in the
*** tutorial, and also a more complex example involving
*** a search function.

**

(fth GRAPH is

 sorts Node Edge .

 ops node1 node2 : Edge -> Node .

endfth)

(fmod NETWORK-SIMPLE(X :: GRAPH) is

 sorts NodeSet(X) EdgeSet(X) Network .
 subsort X@Node < NodeSet(X) .
 subsort X@Edge < EdgeSet(X) .

 op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] .
 op __ : NodeSet(X) NodeSet(X) -> NodeSet(X) [ctor comm assoc id: nnil] .
 op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X) [ctor comm assoc id: nil] .
 op nnil : -> NodeSet(X) [ctor] .
 op nil : -> EdgeSet(X) [ctor] .

 op _in_ : X@Node NodeSet(X) -> Bool .
 op _in_ : X@Edge EdgeSet(X) -> Bool .

 op search : Network X@Node X@Node -> X@Edge .

 vars N N' : X@Node . var NS : NodeSet(X) .
 vars E E' : X@Edge . var ES : EdgeSet(X) .

 eq N in (N' NS) = N == N' or N in NS .
 eq N in nnil = false .

 127

 eq E in (E' ES) = E == E' or E in ES .
 eq E in nil = false .

endfm)

(fmod NETWORK-SEARCH(X :: GRAPH) is

 sorts NodeSet(X) EdgeSet(X) Pathway(X) PathSet Network .
 subsort X@Node < NodeSet(X) .
 subsort X@Edge < EdgeSet(X) .
 subsorts X@Edge < Pathway(X) < PathSet .

 op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] .
 op __ : NodeSet(X) NodeSet(X) -> NodeSet(X) [ctor assoc comm id: nnil] .
 op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X) [ctor assoc comm id: nil] .
 op _:::_ : PathSet PathSet -> PathSet [ctor assoc comm id: null prec 21] .
 op _;_ : Pathway(X) Pathway(X) -> Pathway(X) [ctor assoc id: none prec 41]
.
 op nnil : -> NodeSet(X) [ctor] .
 op nil : -> EdgeSet(X) [ctor] .
 op none : -> Pathway(X) [ctor] .
 op null : -> X@Edge [ctor] .

 op _in_ : X@Node NodeSet(X) -> Bool .

 op search : Network X@Node X@Node -> Pathway(X) .

 var NS : NodeSet(X) . vars A B : X@Node .
 var ES : EdgeSet(X) . var E : X@Edge . var P : Pathway(X) .

 eq P ::: none = P .

 eq P ; E ; null = P ; null .
 eq null ; E ; P = null ; P .

 eq A in B NS = A == B or A in NS .
 eq A in nnil = false .

 eq search(NS net E ES, A, B) = if A in NS and B in NS then
 if node2(E) == B then if node1(E) == A then E else
 search(NS net ES, A, node1(E)) ; E
 fi
 else
 search(NS net ES, A, B) :::
 if node1(E) == A
 then E ; search(NS net ES, node2(E), B)
 else none
 fi
 fi
 else none fi .

 ceq search(NS net nil, A, B) = null if A =/= B .

endfm)

 128

(fmod GREEK-GRAPH is

 protecting NAT .

 sort Letter .

 ops alpha beta gamma delta epsilon lambda theta phi : -> Letter .

 op source : Nat -> Letter .
 op target : Nat -> Letter .

 eq source(1) = epsilon . eq target(1) = lambda .
 eq source(2) = beta . eq target(2) = alpha .
 eq source(3) = alpha . eq target(3) = gamma .
 eq source(4) = alpha . eq target(4) = delta .
 eq source(5) = delta . eq target(5) = epsilon .
 eq source(6) = theta . eq target(6) = phi .
 eq source(7) = phi . eq target(7) = theta .

endfm)

(view Graph-Greek from GRAPH to GREEK-GRAPH is

 sort Node to Letter .
 sort Edge to Nat .

 op node1 to source .
 op node2 to target .

endv)

**
*** Chapter 5 - Parameterization

*** PAIRS and STACK : an example of multiple parameters, parameterized
*** views, and parameterized theories, using our Pair sort and our
*** Deck of Cards examples.

**

(fth OELT is

 sort Elt .

 op _>=_ : Elt Elt -> Bool .

endfth)

(fmod OPAIRLIST(X :: OELT | Y :: TRIV) is

 sorts Pair(X | Y) OPairList .
 subsort Pair(X | Y) < OPairList .

 129

 op _~_ : X@Elt Y@Elt -> Pair(X | Y) [ctor] .
 op _;_ : OPairList OPairList -> OPairList [ctor assoc id: nil] .
 op nil : -> OPairList [ctor] .

 op top : OPairList -> Pair(X | Y) .
 op add : Pair(X | Y) OPairList -> OPairList .

 vars A1 A2 : Y@Elt . vars E1 E2 : X@Elt . var O : OPairList .

 eq top((E1 ~ A1) ; O) = E1 ~ A1 .

 eq add((E1 ~ A1), (E2 ~ A2) ; O) = if E1 >= E2
 then (E2 ~ A2) ; add((E1 ~ A1) , O)
 else (E1 ~ A1) ; (E2 ~ A2) ; O
 fi .
 eq add((E1 ~ A1), nil) = E1 ~ A1 .

endfm)

(view Triv-String from TRIV to STRING is

 sort Elt to String .

endv)

(view OElt-Nat from OELT to NAT is

 sort Elt to Nat .
 op _>=_ to _>=_ .

endv)

(fmod DECK-COLOR is

 sort Color . ops red blue : -> Color .
 op _>=_ : Color Color -> Bool .

 eq red >= blue = true .
 eq blue >= red = false .
 eq red >= red = true .
 eq blue >= blue = true .

endfm)

(view OElt-Color from OELT to DECK-COLOR is

 sort Elt to Color .
 op _>=_ to _>=_ .

endv)

 130

(fmod STACK(X :: TRIV) is

 sort Stack(X) .
 subsort X@Elt < Stack(X) .

 op _;_ : Stack(X) Stack(X) -> Stack(X) [ctor assoc id: end] .
 op end : -> Stack(X) [ctor] .

 op top : Stack(X) -> X@Elt .
 op pop : Stack(X) -> Stack(X) .
 op push : X@Elt Stack(X) -> Stack(X) .

 var E : X@Elt . var S : Stack(X) .

 eq top(E ; S) = E .
 eq pop(E ; S) = S .
 eq push(E, S) = E ; S .

endfm)

(view Triv-Stack(X :: TRIV) from TRIV to STACK(X) is

 sort Elt to Stack(X) . endv)

*** Chapter 5 - Parameterization
*** Section 5 : Parameterized Views and Theories

*** FMAP : another example of parameterized views and theories

**

(fth FUNCTION(X :: TRIV | Y :: TRIV) is

 op f : X@Elt -> Y@Elt .

endfth)

(fmod FMAP(F :: FUNCTION(X :: TRIV | Y :: TRIV)) is

 sorts IndSet(X) DepSet(Y) .
 subsort X@Elt < IndSet(X) .
 subsort Y@Elt < DepSet(Y) .

 op __ : IndSet(X) IndSet(X) -> IndSet(X) [ctor assoc comm id: ind-null] .
 op _;_ : DepSet(Y) DepSet(Y) -> DepSet(Y) [ctor assoc comm id: dep-null] .
 op ind-null : -> IndSet(X) [ctor] .
 op dep-null : -> DepSet(Y) [ctor] .

 op fmap : IndSet(X) -> DepSet(Y) .

 var N : X@Elt . var NS : IndSet(X) .

 131

 eq fmap(N NS) = f(N) ; fmap(NS) .
 eq fmap(ind-null) = dep-null .

endfm)

(fmod NEGATIVE is

 pr NAT . pr INT .

 op _timesneg1 : Nat -> Int .

 var N : Nat .

 eq N timesneg1 = - N .

endfm)

(view Triv-Nat from TRIV to NAT is sort Elt to Nat . endv)

(view Triv-Int from TRIV to INT is sort Elt to Int . endv)

(view Fun-Neg(X :: TRIV | Y :: TRIV) from FUNCTION(X | Y) to NEGATIVE is

 op f to _timesneg1 .

endv)

(red in FMAP(Fun-Neg(Triv-Nat | Triv-Int)) : fmap(5 9 11 2 0) .)

*** Chapter 6 - Metaprogramming
*** Section 6 : Internal Strategies

*** REWRITE-EXCEPT : a quick and easy internal strategy which makes use
*** of the META-LEVEL descent functions.

fmod REWRITE-EXCEPT is

 pr META-LEVEL .

 op name : Rule -> Qid .
 op rmv : RuleSet Qid -> RuleSet .
 op rewriteExcept : Module Term Qid Nat -> ResultPair .

 vars L Q : Qid . var I : ImportList .
 var S : SortSet . var SS : SubsortDeclSet .
 var O : OpDeclSet . var M : MembAxSet . var E : EquationSet .
 var RS : RuleSet . var R : Rule . vars T1 T2 : Term .
 var N : Nat .

 132

 eq name(rl T1 => T2 [label(Q) A:AttrSet] .) = Q .
 eq name(crl T1 => T2 if C:Condition [label(Q) A:AttrSet] .) = Q .

 eq rmv(R RS, L) = if name(R) == L then RS else R rmv(RS, L) fi .
 eq rmv(none, L) = none .

 eq rewriteExcept(mod Q is I sorts S . SS O M E RS endm, T1, L, N) =
 metaRewrite(mod Q is I sorts S . SS O M E rmv(RS, L) endm, T1, N) .

endfm

*** Chapter 6 - Metaprogramming
*** Section 6 - Internal Strategies

*** SANS : an elaboration of the rewriteExcept strategy

fmod SANS is

 pr META-LEVEL .

 op sans : Module QidList -> Module .
 op rmvM : MembAxSet Qid -> MembAxSet .
 op rmvE : EquationSet Qid -> EquationSet .
 op rmvR : RuleSet Qid -> RuleSet .

 vars N Q : Qid . var QL : QidList .
 var I : ImportList .
 var S : SortSet . var SS : SubsortDeclSet .
 var O : OpDeclSet . var T1 T2 : Term .
 var M : MembAx . var MS : MembAxSet . var X : Sort .
 var E : Equation . var ES : EquationSet . var A : AttrSet .
 var R : Rule . var RS : RuleSet . var C : Condition .

 eq sans(mod N is I sorts S . SS O MS ES RS endm, Q QL) =
 sans(mod N is I sorts S . SS O rmvM(MS, Q)

 rmvE(ES, Q)
 rmvR(RS, Q) endm, QL) .

 eq rmvM(mb T1 : X [label(Q) A] . MS, Q) = MS .
 eq rmvM(cmb T1 : X if C [label(Q) A] . MS, Q) = MS .
 eq rmvM(M MS, Q) = M rmvM(MS, Q) [owise] .
 eq rmvM(none, Q) = none .

 eq rmvE(eq T1 = T2 [label(Q) A] . ES, Q) = ES .
 eq rmvE(ceq T1 = T2 if C [label(Q) A] . ES, Q) = ES .
 eq rmvE(E ES, Q) = E rmvE(ES, Q) [owise] .
 eq rmvE(none, Q) = none .

 eq rmvR(rl T1 => T2 [label(Q) A] . RS, Q) = RS .
 eq rmvR(crl T1 => T2 if C [label(Q) A] . RS, Q) = RS .

 133

 eq rmvR(R RS, Q) = R rmvR(RS, Q) [owise] .
 eq rmvR(none, Q) = none .

endfm

**
*** Chapter 6 - Metaprogramming
*** Section 6 : Internal Strategies

*** CIGARETTE-TEST : the Grand Finale of Maude examples, implementing
*** an internal strategy in an optimization problem based on our
*** Chapter 3 cigarettes example.

**

mod CIGARETTES-3 is

 pr NAT .

 sorts Brand State .

 ops DROMEDARY OLDPORT SCARBOROUGH-MAN MISSOURI-FATS : -> Brand .
 ops c b : Brand Nat -> State [ctor] .
 op 1 : -> State [ctor] .
 op fail : -> Brand .
 op __ : State State -> State [ctor assoc comm id: 1] .

 op price : Brand -> Nat .

 vars V X W Y Z : Nat .
 var B : Brand .

 eq price(DROMEDARY) = 312 .
 eq price(OLDPORT) = 312 .
 eq price(SCARBOROUGH-MAN) = 364 .
 eq price(MISSOURI-FATS) = 418 .

 eq price(fail) = 0 .

 rl [smoke] : c(B, X) => b(B, X + 1) .

 rl [makenew] : b(DROMEDARY, V)
 b(DROMEDARY, W)
 b(DROMEDARY, X)
 b(DROMEDARY, Y)
 b(DROMEDARY, Z) => c(DROMEDARY, V + W + X + Y + Z) .
 rl [makenew] : b(OLDPORT, W)
 b(OLDPORT, X)
 b(OLDPORT, Y)
 b(OLDPORT, Z) => c(OLDPORT, W + X + Y + Z) .
 rl [makenew] : b(SCARBOROUGH-MAN, X)
 b(SCARBOROUGH-MAN, Y)
 b(SCARBOROUGH-MAN, Z) => c(SCARBOROUGH-MAN, X + Y + Z) .

 134

 rl [makenew] : b(MISSOURI-FATS, Y)
 b(MISSOURI-FATS, Z) => c(MISSOURI-FATS, Y + Z) .

endm

mod CIGARETTE-VENDING-MACHINE is

 protecting CIGARETTES-3 .

 sort BrandSet .
 subsort Brand < BrandSet .

 op vendor : BrandSet -> State .
 op _&_ : BrandSet BrandSet -> BrandSet [ctor assoc comm id: null] .
 op null : -> BrandSet [ctor] .

 var B : Brand .
 var BS : BrandSet .

 rl [buypack] : vendor(B & BS) =>
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) .

endm

fmod CIGARETTE-TEST is

 pr META-LEVEL .
 pr CIGARETTE-VENDING-MACHINE .

 sorts CigTotal CigTotalSet .
 subsort CigTotal < CigTotalSet .

 op ct : Term Term -> CigTotal [ctor] .
 op __ : CigTotalSet CigTotalSet -> CigTotalSet [ctor assoc comm id: none]
.
 op none : -> CigTotalSet [ctor] .

 op goTest! : -> CigTotalSet .
 op cigApply : Nat -> ResultTriple .
 op cigTest : Nat -> CigTotalSet .

 op total : ResultTriple -> CigTotal .
 op getbrand : Substitution -> Term .
 op getnum : ResultPair -> Term .
 op extract : ResultPair -> Term .

 var TL : TermList .
 var T : Term . var Y : Type . var SB : Substitution .
 vars Q1 Q2 : Term . var M : Module . var N : Nat .

 eq goTest! = cigTest(0) .

 135

 eq cigApply(N) = metaApply(['CIGARETTE-VENDING-MACHINE],
 'vendor['_&_['DROMEDARY.Brand, '_&_['OLDPORT.Brand,
 '_&_['SCARBOROUGH-MAN.Brand, 'MISSOURI-FATS.Brand]]]],
 'buypack, none, N) .

 eq cigTest(N) = if cigApply(N) == (failure).ResultTriple?
 then none
 else total(cigApply(N)) cigTest(N + 1)
 fi .

 eq total({T, Y, SB}) = ct(getbrand(SB),
 extract(metaReduce(['CIGARETTES-3],
 '_quo_['price[getbrand(SB)], getnum(
 metaRewrite(['CIGARETTES-3], T, 1000)
)
])
)
) .

 eq getbrand(Q1 <- Q2 ; SB) = if Q1 == 'B:Brand then Q2
 else getbrand(SB) fi .
 eq getbrand(none) = 'fail.Brand .

 eq getnum({ '__['b[Q1, Q2] , TL] , Y }) = '_+_[Q2, getnum({TL, Y})] .
 eq getnum({ '__['b[Q1, Q2] , T] , Y }) = '_+_[Q2, getnum({T, Y})] .
 eq getnum({ ('b[Q1, Q2] , TL) , Y }) = '_+_[Q2, getnum({TL, Y})] .
 eq getnum({ 'b[Q1, Q2] , Y }) = Q2 .

 eq extract({ T , Y }) = T .

 eq ct('fail.Brand, T) = none .

endfm

 136

	Introduction
	1. FOUNDATION
	1.1 Modules
	1.2 Sorts and Variables
	1.3 Operations
	1.4 Constructors and Operator Attributes
	1.5 Kinds
	1.6 Common Supplied Modules: NAT, QID, and STRING
	EXERCISES FOR CHAPTER 1

	2. FUNCTIONAL MODULES
	2.1 Equations
	2.2 Conditional Equations
	2.3 The Maude Environment
	2.4 Membership Axioms
	2.5 Operator and Statement Attributes
	2.6 Expanding on Chapter One
	EXERCISES FOR CHAPTER 2

	3. SYSTEM MODULES
	3.1 Rewrite Laws
	3.2 The Toy Crane Example
	3.3 Rewriting in the Maude Environment
	3.4 Conditional Rewrite Laws
	3.5 Rewrite Laws and Equations
	EXERCISES FOR CHAPTER 3

	4. FULL MAUDE & OBJECT-ORIENTED MODULES
	4.1 Full Maude
	4.2 Introduction to Object Oriented Ideology
	4.3 Objects in Maude
	4.4 Messages
	4.5 Rewrite Laws in Object-Oriented Modules
	EXERCISES FOR CHAPTER 4

	5. PARAMETERIZATION
	5.1 Ideology
	5.2 Syntax of Parameterization
	5.2.1 : The Theory
	5.2.2 : The Parameterized Module
	5.2.3 : The Parameter(s)
	5.2.4 : Views

	5.3 Multiple Parameters
	5.4 Parameterized Views and Theories
	EXERCISES FOR CHAPTER 5

	6. META-PROGRAMMING
	6.1 Ideology
	6.2 The Syntax of the Meta-level
	6.3 The Descent Functions of the META-LEVEL Module
	6.4 The Cosmetic Functions of Metaprogramming
	6.5 The metaApply/metaXapply Descent Function
	6.6 Internal Strategies
	EXERCISES FOR CHAPTER 6

	ANSWERS TO CHAPTER EXERCISES
	ANSWERS TO CHAPTER 1 EXERCISES
	ANSWERS TO CHAPTER 2 EXERCISES
	ANSWERS TO CHAPTER 3 EXERCISES
	ANSWERS TO CHAPTER 4 EXERCISES
	ANSWERS TO CHAPTER 5 EXERCISES
	ANSWERS TO CHAPTER 6 EXERCISES

	Appendix : Examples

