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Overview

• Maude is a language based on rewriting logic.

• Type system is based on membership equation logic.

• Equations are assumed to be confluent and terminating; used for

conventional algebraic specification & functional programming.

• Rewrite rules are assume to be coherent w.r.t. equations (Viry);

used to express inference & state change.

• Maude modules themselves form an algebraic data type -

metaprogramming; extension via reflection .

• Can be used as a semantic framework to specify & prototype

other languages and as a logical framework to represent &

mechanize other logics.

• Maude 2.0 is the latest incarnation.
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New Term Representation

• Supports AC, ACU, A, AU.

• Based on persistent data structures.

• Reduces the computational complexity of E-rewriting for large

subjects and simple patterns.

fmod REV-LIST is

sort List Elt . subsort Elt < List .

op nil : -> List .

op __ : List List -> List [assoc id: nil] .

ops a b c d e : -> Elt .

vars E E2 : Elt . var L : List .
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New Term Representation (2)
op rev : List -> List .

eq rev(nil) = nil .

eq rev(E L) = rev(L) E .

op rev2 : List -> List .

eq rev2(nil) = nil .

eq rev2(E) = E .

eq rev2(E L E2) = E2 rev2(L) E .

op rev3 : List -> List .

eq rev3(nil) = nil .

eq rev3(L E) = E rev3(L) .

endfm

• All three naive list reversal algorithms run in linear time!
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Conditions

• Rather than a single equality, conditions now allow a list of

condition fragments, separated by /\.

• 4 types of fragments; last type is for rule conditions only:

〈term〉 = 〈term〉 equality test

〈term〉 : 〈sort〉 sort test

〈pattern〉 := 〈term〉 assignment by matching

〈term〉 => 〈pattern〉 rewrite proof search

• Patterns may have unbound variables that are bound by matching;

regular terms are reduced upto strategy.

• Failure of a fragment causes backtracking.

5



Iter Attribute

• Allows efficient storage, i/o and sort computations for huge towers

of unary operator symbols.

• Main application is the efficient implementation of natural

numbers using the successor notation.

fmod ITER-TEST is

sorts Even Odd Nat .

subsorts Even Odd < Nat .

op 0 : -> Even .

op s_ : Even -> Odd [iter] .

op s_ : Odd -> Even [iter] .

endfm

red s_^123456789(0) .

red s_^1234567890(0) .
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Natural Numbers

• Nats are constructed using successor operator and the iter

attribute.

fmod NAT is

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat

[ctor iter special (...)] .

...

endfm

• Decimal i/o by default.

• Built-in operators very efficient (use GNU GMP).

• Gcd, lcm, mod exp, bitwise ops.
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Natural Numbers (continued)
red in NAT : gcd(18, gcd(X:Nat, 12)) .

fmod COMBINATORIAL is protecting NAT .

op _! : Nat -> NzNat .

op C : Nat Nat -> Nat .

vars N M : Nat .

eq 0 ! = s 0 .

eq (s N) ! = s N * N ! .

eq C(N, M) = N ! quo (M ! * sd(N, M) !) .

endfm

red 1000 ! .

red C(1000, 100) .
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Other Built-ins

• Integers (constructed from Nats).

subsorts NzNat < NzInt Nat < Int .

op -_ : NzNat -> NzInt [...] .

• Rationals (constructed from Ints and Nats).

subsorts NzInt < NzRat Int < Rat .

op _/_ : NzInt NzNat -> NzRat [...] .

• IEEE Floating Point Numbers.

• Strings (using SGI Rope package).

• Comprehensive set of conversion functions.
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LTL Model Checker

• Linear Temporal Logic manipulations (simplifications and negative

normal form) are done by Maude code.

• The satisfaction of (possibly parameterized) propositions are

defined in Maude.

• On-the-fly model checking is done by a built-in operation

op modelCheck : State Formula ~> ModelCheckResult

[special (...)] .

• Implementation uses state-of-the-art Buchi automaton

construction algorithm and standard double depth first search of

the synchronous product for a counterexample.

• LTL Satisfiability solving and tautology checking also provided.

10



New Meta Level

• Simpler metaterm representation:

1.0 + X:Float

is meta-represented as

’_+_[’1.0.FiniteFloat, ’X:Float]

• Many more descent functions such as metaXapply() (with

contexts) and metaSearch().

• Descent functions return sorts of terms.

• Ascent functions to inspect modules in database.

• Much more sophisticated caching at module and operator level.
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Term Coloring

• Color (possibly intermediate) results based on reduced flag and

constructor status to flag problems.

set print color on .

reduced, ctor not colored

reduced, non-ctor, colored below blue

reduced, non-ctor, no colored below red

unreduced, no reduced above green

unreduced, reduced directly above magenta

unreduced, reduced not directly above cyan

• Red and magenta denote likely origin of problem, blue and cyan

denote secondary damage.
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Format Attribute

• Allows control of white-space, color and style for pretty-printing

operators.

• Format words are given for each white-space position.

s space r red R background red

t tab g green G background green

+ increment indent counter b blue B background blue

- decrement indent counter y yellow Y background yellow

i indent by indent counter m magenta M background magenta

n new line c cyan C background cyan

f flash w white W background white

h hidden p black P background black

d default spacing u underline x reverse video

o original style ! bright ? dim
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Format Attribute (2)
op while _ do _ od : Bool Statement -> Statement .

^ ^ ^ ^ ^ ^

op let _ := _ : Variable Expression -> Statement .

^ ^ ^ ^ ^

op while _ do _ od : Bool Statement -> Statement

[format (nir! o r! o++ --nir! o)] .

op let _ := _ : Variable Expression -> Statement

[format (nir! o d d d)] .
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Other New Features

• Profiling.

• Break points (on symbols or labeled statements).

• Rewrite search, dump of rewrite graph.

• Kind level declarations & on-the-fly variable declarations.

• Command line editing (Tecla).

• Frozen attribute.

• Position fair & object-message rewriting.

• Statement attributes: owise, label, nonexec, metadata.

• Optimizations: left-to-right sharing, order sorted discrimination

nets, substitution slot coloring.

• More powerful module operations in Full Maude.
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Availability

Runs under Unix (all flavors).

Licensed under GNU GPL.

Source tree, manual, examples and binaries for selected architectures

available from the new Maude website:

http://maude.cs.uiuc.edu/
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