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Abstract

This paper presents a rule-based algorithm for performing order-sorted E-unification using an unsorted
E-unification decision procedure under assumptions about E that are commonly satisfied in practice. We
have implemented this algorithm in Maude for use with the Maude-NRL protocol analyzer and have used
CiME for unsorted E-unification for E any set of AC and ACU axioms. In many examples of interest, using
order-sorted unification over unsorted unification is able to reduce the total number of unifiers considered,
and dramatically improve the performance of the Maude-NRL tool.
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1 Introduction

Unification is a fundamental operation in many applications. For example, in solv-
ing reachability problems using narrowing, the unification procedure is called many
times to unify terms representing reachable states against the left-hand sides of
rewrite rules. This process is computationally expensive and often generates a large
number of different terms — many of which may represent states that do not corre-
spond to legal states. In order to avoid this problem tools such as the Maude-NRL
protocol analyzer [4,5] use order-sorted algebras and rely on the sorts to only con-
sider well-formed terms.

We present an algorithm which can use a procedure for unsorted E-unification to
perform order-sorted E-unification under conditions general enough to cover many
practical applications. This algorithm solves a key challenge faced by the Maude-
NRL protocol analyzer — most existing unification tools only support unsorted
unification and ignore the sort information. Since equational unification procedures
are often quite complex, it requires significantly less work to use an existing unifica-
tion tool rather that writing an order-sorted equational unification procedure from
scratch.
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The order-sorted unification algorithm we present in this work can be natu-
rally described by a terminating and confluent set of rewrite rules which compute
order-sorted unifiers 6, ..., 6, for each unsorted unifier 6 returned by the unsorted
unification procedure. We have implemented the algorithm in Maude, and have used
CiME as the unsorted equational unification procedure. Our experimental results
so far have shown that, although technically there may be many order-sorted uni-
fiers for each unsorted unifier, this is rarely the case in practice. In fact, in practice
there are usually fewer order-sorted unifiers than unsorted unifiers, and the use of
order-sorted unification is essential for both correctness and performance, that is,
so that the terms explored are always well-formed terms, and to ensure that the
Maude-NRL analyzer is capable of handling real problems.

Our idea is not new, and was presented in [11] and more recently without a proof
of correctness in [4]. However, after implementing these ideas in the Maude-NRL
protocol analyzer, we felt that a new paper presenting the basic ideas was in order
for several reasons:

¢ Our experience with the Maude-NRL protocol analyzer so far has suggested that
for theories with AC operators, for practical protocol verification tools based on
narrowing it is essential to use the sort information during unification. However,
most existing unification procedures only perform unsorted F-unification and do
not support sorts and subsorts. By using the techniques described in this work,
one can obtain an order-sorted F-unification procedure from an unsorted one with
very little effort for many equational theories.

e The algorithm in [11] was buried in a function’s definition appearing in the proof
of Theorem 34 in [11]. In this paper, we present a simple rule-based algorithm
which is almost directly implementable in Maude. The algorithm only consists
of three confluent and terminating rewrite rules, and it should be easily possible
to compose these rules with inference steps in a modular way in other reasoning
tools using unification.

¢ Perhaps most important from a technical perspective, the correctness results
in [11] imposed unnecessarily strong technical conditions which excluded the ma-
jority of E-unification problems when E contains collapsing equations like idem-
potence x + r = x and identity x + 0 = x. As identity was important for the
Maude-NRL protocol analyzer and idempotence is a common axiom in many F-
unification algorithms, in this paper we prove the correctness results under weaker
assumptions about the equational theory and some technical assumptions about
the unification engine. The assumptions about the unification engine should be
satisfied in practice. Additionally, we show specifically how the algorithm can be
used in Maude for equational theories with any combination of free, commutative,

AC, and ACU symbols.

This paper is organized as follows. In Section 2, we review basic definitions
of order-sorted algebra and unification. In Section 3, we present our algorithm to
compute order-sorted unifiers from unsorted unifiers. In Section 4, we illustrate how
it can be used for AC and ACU order-sorted unification in Maude and, in Section 5
we prove its correctness. Finally, in Section 6, we discuss related work and suggest
directions for future research.
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2 Preliminaries

2.1 Order Sorted Algebra

An order-sorted signature ¥ = (S, F, <) consists of a set of sorts S, a family of
operators F' = { Fy s }(w,s)es+ x5, and a partial order <C S x S called the subsort
ordering. We let X = { X, }scs denote a fixed S-sorted family of infinite sets of
variables that are both pairwise disjoint for different sorts, i.e., X; N Xy = & for
distinct s, s’ € S, and disjoint from the operators F'. As a notational convenience, we
write z to denote that x € X when the variables X are clear from the context. The
Y-terms with variables X are members of the family 7T5(X) = { Tx(X)s }scs, where
T s(X) denotes the Y-terms with any sort s’ < s. An order-sorted theory € = (X, E)
consists of an order-sorted signature ¥ and a finite set E of equations [ = r where
l,r € Ty 4(X) for some sort s € S. An order-sorted substitution is a function
0:Y — Tx(X) with Y a finite subset of X, and for each variable x5 € Y, x40 €
T5(X)s. We let rvars(6) denote the variables occurring in a terms in the codomain
of 0, ie., rvars(0) = (J,cy vars(zf). Given substitutions 61,6 : ¥ — Tx(X), we
write 01 =g 05 if 0, =g 205 for all x € Y, and we write 87 >¢ 05 if there is a
substitution v : rvars(6;) — Tx(X) such that 619 =g #2. For an equational theory
E = (3, E), we define the relation =¢C Tx(X) x Tx(X) as the least equivalence
relation defined by the logical equivalence t =¢ t' < &+ (VX)t =t where X is
our fixed set of variables and | is the order-sorted deduction relation |7,10]. For each
order-sorted theory £ = (X, F) with ¥ = (5, F, <), there is an underlying unsorted
theory € = (X, E) over variables X = J,.g X, such that ¥ is a ranked alphabet
containing an operator f with arity n iff there is an operator f € Fy, s, s for some
SOIts s1,...,5n,s € 8. Observe that a Y-equation [ = r € E is always a YL-equation.

2.2 Order-sorted Equational Unification

For a fixed order-sorted theory & = (X, E) with ¥ = (S, F, <), we define an order-
sorted unification problem to be a finite conjunctive set I' of ¥-equations t = u where
t and u are terms in T (X) whose sorts belong to the same connected component in
(S,<). A E-unifier for I is an order-sorted substitution 6 : vars(I') — Tx(X) such
that t0 =¢ uf for each equation t = u € I'. We denote the set of £-unifiers for I'
by Ung(T'), and we let Uny(I") denote the syntactic unifiers for I, i.e., Uny(I") =
Unis g)(I'). A set S C Ung(I') of E-unifiers of T' is complete if for all unifiers
1 € Ung(I"), there is a unifier § € S such that 6 >¢ 1. A set of E-unifiers S is
most-general if for distinct substitutions 61,02 € S, 61 Z¢ 0. A given theory & has
a finitary unification problem if there is a complete finite set of £-unifiers S for each
unification problem I'.

3 Order-sorted Unification

Our main goal in this work is to develop a clear rule-based algorithm for solving
order-sorted &-unification problems using an unsorted &-unification procedure. In
order to show that the rule-based algorithm returns a complete set of most-general
unifiers, there are some technical requirements placed on the order-sorted theory
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£ as well as on the most-general unifiers U returned by the unsorted £-unification
procedure. The basic techniques behind our algorithm were described in [11]. How-
ever the correctness shown in [11] imposed conditions that are too strong when the
theory £ contains collapsing equations like identity or idempotence axioms.

Our approach to find suitable requirements is then to relax the requirements on
£ while making requirements on the unsorted unification procedure in relation to
the theory £. At first this appears to be less general than the approach in [11], since
that work did not make any assumption about the unsorted unification procedure.
However, as we will discuss later, the theories we are interested in are such that every
practical unification procedure will satisfy the requirements. Most importantly for
our work, this includes theories with identity axioms.

In this section, we assume the following conditions on the order-sorted theory
& = (%, E) and the unsorted unification procedure for &.

(i) X is preregular [7], that is every term t € T (X) has a least sort 1s(t) € S.

(ii) & is sort-independent which means that for all order-sorted terms ¢, u € Tx(X),

t=zu=1t=¢ u.

(iii) For each unification problem T', the unsorted unification procedure generates
a complete finite set of most-general unifiers U which is sort preserving, which
means that for each order-sorted umifier ¢ € Ung(I'), there is an unsorted
unifier §# € U and unsorted substitution ¢ : rvars(f) — Ts(X) such that: (1)
Y =z 0¢, and (2) ¢ is an order-sorted substitution.

If the equational theory £ and unsorted E-unification procedure satisfy the pre-
vious requirements, as we show below, the unsorted £-unification procedure can be
used to solve order-sorted £-unification problems. We can split the process of solving
an order-sorted unification problem I' = t; =¢ u1 A --- A t,, =¢ u, into two phases:
an unsorted unification phase and a sort propagation phase.

Unsorted Unification. First, we call the unsorted £-unification procedure on the
unsorted £-unification problem I' = t; =z u1 A -+ Nty =z u, to obtain a finite
complete set of most-general sort-preserving unifiers U for I'.

Sort Propagation. In the second phase, for each unsorted unifier § € U, we
use the membership propagation algorithm described below to generate a set of
variable renamings. In this context, a variable renaming is an injective function
p : rvars(f) — X. For each variable renaming p generated for an unsorted unifier
0 € U, our procedure returns fp as one element in the complete set of most-general
unifiers.

The membership propagation algorithm is described by a set of rules that main-
tain a disjunctive set D of membership constraints. Each membership constraint
M € D is a conjunctive formula of the form M =1t : s A+ Aty : sp, and D is a
finite set D = { My, ..., M, } of membership constraints. A membership constraint
M captures constraints for an unsorted unifier to be an formed order-sorted unifier.

For each unsorted unifier # € U, we initially generate a singleton set D(f) re-
flecting the sort constraints on the variables appearing in the original unification
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Given an initial set of membership constraints D, we freely apply the rules below to
obtain a final set of constraints D*.

Intersection {t:sl/\t:SQ/\M}—>U {t:s"M}
s € glbx(s1,52)

Propagation {ft1,...,tp) :sANM}— U {ti:s1 AN Aty :sp AM}

s1...sp€ars(f,s,n)

Subsumption {My, My} —{M;} if My > Mo
where glby(s1,52) = sup<({s€S|s<s1As<sa}),
arg(f,s,n) = supen({we S"| (I’ €8)feFyyNs <s}), and

My > My <= (Vt:seM;)(3s'€S)s <sAt:s € M.

Fig. 1. Sort Propagation Algorithm

problem T'.
DO)={ )\ ab:s}

zsevars(I')

We then apply the three rewrite rules in Fig. 1 to D(6) until termination. The Inter-
section rule exploits the preregularity assumption to simplify multiple membership
constraints ¢ : s and ¢ : so on the same term ¢. The Propagation rule simplifies
constraints on terms f(t1,...,t,) : s to the smaller terms t1,...,t,. Finally, the
Subsumption rule is used to eliminate membership constraints that are subsumed
by other more-general membership constraints. We let D* denote the unique normal
form obtained by rewriting D until completion.

Upon termination of the rules each membership constraint M € D* will have the
form zq : s1A---Amy, 1 8, where z; # x; if ¢ # 5. We call membership constraints with
this form reduced. A reduced membership constraint can be viewed as a function
sortys : rvars(f) — S that maps each variable z; € rvars(f) to the sort s; € S.
Furthermore, for each reduced membership constraint M, we let pys : rvars() — X
be a variable renaming which maps each variable z € rvars(f) to a fresh variable
xppr with sort sortys(x).

For the set of unsorted sort-preserving unifiers U C Ung(I"), we define the set
OS(U) ={0ppn |0€UNMeD(O)*}.

As an example, consider the unification problem x n,nat = YNat + ZNat OVer an order-
sorted theory £ = (F, E) where + contains the following operator declarations:

+: Nat Nat — Nat + : Nat NzNat — NzNat + : NzNat Nat — NzNat

where the declaration f:s1s2 — s means that f € Fy,, . In this case, the unsorted
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unification engine can return a single unifier
O=(x—y+z,y—y 2z 2).

However, 6 is not an order-sorted unifier, because y + z does not have sort NzNat.
We pass 0 to the sort propagation algorithm, which generates the initial set of
membership constraints

D(0) ={y+2: NzNat Ay : Nat A z : Nat }.

For this simple example, a single application of Propagation yields the membership
constraints:

D(0) ={(y: Nat A z: NzNat Ay : Nat A z : Nat),
(y: NzNat Az : Nat Ny : Nat A\ z : Nat) }.
From D(f)’, we only need to apply Intersection several times to yield the final set
of membership constraints:

D) ={(y: Nat A z : NzNat), (y : NzNat A z : Nat) }.
From D(0)*, we can extract two variables renamings. When applied to the initial
unsorted unifier 6, this yields the final complete set of order-sorted unifiers:

OS(U) = { (l‘ — UNat + UNzNats Y Y UNat, 2 > UNzNat)’
(1’ — UNzNat + UNat, Y — UNzNat, 2 — UNat) }

We prove the following result in Section 5 to show that our algorithm is correct,

Theorem Let £ = (X, E) denote an order-sorted theory satisfying requirements (i)
and (i) above, then given a wunification problem I' with a complete set of most-
general sort-preserving unsorted unifiers U, OS(U) is a complete set of most-general
order-sorted unifiers for I.

4 Order-sorted AC + ACU unification

As the requirements on £ and U seem rather technical, to give the reader a more
intuitive feel for them, we show how the requirements are satisfied by many order-
sorted equational theories specified as Maude modules having free, commutative,
AC, and ACU symbols. Essentially, each such Maude module can be viewed as an
order-sorted theory £ = (X, F) with ¥ = (5, F, <) such that:

(a) Each equivalence class [s] € S/ =< contains a maximal element k; called the
kind of s where =< denotes the equivalence relation generated by <. More-
over, for each operator declaration f € Fy, s,s, there is also a declaration

f G Fk‘sl ---ksn Jcs :
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(b) E contains axioms of the following forms:

f(f(x,y),z):f(w,f(y,z)) f(x7y):f(yam) f(c,x)::c

associativity commutativity unit

where the sorts of z,y, z are maximal sorts, that is, sorts of the form ks for
some s € S, and for each binary symbol f € F, either f does not appear in
E, or E contains commutativity (C), associativity and commutativity (AC), or
associativity, commutativity, and unit (ACU) axioms for f.

(c) X is preregular.

(d) Each axiom | = r € FE is sort-preserving, that is for each variable mapping
p: X — X, 1s(lp) = Is(rp).

The assumptions (a)—(d) are quite reasonable for order-sorted Maude specifica-
tions with free, commutative, AC, and ACU operators. Maude will automatically
introduce additional top-most sorts ks, and requires that associativity, commutativ-
ity, and unit axioms satisfy the requirements in (b). Maude does allow associative
symbols that are not commutative, however unification for such theories may be
infinitary [12] and is not considered here. The preregularity requirement is checked
automatically by Maude when the module is entered. The sort-preservation require-
ment (d) is essential as the sort-propagation algorithm described in the previous
section operates syntactically on terms, and disregards the possibility that applying
an equation may change the sort of a term. It is guaranteed by a three-pronged
approach:

e For each associativity axiom f(f(z,v),2) = f(x, f(y, z)), Maude checks that it is
sort preserving by considering possible variable mappings.

¢ For each commutativity axiom f(x,y) = f(y, z) and each declaration f : s159 — s,
Maude completes the theory by adding a declaration f : s9 57 — s.

e For each pair of identity axioms f(x,¢) = z and f(c,z) = x, our unification
procedure completes the theory by introducing a fresh sort s, together with: (1)
an operator declaration ¢ : — s¢, (2) a subsort declaration s, < Is(t); and (3) for
each sort s € [Is(t)], operator declarations f:ss. — s and f:s.s — s.

We now focus on the relationship between the assumptions (a)—(d) and the earlier
requirements (i)—(iii). The first preregularity requirement follows from the prereg-
ularity assumption. The sort-independence requirements follows form the assump-
tions (a) and (b).

Theorem 4.1 If £ = (X, E) is an order-sorted theory satisfying assumptions (a)
and (b) above, then & is sort-independent.

Proof. Showing that £ is sort-independent requires showing that for all t,u €
Tx(X), t =z u implies t =¢ u.

We first partition E into disjoint sets £ = RW A, where A, contains the associa-
tivity and commutativity equations in E and the identity equations f(c,z) = x
in E are interpreted as rules f(c,z) — z in R. It is not difficult to see that
the rules R modulo A, are terminating and confluent, and therefore ¢t =z w iff
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tlr/a, =a, Wra,
As A only contains associativity and commutativity axioms, if ¢ € Tx(X)g,
for some maximal sort ks and ¢t =z v, then it easily follows that v € Tx(X)j

s

and t =4, v by the requirement (a). It also easily follows that if ¢ — 4, U then
v e Tn(X), and ¢ —/a, U- From this, we can conclude that

tlg/a, =a, wra, = tlr/a, =A. ulrya,-
It easily follows that ¢ =¢ u, and thus £ is sort-independent. O

In general, the requirement that the unification procedure is sort-preserving does
not follow from the assumptions given above. For an example, consider the theory
£ with two unrelated top-most sorts Nat and Cns where Nat contains the ACU
symbol + with the identity element 0, and Cns contains the constant a. Given the
unification problem xc,s = a, it would be permissible for the unsorted unification
procedure to return the unifiers

U={(r—a+0)}.

This is a complete set of unsorted unifiers due to the identity axiom, but unsuitable
for our sort propagation algorithm as a4 0 is not a legal term. This counterexample
illustrates why the earlier work [11] imposed significant restrictions on theories with
collapsing equations like identity.

These stronger restrictions appear unnecessary in practice — in our experience,
the procedure will not introduce extra symbols, and in this case return the simpler
unifier £ — a. The reason that unsorted AC and ACU unification procedures
satisfy this assumption is that the unifiers are computed from the terms appearing
in equations [ = r € I'. When those subterms are well-typed with the same top-
most sort k, substitutions generated by the unsorted unification procedure should
be well-typed as well Provided that the sorts of fresh variables in the right hand
side of a variable are given the appropriate top sort k, due to our assumption (a),
we have found it is safe to assume the following:

(e) For each unifier § in the set of unifiers U returned by the unsorted unification
procedure for the order-sorted unification problem I', and for each variable x, €
vars(I'), x50 € Ts(X)x,.

To validate these ideas and test this assumption, we have extended an alpha
version of Maude so that it may communicate with CiME [2,3] by passing unsorted
unification problems as strings, and parsing the unsorted unifiers returned from
CiME back into Maude terms. As an additional safeguard, the parsing process
checks the substitutions returned by CiME to verify that assumption (e) is satisfied.
These checks have always been satisfied in our experience using the procedure so
far. We then apply the sort propagation algorithm described in the previous section
to generate order-sorted £-unifiers. The order-sorted unification procedure is used
to analyze cryptographic protocols with algebraic properties of associativity and
commutativity using the Maude-NRL protocol analyzer [4].
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5 Correctness Proof

The goal of this section is to show the correctness of our approach to order-sorted
equational unification. Before we can show this, we need several intermediate lem-
mas. The first lemma shows how preregularity is used.

Lemma 5.1 If ¥ = (S, F, <) is prereqular, then for all sorts s1,s2 € S and terms

t e TE(X)7
t e TE(X)S1 N TE(X)S2 = (38 S glbz(sl,SQ)) t e TE(X)S

where glby,(s1,52) =sup<({s€ S |s<s1As<s2})).

Proof. If there is a sort s € glb(si, s2) such that t € Tx(X)s, then t € Tx(X)s, N
T5(X)s, as s < s1 and s < s9. We still must show that ¢t € Tx(X)s, N Tx(X)s,
implies that there is a sort s € glb(sy, s2) such that t € Tx(X)s. However, this
follows immediately as ¢ must have a least sort s’ € S. It must be the case that
s’ < s1 and §' < sg. Therefore, there is an s € glb(sy, s2) such that s < s. As
TE(X)SI - TE(X)S, it follows that t € TE(X)S. a

Lemma 5.2 For all terms f(t1,...,t,) € T5(X) and sorts s € S,

ft1, .o tn) € T(X)s
< (3Is1...sp €arx(f,s,n)) t1 €T(X)sy A+ ANt €T (X)s,

where ars(f,s,n) =supcn({w e ™| (3" € S) f € Fyo Ns' <s}).

Proof. If there are sorts sj...s, € arx(f,s,n) such that ¢; € Tx(X),, for i €
[1,n], then there must be a sort s’ < s such that f € Fs, 4, . It follows that
flti, ... ty) € T5(X)y, and thus f(t1,...,t,) € T (X)s.

On the other hand, if f(t1,...,t,) € Tu(X)s, then there is some s’ < s such
that f € Fy o o and t; € T5(X)y for i € [1,n]. It follows that there are sorts
$1...8n € ary(f, s,n) such that s, <'s; for i € [1,n]. Consequently, t; € Tx(X)s,
for i € [1,n]. O

For a membership constraint M, we define the unifiers for M, denoted Uny (M)
to be the set of unsorted substitutions § : X — Ti(X) such that for each membership
t:seM,tdeTxn(X)s.

Lemma 5.3 For each order-sorted signature ¥ = (S, F, <) and pair of membership
constraints My and M,

My > My — UDE(Ml) D) UHE(MQ).

Proof. To show that Uny(M;) O Unx(Ma), we must show for each substitution
6 € Uny(Ms) and membership ¢ : s € Mj, we have t0 € Tx(X)s. However, since
M > M>, we know that for each t : s € M, there is a membership ¢ : s’ € M such
that s < s. By definition t6 € T%(X)y, and therefore t0 € Tx(X)s. O

When the membership constraints M; and M are reduced, the previous impli-
cation holds in the other direction.
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Lemma 5.4 For each order-sorted signature ¥ = (S, F,<) and pair of reduced
membership constraints My and My such that vars(M;) = vars(Ma),

UHE(Ml) D) UHE(MQ) — My > My

Proof. Since both M; and M are reduced and vars(M;) = vars(Ma), to show that
M > Ms, it is sufficient to show that for each = € vars(My), sorty, () > sort s, ().
Since My is reduced, there is a substitution ppz, : vars(Msz) — T%(X) which maps
each variable z € vars(Ms) to the a fresh variable 2’ with sort sortpg(z) € S.
Clearly pas, € Unx(Ms), and so ppr, € Uns(Mp) by assumption. It follows that for
each x € vars(Ms) that sortyy, (z) > sortas, (x) since xpyy, is a variable with sort
sortys, (z) and xppz, € Ung(Ma). O

For a disjunctive set of membership constraints D, we let Uns(D) denote the
set of unsorted substitutions that are unifiers for a set of membership constraints
M e D,ie.,

Ung(D) = | J Ung(M).

The key correctness property of the inference rules in Fig. 1 is captured by the
following lemma.

Lemma 5.5 For an preregular order-sorted signature 3, if D1 —* Do using the
inference rules in Fig. 1, then Uny(D;) = Uny(D3).

Proof. To show this it is enough to show the single step case that D; — Dy implies
Uny(D1) = Uny(D2). The full lemma follows easily by induction on the number of
rules used to show Dy —* Dy. To show the single step case, we must consider three
separate cases, one for each of the inference rules in Fig. 1.

e If Intersection is used, we know that D; and Dy have the forms Dy = {t:s1 A
t:so AM PUD and Dy = U, ¢ gl (5,,50) 1 £ 1 SAM }UD. However, for each order-
sorted substitution § we know by Lemma 5.1 that t6 € Tx(X)s, NTx(X)s, iff there
is a sort s € glby(s1, s2) such that t0 € Tx(X)s. It follows that Un(D;) = Un(Ds).

e If Propagation is used, we know that D; and D, have the forms D; =
{f(tl, - ,tn) : SAM}UD and Dy = Usl.‘.snearg(f,s){tl T WARKEVAN 7 Sn/\M}UD.
However, for each order-sorted substitution # we know by Lemma 5.2 that
f(t10,... t,0) € Tx(X)s iff there are sorts (s1...s,) € arg(f,s) such that
tif € Tx(X),, for i € [1,n].

e If Subsumption is used, we know that D; and Dy have the forms D; =
{My,Ms}UD and Dy = {M;} U D where M; > M,. However, it follows
easily that Un(D;) = Un(D3) as for each substitution Un(M3) C Un(M;) by
Lemma 5.3.

O

In order to preserve the set of substitutions, we also need to show that the
inference rules do not discard variables or introduce new ones:

Lemma 5.6 If D; —* Dy using the inference rules in Fig. 1 and each set of mem-
bership constraints My € D1 has the same variables vars(My) = X, then for all
My € Dsy, vars(Msy) = X.
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Proof. This is a straightforward induction over the number of rewrites used to show
Dy, —* Dy and considering each rule separately. O

The following lemma is useful to show that the inference rules terminate with a
unique set of membership constraints.

Lemma 5.7 If D and Dy are both disjunctive sets of membership constraints that
are irreducible by the inference rules in Fig. 1, then Unx(D1) = Unx(D2) implies
Dy = Ds.

Proof. We show this by showing that D; # Dy implies Un(D;) # Un(Ds). If
D1 # Do, then there must be a conjunction of membership constraints M7 which
is in Dy \ D2 or Dy \ D;. We assume that the M;j is in D as the other case is
symmetric. Since the rules in Fig. 1 cannot be applied to Dy, we know that M;
must be reduced, and hence has the form M; = x1 : st A--- Az @ s, with z; # 25
for each i # j. Let ppr, denote the substitution mapping each variable x € vars(M;)
to a fresh variable zpys, with sort sortys, (z) € S. By definition ppr, € Uny (M)
and therefore py;, € Un(Dy). If par, € Un(D2), then Un(D;) # Un(D2), and
consequently we are done. Otherwise, pps, is in Un(Dz), and so there must be a
membership Ma € Un(D3) such that for each membership = : s € My there is
a membership = : s/ € M; with s’ < s. It follows that My > M;j. Since Dy is
fully reduced by the rules in Fig. 1, it follows that the substitution ppz, is not in
Uny (D), since this would imply that there is a mapping M > My > M in D;.
This is impossible since D7 has been fully reduced by the rules in Fig. 1. O

Using the previous lemmas, it is not difficult to show the following Termina-
tion Theorem which shows that the inference rules terminate with a unique set of
membership constraints.

Theorem 5.8 (Termination Theorem) For each disjunctive set of membership
constraints D, there is a unique set of membership constraints D* such that D —' D*
using the inference rules in Fig. 1.

Proof. Showing this requires proving that: (1) the rules in Fig. 1 are terminating
and (2) if D —' Dy and D —' Dy, then Dy = D5. The rules in Fig. 1 are terminating,
because each rewrite either reduces the size of a term in a membership, or preserves
the terms while reducing the total number of memberships. To show (2), observe
that if D —' Dy and D —' Da, then Ung(D;) = Ung(D) = Unx(D2) by Lemma 5.5.
Therefore, D1 = Dy by Lemma 5.7. a

We are now ready to conclude with a proof of the main theorem of the paper:

Theorem 5.9 Let £ = (X, E) denote a preregular and sort-independent order-sorted
theory, then given a unification problem I' with a complete set of most-general sort-
preserving unsorted unifiers U, OS(U) is a complete set of most-general order-sorted
unifiers for .

Proof. Since & is sort-independent, we can assume that E can be partitioned into
rewrite rules R and equations A such that R is confluent and terminating modulo
A. Moreover, we can assume that each substitution 6 € U is R/A-irreducible.

11
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Proving the above theorem requires showing three things: (1) each element of

OS(U) is an order-sorted unifier for I'; (2) the set of unifiers OS(U) is complete; (3)

the set of unifiers OS(U) is most-general. We show each of these facts separately.

* For each element § € OS(U), there is an unsorted unifier § € U and reduced
membership constraints M € D(f)* such that § = Opy;. We first show that
xs0 € Tx(X)s for each variable x5 € vars(I'). To see this, observe that by defini-
tion pys € Ung(D(#)*), and so by Lemma 5.5, pps € Unyg(D(#)). Furthermore,
by Lemma 5.6, we know that vars(M) = vars(D(#)) = vars('). It follows by
definition that for each variable x5 € vars(T), 6 = x0py; is in T (X)s. For each
equation ¢ = u in I', we know that both ¢ and u are well-sorted terms belonging
to the same component. It follows that ¢ and uf are well-sorted terms with the
same connected component. By definition ¢ =z uf), and as £ is sort-independent
it follows that t0 =g u#.

e To show that OS(U) is complete, we must show for each order-sorted unifier
¢ € Ung(T), there is a unifier § € OS(U) and order-sorted substitution ¢ :
rvars(f) — Tx(X) such that z¢) =¢ x0¢ for each = € vars(I'). Let ¢ be a unifier
in Ung(T"). As U is a complete set of sort-preserving unifiers, there is an unifier
6 € U such that 1 =z 0¢ for some unsorted substitution ¢ : ¥ — T (X) with
Y = rvars(f). Moreover, since x4 € Ts(X)s for each variable x; € vars(T'), we
can assume that xS% € Tx(X)s since U is sort-preserving.

It follows that ¢ € Uny(D(f)). By Lemma 5.5 and Theorem 5.8, there must be

a reduced set of membership constraints M € D(6)* such that
(v‘r € Y) ‘Ta € TE (X)SOI‘t]\/I(Z)' (]-)

Since M is reduced, there is a variable renaming pys with maps each variable
x € Y to a fresh variable 2/ with sort sortps(x). Let pX; denote the inverse
of that renaming. By using (1), it should be clear that pﬁ;% is an order-
sorted substitution. Moreover, as py; € Uny(M) and therefore in Uny(D(6))
by Lemma 5.5, 6; ppy must be an order-sorted substitution. Since 8; pps € OS(U)
and v = (0; par); (a5 @), it follows that OS(U) is a complete set of unifiers.

e To show that OS(U) is a most-general set of unifiers, we must show for all distinct

substitutions 6q,60, € OS(U), we have 6; 2 65. We prove this by contradiction.
Assume there are substitutions 61,62 € OS(U) and a substitution ¢ : ¥ — Ts(X)
such that 61 = 05;1, where Y denotes the variables in the right-hand side of
6. Since both 01 and 63 are in OS(U), we know they must have the form 6; =
01; par, and Oy = Oo; pag, with 01,05 € U, My € D(01)*, and My € D(65)*. Our
assumption 01 = f; ¢ implies that 61 = 02; (pas,; U; lel) Since U is most-general,
this can only be the case if 6, = 0. As we assumed that 0; = 02;), it is not
difficult to show that ¢ = pj/é pu, - For each variable x € Y, we know that the sort
of the variable prjQ P 18 sort (mpg/é), and sorty, (xp]TjQ) < sort g, (a:pﬁ?) since
1 is an order-sorted substitution. It follows that Ms > M; which is impossible
since both My, My € D(f;)* and D(6;)* have been fully normalized using the
inference rules in Fig. 1.

a
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6 Conclusions and Related Work

There is a considerable amount of research already in unification in theories with
sorts and subsorts (e.g., [1,6,8,11,13,14]) due to the improved expressiveness of order-
sorted algebras and ability to simplify automated reasoning. The use of rule-based al-
gorithms in describing unification has a long history as well with the most well-known
example being Martelli and Montanari’s algorithm for syntactic unification [9]. Our
use of a rule-based approach to order-sorted unification is not particularly novel;
however we wanted to revisit order-sorted equational unification after discovering
that the soundness for the AC and ACI unification problems we were trying to solve
did not follow from previous results.

Due to our experience with the order-sorted unification in the Maude-NRL ana-
lyzer, an order-sorted unification engine is planned to be included in the next Maude
release. This unification engine will make similar assumptions to our own ones about
the supported theories, however it should have better performance as it will no longer
need to parse unsorted unifiers back as strings, and can more tightly integrate the
order-sorted constraints into the core unification routines. In fact, a prototype BDD-
based approach to solving the sort constraints is currently being developed by Steven
Eker. This BDD-based approach has the advantage that the subsumption checks
can be handled automatically by the BDD generation-algorithms.

Our aim in this paper is more general than the Maude-based applications of our
algorithm. Our aim is one of modularity, so that different formal tool building efforts
needing equational order-sorted unification procedures may be able to modularly
decompose such a procedure into its unsorted part where several existing tools may
be used and the rule-based sort propagation algorithm that we have presented and
proved correct.

Acknowledgments: The authors would like to thank the referees for comments
which helped to improve the paper.
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