
Declarative Debugging of Maude Modules∗

Adrián Riesco, Alberto Verdejo, Rafael Caballero, and Narciso Mart́ı-Oliet

Technical Report SIC-6-08

Departamento de Sistemas Informáticos y Computación,
Universidad Complutense de Madrid

April, 2008

∗Research supported by MEC Spanish projects DESAFIOS (TIN2006-15660-C02-01) and MERIT-FORMS (TIN2005-
09027-C03-03), and Comunidad de Madrid program PROMESAS (S0505/TIC/0407).

Abstract

We introduce a declarative debugger for Maude modules: functional modules correspond to ex-
ecutable specifications in membership equational logic, while system modules correspond to rewrite
theories. First we describe the construction of appropriate debugging trees for oriented equational
and membership inferences and rewrite rules. These trees are obtained as the result of collapsing in
proof trees all those nodes whose correction does not need any justification.

We include several extended examples to illustrate the use of the declarative debugger and its
main features, such as two possible constructions of the debugging tree, two different strategies to
traverse it, use of a correct module to reduce the number of questions asked to the user, selection of
trusted vs. suspicious statements by means of labels, and trusting of statements “on the fly.”

Since Maude supports the reflective features in its underlying logic, it includes a predefined
META-LEVEL module providing access to metalevel concepts such as specifications or computations
as usual data. This allows us to generate and navigate the debugging tree of a Maude computation
using operations in Maude itself. Even the user interface of the declarative debugger for Maude can
be specified in Maude itself. We describe in detail this metalevel implementation of our tool.

Keywords: declarative debugging, rewriting logic, Maude, metalevel implementation

Contents

1 Introduction 3

2 Rewriting logic and Maude 5
2.1 Membership equational logic . 5
2.2 Maude functional modules . 5
2.3 An example of functional module: sorted lists . 6
2.4 Rewriting logic . 7
2.5 Maude system modules . 8
2.6 An example of system module: knight’s tour problem . 8

3 Debugging trees for Maude specifications 9
3.1 Proof trees . 9
3.2 Abbreviated proof trees . 13

4 Using the debugger 17
4.1 Assumptions . 17
4.2 Commands . 18
4.3 Examples . 19

4.3.1 Sorted lists . 19
4.3.2 Binary search trees . 24
4.3.3 Knight’s tour problem . 27
4.3.4 WhileL evaluation semantics . 28
4.3.5 WhileL computation semantics . 33

5 Implementation 36
5.1 Proof tree definition . 36
5.2 Auxiliary modules . 38
5.3 Debugging tree construction . 40

5.3.1 Debugging trees for wrong reductions and memberships . 40
5.3.2 Debugging trees for wrong rewrites . 44

5.4 Debugging tree navigation . 48
5.5 The debugger environment . 49

6 Conclusions and future work 55

1 Introduction

In this paper we present a declarative debugger for Maude specifications, including equational func-
tional specifications and concurrent systems specifications. Maude [9] is a high-level language and high-
performance system supporting both equational and rewriting logic computation for a wide range of
applications. It is a declarative language because Maude modules correspond to specifications in rewrit-
ing logic [14], a simple and expressive logic which allows the representation of many models of concurrent
and distributed systems. This logic is an extension of equational logic; in particular, Maude functional
modules correspond to specifications in membership equational logic [2, 15], which, in addition to equa-
tions, allows the statement of membership axioms characterizing the elements of a sort. In this way,
Maude makes possible the faithful specification of data types (like sorted lists or search trees) whose
data are defined not only by means of constructors, but also by the satisfaction of additional properties.
Rewriting logic extends membership equational logic by adding rewrite rules, that represent transitions
in a concurrent system. Maude system modules are used to define specifications in this logic.

Moreover, exploiting the fact that rewriting logic is reflective [8, 10], a key distinguishing feature
of Maude is its systematic and efficient use of reflection through its predefined META-LEVEL module
[9, Chap. 14], a feature that makes Maude remarkably extensible and powerful, and that allows many
advanced metaprogramming and metalanguage applications.

The Maude system supports several approaches for debugging Maude programs: tracing, term color-
ing, and using an internal debugger [9, Chap. 22]. The tracing facilities allow us to follow the execution of
a specification, that is, the sequence of application of statements that take place. We can select which op-
erators or statements (equations, memberships, or rules) are traced, and how much information is shown
in each step. Term coloring consists in printing with different colors the operators used to build a term
that does not fully reduce. It uses the ctor attribute that can be given to an operator indicating that
it is a constructor. If an operator is colored, this means that the term contains nonconstructors, that is,
that there is a “strangeness” in the term. The different colors indicate the source of the strangeness. The
Maude debugger allows to define break points in the execution by selecting some operators or statements.
When a break point is found the debugger is entered. There, we can see the current term and execute the
next rewrite with tracing turned on. We can also execute another Maude command, which in turn can
enter the (fully re-entrant) debugger. The Maude debugger has as a disadvantage that, since it is based
on the trace, it shows to the user every small step obtained by using a single statement. Thus the user
can lose the general view of the proof of the incorrect inference that produced the wrong result. That
is, when the user detects an unexpected statement application it is difficult to know where the incorrect
inference started. Here we present a different approach based on declarative debugging that solves this
problem for Maude specifications.

Declarative debugging, also known as algorithmic debugging, was first introduced by E. Y. Shapiro
[21]. It has been widely employed in the logic [12, 16, 23], functional [19, 18, 20], and multi-paradigm
programming [7, 4, 13] languages. Declarative debugging starts from a computation considered incorrect
by the user (error symptom) and locates a program fragment responsible for the error. The declarative
debugging scheme [17] uses a debugging tree as logical representation of the computation. Each node
in the tree represents the result of a computation step, which must follow from the results of its child
nodes by some logical inference. Diagnosis proceeds by traversing the debugging tree, asking questions
to an external oracle (generally the user) until a so-called buggy node is found. A buggy node is a node
containing an erroneous result, but whose children have all correct results. Hence, a buggy node has
produced an erroneous output from correct inputs and corresponds to an erroneous fragment of code,
which is pointed out as an error. From an explanatory point of view, declarative debugging can be
described as consisting of two stages, namely the debugging tree generation and its navigation following
some suitable strategy [22].

The application of declarative debugging to Maude functional modules, that is, executable membership
equational logic specifications, was already studied in our previous papers [6, 5]. The executability
requirements of Maude functional modules mean that they are assumed to be confluent, terminating,
and sort-decreasing1 [9], so that, by orienting the equations from left to right, each term can be reduced
to a unique canonical form, and semantic equality of two terms can be checked by reducing both of them
to their respective canonical forms and checking that they coincide. These requirements are assumed in
the form of the questions appearing in the debugging tree. In this paper, we considerably extend that
work by also considering system modules. Now, since the specifications described in this kind of modules

1All these requirements must be understood modulo some axioms such as associativity and commutativity that are
associated to some binary operations.

3

can be non-terminating and non-confluent, their handling must be quite different.
In both cases, functional and system modules, the debugging process starts with an incorrect com-

putation from the initial term to an unexpected one. The debugger then builds for that inference an
appropriate debugging tree which is an abbreviation of the corresponding proof tree obtained by apply-
ing the inference rules of membership equational logic or rewriting logic. The abbreviation consists in
collapsing all those nodes whose correction does not need any justification, such as those related with
transitivity or congruence. Since the questions are located in the debugging tree, the answer allows the
debugger to discard a subset of the questions, leading and shortening the debugging process. In the case
of functional modules, the debugger builds a debugging tree whose nodes give rise to questions of the
form “Is it correct that T fully reduces to T ′?” which in general are easier to answer. However, in the
absence of confluence and termination, this kind of questions do not make sense; thus, in the case of sys-
tem modules, we have decided to develop two different trees whose nodes produce questions of the form
“Is it correct that T is rewritten to T ′?” where the difference consists in the number of steps involved in
the rewrite. While one of the trees refers only to one-step rewrites, which are often easier to answer, the
other one can also refer to many-steps rewrites that, although may be harder to answer, in general allow
to discard a bigger subset of nodes. The user, depending on the debugged specification or his “ability”
to answer questions involving several rewrite steps, can choose between these two kinds of trees.

The current version of the tool has the following characteristics:

• It supports all kinds of modules: for example, operators can be declared with any combination
of axiom attributes (except for the attribute strat, that allows to specify an evaluation strat-
egy); equations can be defined with the otherwise attribute; modules can be parameterized; and
operators’ arguments can be frozen (see [9] for the meaning of all these concepts).

• In case of debugging a rewrite computation, two different debugging trees can be built: one whose
questions are related to one-step rewrites and another whose questions are related to several steps.
The latter tree is partially built so that any node corresponding to a one-step rewrite is expanded
only when the navigation process reaches it.

• It provides two strategies to traverse the debugging tree: top-down, that traverses the tree from the
root asking each time for the correctness of all the children of the current node, and then continues
with one of the incorrect children; and divide and query, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only this subtree if its
root is incorrect, and deleting the whole subtree otherwise.

• Before starting the debugging process, the user can select a module containing only correct state-
ments. By checking the correctness of the inferences with respect to this module (i.e., using this
module as oracle) the debugger can reduce the number of questions asked to the user.

• It allows to debug specifications where some statements are suspicious and have been labeled (each
one with a different label). Only these labeled statements generate nodes in the proof tree, while
the unlabeled ones are considered correct. The user is in charge of this labeling.

• The user can decide to use all the labeled statements as suspicious or can use only a subset by
trusting labels and modules. Moreover, the user can answer that he trusts the statement associated
with the currently questioned inference; that is, statements can be trusted “on the fly.” This
produces that other nodes associated with the currently trusted statement are also deleted from
the tree.

• It provides an undo command, that allows the user to return to the previous state when a wrong
answer has been provided.

As mentioned before, the Maude system includes the predefined META-LEVEL module supporting
reflection in rewriting logic [9, Chapter 14]. This powerful feature allows access to metalevel entities
such as specifications or computations as usual data. Therefore, we are able to generate and navigate
the debugging tree of a Maude computation using operations in Maude itself. In addition, the Maude
system provides another module, LOOP-MODE [9, Chapter 17], which can be used to specify input/output
interactions with the user. However, instead of using this module directly, we extend Full Maude [9,
Chapter 18], that includes features for parsing, evaluating, and pretty-printing terms, improving the
input/output interaction. Moreover, Full Maude allows the specification of concurrent object-oriented
systems, that can be also debugged. Thus, our declarative debugger, including its user interactions, is

4

implemented in Maude itself. As far as we know, this is the first declarative debugger implemented
using such reflective techniques. The Maude source files for the debugging tool and several examples are
available from the webpage http://maude.sip.ucm.es/debugging.

The rest of the paper is structured as follows. Section 2 provides a summary of the main concepts
of both membership equational logic and rewriting logic, and how their specifications are concretized in
Maude functional and system modules, respectively. Section 3 describes the theoretical foundations of
the debugging proof trees for inferences is both logics, namely, reductions, memberships, and rewrites.
Section 4 shows how to use the debugging tool by means of several examples, while Section 5 describes
in detail the Maude implementation of the tool. Finally, Section 6 concludes and mentions some future
work.

2 Rewriting logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic especifications. Rewrit-
ing logic [14] is a logic of change very suitable for the specification of concurrent systems that is param-
eterized by an underlying equational logic, for which Maude uses membership equational logic [2, 15],
which, in addition to equations, allows the statement of membership axioms characterizing the elements
of a sort. In the following sections we present both logics and how their specifications are represented as
Maude modules.

2.1 Membership equational logic

A signature in membership equational logic is a triple (K,Σ, S) (just Σ in the following), with K a set
of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint
K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to
denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X, where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind but
without a sort represent undefined or error elements.

The atomic formulas of membership equational logic are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the term t has kind k and
s ∈ Sk. Sentences are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where
each Ai is either an equation or a membership axiom, and X is a set of K-kinded variables containing
all the variables in the Ai. A specification is a pair (Σ, E), where E is a set of sentences in membership
equational logic over the signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a set Ak for each
kind k ∈ K, a function Af : Ak1 × · · · × Akn

−→ Ak for each operator f ∈ Σk1...kn,k, and a subset
As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A of a term t in an algebra A is inductively defined as
usual. Then, an algebra A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same way, satisfaction of a
membership is defined as: A |= t : s when [[t]]A ∈ As.

A membership equational logic specification (Σ, E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [2, 15] for a detailed presentation of (Σ, E)-algebras, sound
and complete deduction rules (that we adapt to our purposes in Figure 1 in Section 3.1), as well as the
construction of initial and free algebras.

Since the membership equational logic specifications that we consider are assumed to satisfy the
executability requirements of confluence, termination, and sort-decreasingness, their equations t = t′ can
be oriented from left to right, t→ t′. Such a statement holds in an algebra, denoted A |= t→ t′, exactly
when A |= t = t′, i.e., when [[t]]A = [[t′]]A. Moreover, under those assumptions an equational condition
u = v in a conditional equation can be checked by finding a common term t such that u→ t and v → t.
The notation we will use in the inference rules and debugging trees studied in Section 3 for this situation
is u ↓ v.

2.2 Maude functional modules

Maude functional modules [9, Chapter 4], introduced with syntax fmod ... endfm, are executable mem-
bership equational specifications and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification.

5

http://maude.sip.ucm.es/debugging

In a functional module we can declare sorts (by means of keyword sort(s)); subsort relations between
sorts (subsort); operators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or commutative (comm), for
example; memberships (mb) asserting that a term has a sort; and equations (eq) identifying terms. Both
memberships and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.
Kinds are not declared explicitly, and correspond to the connected components of the subsort relation.
The kind corresponding to a sort s is denoted [s]. For example, if we have sorts Nat for natural numbers
and NzNat for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3 An example of functional module: sorted lists

Let us see a simple example of a functional module showing how to specify in Maude sorted lists. We use
a module parameterized by the theory TOSET [9, Section 8.3], that requires a sort Elt and a total order
<= over the elements of this sort.

(fmod SORTED-LIST{X :: TOSET} is

We introduce sorts for lists and sorted lists. We identify an element with a sorted list with a single
element by means of a subsort declaration.

sorts List{X} SortedList{X} .

subsorts X$Elt < SortedList{X} < List{X} .

The lists that have more than one element are built by means of the associative juxtaposition operator
__.

op __ : List{X} List{X} -> List{X} [ctor assoc] .

We define now when a list (with more than one element) is sorted by means of a membership axiom.
It states that the first element must be smaller than the first of the rest of the list, and that the rest of
the list must also be sorted.

vars E E’ : X$Elt .

var L : List{X} .

var OL : SortedList{X} .

cmb [olist] : E L : SortedList{X}

if E <= head(L) /\ L : SortedList{X} .

The definition of the head function distinguishes between lists with a single element and longer ones.

op head : List{X} -> X$Elt .

eq [hd1] : head(E) = E .

eq [hd2] : head(L E) = E .

We also define a sort function which sorts a list by successively inserting each element in the appro-
priate position in the sorted sublist formed by the elements previously considered.

6

op insertion-sort : List{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

eq [is1] : insertion-sort(E) = E .

eq [is2] : insertion-sort(E L) = insert-list(insertion-sort(L), E) .

The function insert-list distinguishes several cases. If the list has only one element, the function
checks if this element is bigger than the inserted element, and returns the sorted list. If the list has more
than one element, the function checks that the list is previously sorted; if the element we want to insert
is smaller than the first of the list, it is located as the (new) first element, while if it is bigger we keep
the first element and recursively insert the element in the rest of the list.

ceq [il1] : insert-list(E, E’) = E’ E if E’ < E .

eq [il2] : insert-list(E, E’) = E E’ [owise] .

ceq [il3] : insert-list(E OL, E’) = E E’ OL

if E’ <= E /\ E OL : SortedList{X} .

ceq [il4] : insert-list(E OL, E’) = E insert-list(OL, E’)

if E OL : SortedList{X} [owise] .

endfm)

In order to be able to execute this module, we instantiate it with the view NatAsToset.

(view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv)

(fmod SORTED-LIST-TEST is

protecting SORTED-LIST{NatAsToset} .

endfm)

Now, we can reduce a term in this module. For example, we can try to sort the list 3 4 7 6 with

(red insertion-sort(3 4 7 6) .)

We obtain the result

result SortedList{NatAsToset}: 6 3 4 7

But... the list obtained is not sorted! Moreover, Maude infers that it is sorted. Did you notice the
bugs? We will show how to use the debugger in Section 4.3.1 to detect them.

2.4 Rewriting logic

Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions
between states; that is, while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E,R), where (Σ, E) is an
equational specification and R is a set of rules as described below. From this definition, one can see that
rewriting logic is built on top of equational logic, so that rewriting logic is parameterized with respect to
the version of the underlying equational logic; in our case, Maude uses membership equational logic, as
described in the previous sections. A rule in R has the general conditional form2

(∀X) e⇒ e′ ⇐
n∧

i=1

ui = u′i ∧
m∧

j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where the head is a rewrite and the conditions can be equations, memberships, and rewrites; both sides
of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites of the form
t⇒ t′ by means of general deduction rules introduced in [14] (see also [3]), that we adapt to our purposes
in Figure 1 in Section 3.1.

2There is no need for the condition listing first equations, then memberships, and then rewrites: this is just a notational
abbreviation, they can be listed in any order.

7

Models of rewrite theories are called R-systems in [14]. Such systems are defined as categories
that possess a (Σ, E)-algebra structure, together with a natural transformation for each rule in the
set R. More intuitively, the idea is that we have a (Σ, E)-algebra, as described in Section 2.1, with
transitions between the elements in each set Ak; moreover, these transitions must satisfy several additional
requirements, including that there are identity transitions for each element, that transitions can be
sequentially composed, that the operations in the signature Σ are also appropriately defined for the
transitions, and that we have enough transitions corresponding to the rules in R. Then, if we keep in this
context the notation A to denote an R-system, a rewrite t ⇒ t′ is satisfied by A, denoted A |= t ⇒ t′,
when there is a transition [[t]]A →A [[t′]]A in the system between the corresponding meanings of both sides
of the rewrite, where →A will be our notation for such transitions.

The rewriting logic deduction rules introduced in [14] are sound and complete with respect to this
notion of model. Moreover, they can be used to build initial and free models; see [14] for details.

2.5 Maude system modules

Maude system modules [9, Chapter 6], introduced with syntax mod ... endm, are executable rewrite
theories and their semantics is given by the initial system in the class of systems corresponding to the
rewrite theory. A system module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships in a system module are the same as
those of functional modules, namely, confluence, termination, and sort-decreasingness. With respect to
rules, the satisfaction of all the conditions in a conditional rewrite rule is attempted sequentially from
left to right, solving rewrite conditions by means of search; for this reason, we can have new variables in
such conditions but they must become instantiated along this process of solving from left to right (see
[9] for details). Furthermore, the strategy followed by Maude in rewriting with rules is to compute the
normal form of a term with respect to the equations before applying a rule. This strategy is guaranteed
not to miss any rewrites when the rules are coherent with respect to the equations [25, 9]. In a way
quite analogous to confluence, this coherence requirement means that, given a term t, for each rewrite
of it using a rule in R to some term t′, if u is the normal form of t with respect to the equations and
memberships in E, then there is a rewrite of u with some rule in R to a term u′ such that u′ =E t′ (that
is, the equation t′ = u′ can be deduced from E).

The following section describes an example of a Maude system module with both equations and rules.

2.6 An example of system module: knight’s tour problem

A knight’s tour is a journey around the chessboard in such a way that the knight lands on each square
exactly once. The legal move for a knight is two spaces in one direction, then one in a perpendicular
direction. We want to solve the problem for a 3 × 4 chessboard with the knight initially located in one
corner.

We represent positions in the chessboard as pairs of integers and journeys as lists of positions.

(mod KNIGHT is

protecting INT .

sorts Position Movement Journey Problem .

subsort Position < Movement .

subsorts Position < Journey < Problem .

op [_,_] : Int Int -> Position .

op nil : -> Journey .

op __ : Journey Journey -> Journey [assoc id: nil] .

vars N X Y : Int .

vars P Q : Position .

var J : Journey .

The term move P represents a position reachable by the knight from position P. Since the reachable
positions are not unique, this operation is defined by means of rewrite rules, instead of equations. The
reachable positions can be outside the chessboard.

op move_ : Position -> Movement .

rl [mv1] : move [X, Y] => [X + 2, Y + 1] .

rl [mv2] : move [X, Y] => [X + 2, Y - 1] .

8

rl [mv3] : move [X, Y] => [X - 2, Y + 1] .

rl [mv4] : move [X, Y] => [X - 2, Y - 1] .

rl [mv5] : move [X, Y] => [X + 1, Y + 2] .

rl [mv6] : move [X, Y] => [X + 1, Y - 2] .

rl [mv7] : move [X, Y] => [X - 1, Y + 2] .

rl [mv8] : move [X, Y] => [X - 1, Y - 2] .

The operation legal checks if a position is inside the 3× 4 chessboard.

op legal : Position -> Bool .

eq [leg] : legal([X, Y]) = X >= 1 and Y >= 1 and X <= 3 and Y <= 4 .

The operation contains(J, P) checks if position P already occurs in the journey J.

op contains : Journey Position -> Bool .

eq [con1] : contains(P J, P) = true .

eq [con2] : contains(J, P) = false [owise] .

knight(N) represents a journey where the knight has performed N hops. When no hops are taken,
the knight remains at the first position [1, 1]. When N > 0 the problem is recursively solved (using
backtracking in an implicit way) as follows: first a legal journey of N - 1 steps is found, then a new hop
from the last position of that journey is performed, and finally it is checked that this last hop is legal
and compatible with the other ones.

op knight : Nat -> Problem .

rl [k1] : knight(0) => [1, 1] .

crl [k2] : knight(N) => J P Q

if N > 0

/\ knight(N - 1) => J P

/\ move P => Q

/\ legal(Q)

/\ not(contains(J P, Q)) .

endm)

The solution to the 3× 4 chessboard can be found by looking for a journey with 11 hops:

Maude> (rew knight(11) .)

But we obtain the following unexpected, wrong result, where the journey contains repeated positions.

result Journey : [1,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3]

We will show how to debug this specification in Section 4.3.3.

3 Debugging trees for Maude specifications

Now we will describe debugging trees for both membership equational logic specifications and rewriting
logic specifications. Since a membership equational logic specification coincides with a rewrite theory
with an empty set of rules, our treatment will simply be at the level of rewrite theories. Our proof and
debugging trees will include statements for reductions e → e′, memberships e : s, and rewrites e ⇒ e′,
and in the following sections we will describe how to build the debugging trees from the proof trees taking
into account each kind of statement.

3.1 Proof trees

Before defining the debugging trees employed in our declarative debugging framework we introduce the
semantic rules defining the semantics of a rewrite theory R. The inference rules of the calculus can be
found in Figure 1. The rules allow to deduce statements of the three kinds and are an adaptation of the
rules presented in [2, 15] for membership equational logic and in [14, 3] for rewriting logic. Remember
that the notation θ(ui) ↓ θ(u′i) is an abbreviation of ∃ti.θ(ui) → ti ∧ θ(u′i) → ti. As usual, we represent
deductions in the calculus as proof trees, where the premises are the child nodes of the conclusion at
each inference step. We assume that the inference labels (Rep⇒), (Rep→), and (Mb) decorating the

9

(Reflexivity)

e⇒ e
(Rf⇒)

e→ e
(Rf→)

(Transitivity)

e1 ⇒ e′ e′ ⇒ e2
e1 ⇒ e2

(Tr⇒)
e1 → e′ e′ → e2

e1 → e2
(Tr→)

(Congruence)

e1 ⇒ e′1 . . . en ⇒ e′n
f(e1, . . . , en) ⇒ f(e′1, . . . , e

′
n)

(Cong⇒)

e1 → e′1 . . . en → e′n
f(e1, . . . , en) → f(e′1, . . . , e

′
n)

(Cong→)

(Replacement)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1 {θ(wk) ⇒ θ(w′k)}l
k=1

θ(e) ⇒ θ(e′)
(Rep⇒)

if e⇒ e′ ⇐
Vn

i=1 ui = u′i ∧
Vm

j=1 vj : sj ∧
Vl

k=1 wk ⇒ w′k

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(e) → θ(e′)
(Rep→)

if e→ e′ ⇐
Vn

i=1 ui = u′i ∧
Vm

j=1 vj : sj

(Equivalence Class)

e→ e′ e′ ⇒ e′′ e′′ → e′′′

e⇒ e′′′
(EC)

(Subject Reduction)

e→ e′ e′ : s

e : s
(SRed)

(Membership)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(e) : s
(Mb)

if e : s⇐
Vn

i=1 ui = u′i ∧
Vm

j=1 vj : sj

Figure 1: Semantic calculus for Maude modules

10

i
s
(
3
4
7
6
)
→

i
l
(
i
s
(
4
7
6
)
,
3
)

is
2

i
s
(
4
7
6
)
→

i
l
(
i
s
(
7
6
,
4
)
)

is
2

i
s
(
7
6
)
→

i
l
(
i
s
(
6
,
7
)
)

is
2

i
s
(
6
)
→

6
is
1

i
l
(
i
s
(
6
,
7
)
)
→

i
l
(
6
,
7
)

C
o
n
g

i
l
(
6
,
7
)
→

6
7

il
2

i
l
(
i
s
(
6
,
7
)
)
→

6
7

T
r

i
s
(
7
6
)
→

6
7

T
r

i
l
(
i
s
(
7
6
)
,
4
)
→

i
l
(
6
7
,
4
)

C
o
n
g

h
d
(
7
)
→

7
h
d
1

6
7
:
S
L

o
li
st

i
l
(
6
7
,
4
)
→

6
4
7

il
3

i
l
(
i
s
(
7
6
,
4
)
)
→

6
4
7

T
r

i
s
(
4
7
6
)
→

6
4
7

T
r

i
l
(
i
s
(
4
7
6
)
,
3
)
→

i
l
(
6
4
7
,
3
)

C
o
n
g

h
d
(
4
7
)
→

7
h
d
2

h
d
(
7
)
→

7
h
d
1

4
7
:
S
L

o
li
st

6
4
7
:
S
L

o
li
st

i
l
(
6
4
7
,
3
)
→

6
3
4
7

il
3

i
l
(
i
s
(
4
7
6
)
,
3
)
→

6
3
4
7

T
r

i
s
(
3
4
7
6
)
→

6
3
4
7

T
r

F
ig

ur
e

2:
P

ro
of

tr
ee

fo
r

th
e

so
rt

ed
lis

ts
ex

am
pl

e

11

inference steps contain information about the particular rewrite rule, equation, and membership axiom,
respectively, applied during the inference. This information will be used by the debugger in order to
present to the user the incorrect fragment of code causing the error.

For example, the proof tree depicted in Figure 2 corresponds to the result of the reduction in the
specification for sorted lists described at the end of Section 2.3. For obvious reasons, the operation names
have been abbreviated in a self-explanatory way; furthermore, each node corresponding to an instance
of the replacement or membership inference rules has been labeled with the label of the equation or
membership statement which is being applied.

In our debugging framework we assume the existence of an intended interpretation I of the given
rewrite theory R = (Σ, E,R). The intended interpretation must be an R-system corresponding to the
model that the user had in mind while writing the specification R. Therefore the user expects that
I |= e ⇒ e′, I |= e → e′, and I |= e : s for each rewrite e ⇒ e′, reduction e → e′, and membership e : s
computed w.r.t. the specification R. As an R-system, I must satisfy the following proposition:

Proposition 1 Let R = (Σ, E,R) be a rewrite theory and let A be any R-system. If a statement e⇒ e′

(respectively e → e′, e : s) can be deduced using the semantic calculus rules reflexivity, transitivity,
congruence, equivalence class or subject reduction using premises that hold in A, then A |= e ⇒ e′

(respectively A |= e→ e′, A |= e : s).

Proof. The result is a direct consequence of the definition of satisfaction of rewrite theories. For instance
we check the result for the transitivity rules (Tr⇒) and (Tr→), and for the subject reduction rule (SRed):

• (Tr⇒). Suppose that A |= e1 ⇒ e′ and A |= e′ ⇒ e2. Then [[e1]]A →A [[e′]]A, [[e′]]A →A [[e2]]A.
Since →A is compositional, [[e1]]A →A [[e2]]A, i.e., A |= e1 ⇒ e2.

• (Tr→). if A |= e1 → e′ and A |= e′ → e2 then [[e1]]A = [[e′]]A and [[e′]]A = [[e2]]A. Therefore
[[e1]]A = [[e2]]A and A |= e1 → e2.

• (SRed). if A |= e→ e′ and A |= e′ : s, then [[e]]A = [[e′]]A and [[e′]]A ∈ As, and hence [[e]]A ∈ As.

The reflexivity, congruence and equivalence class rules are checked analogously. ut

Observe that this proposition cannot be extended to the membership and replacement inference rules,
where the correctness of the conclusion depends not only on the calculus but also on the associated
specification statement, which could be wrong.

We will say that a statement e ⇒ e′ (respectively e → e′, e : s) is valid when it holds in I, and
invalid otherwise. Declarative debuggers rely on some external oracle, normally the user, in order to
obtain information about the validity of some nodes in the debugging tree. The concept of validity can
be extended to distinguish wrong rules, wrong equations, and wrong membership axioms, which are those
specification pieces that can deduce something invalid from valid information.

Definition 1 Let r ≡ (af ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj ∧
∧l

k=1 wk ⇒ w′k) where af denotes an atomic
formula, that is, r is either a rewrite rule, an oriented equation, or a membership axiom (in the last two
cases l = 0) in some rewrite theory R. Then:

• θ(r) is a wrong rewrite rule instance (respectively wrong equation instance and wrong membership
axiom instance) w.r.t. an intended interpretation I when

1. There exist terms t1, . . . , tn such that I |= θ(ui)→ ti, I |= θ(u′i)→ ti for i = 1 . . . n.

2. I |= θ(vj) : sj for j = 1 . . .m.

3. I |= θ(wj)⇒ θ(w′j) for k = 1 . . . l.

4. θ(af) does not hold in I.

• r is a wrong rewrite rule (respectively, wrong equation and wrong membership axiom) if it admits
some wrong instance.

The general schema of [17] presents declarative debugging as the search of buggy nodes (invalid nodes
with all its children valid) in a debugging tree representing an erroneous computation. In our scheme
instance, the proof trees constructed by the inferences of Figure 1 seem natural candidates for debugging
trees. Although this is a possible option, we will use instead a suitable abbreviation of these trees. This
is motivated by the following result:

12

Proposition 2 Let N by a buggy node in some proof tree in the calculus of Figure 1 w.r.t. an intended
interpretation I. Then:

1. N is the consequence of either a membership or a replacement inference step.

2. The statement associated to N is either a wrong rewrite rule, a wrong equation, or a wrong mem-
bership axiom.

Proof. The first item is a straightforward consequence of Proposition 1: N buggy means N invalid with
all its children valid, and the only possible inference rules at N are then membership and replacement.

For the second result we first observe that as a consequence of the previous part the label at the
inference step with N as conclusion must be either (Rep⇒), (Rep→), or (Mb). In the case of (Rep⇒) the
associated rewrite rule is wrong as a direct consequence of Definition 1: the condition 4 of the definition
holds because N is invalid in I, while the previous conditions, which state the validity of the statements in
the rewrite rule condition instance, correspond to the premises of the (Rep⇒) inference rule (see Figure 1),
which are valid in I because N is buggy. Analogously it can be checked from inference rule (Mb) that if
the conclusion is buggy the associated membership axiom is wrong, and the same in the case of (Rep→)
but with an associated wrong equation. ut

3.2 Abbreviated proof trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error symptom detected by the
user. This could be done simply by asking questions to the user about the validity of the nodes in the
tree according to the following top-down strategy:

Input: A tree T with an invalid root.

Output: A buggy node in T .

Description: Consider the root N of T . There are two possibilities:

• If all the children of N are valid, then finish pointing out at N as buggy.
• Otherwise, select the subtree rooted by any invalid child and use recursively the

same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height of T . As an
easy consequence, the following result holds:

Proposition 3 Let T be a proof tree with an invalid root. Then there exists a buggy node N ∈ T such
that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable abbreviation which we
denote by APT (T) (from Abbreviated Proof Tree), or simply APT if the proof tree T is clear from the
context. The reason for preferring the APT to the original proof tree is that it reduces and simplifies
the questions that will be asked to the user while keeping the soundness and completeness of the tech-
nique. In particular the APT contains only nodes related to the replacement and membership inferences
using statements included in the specification, which are the only possible buggy nodes as Proposition 2
indicates.

Thus, in order to minimize the number of questions asked to the user the debugger should consider
the validity of (Rep⇒), (Rep→), or (Mb). The rules for deriving an APT can be seen in Figure 3. The
Ti represent proof trees corresponding to the premises in some inferences.

The abbreviation always starts by applying (APT 1). This rule simply duplicates the root of the tree
and applies APT ′, which receives a proof tree and returns a forest. Hence without this duplication the
result of the abbreviation could be a forest instead of a single tree. Moreover, it is easy to check that
this duplication is safe in the sense that it can neither introduce nor remove buggy nodes (this will be a
consequence of Theorem 1).

The rest of the APT rules correspond to function APT ′ and are assumed to be applied top-down:
if several APT rules can be applied at the root of a proof tree, we must choose the first one, that is,
the rule of least number. As a matter of fact, the figure includes rules for two different possible APTs,
which we call one-step abbreviated proof tree (in short APT o(T)), defined by all the rules in the figure
excluding (APT m

4), and many-steps abbreviated proof tree (in short APT m(T)), defined by all the rules
in the figure excluding (APT o

4). Analogously, we will use the notation APT ′o(T) (resp. APT ′m(T)) for
the subset of rules of APT ′ excluding (APT m

4) (resp. (APT o
4)).

13

(APT1) APT

„
T1 . . . Tn

af
(R)

«
=

APT ′
„

T1 . . . Tn

af
(R)

«
af

(APT2) APT ′
„

e V e
(RfV)

«
= ∅

(APT3) APT ′

0@ T1 . . . Tn

e1 → e′
(Rep→)

T ′

e1 → e2
(Tr→)

1A =

APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

e1 → e2
(Rep→)

ff

(APTo
4) APT ′

„
T1 T2

e1 ⇒ e2
(Tr⇒)

«
= APT ′(T1)

S
APT ′(T2)

(APTm
4) APT ′

„
T1 T2

e1 ⇒ e2
(Tr⇒)

«
=

APT ′(T1) APT ′(T2)

e1 ⇒ e2
(Tr⇒)

ff

(APT5) APT ′
„

T1 . . . Tn

e1 V e2
(CongV)

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

(APT6) APT ′
„

T1 T2

e : s
(SRed)

«
= APT ′(T1)

S
APT ′(T2)

(APT7) APT ′
„

T1 . . . Tn

e : s
(Mb)

«
=

APT ′(T1) . . .APT ′(Tn)

e : s
(Mb)

ff

(APT8) APT ′
„

T1 . . . Tn

e1 V e2
(RepV)

«
=

APT ′(T1) . . .APT ′(Tn)

e1 V e2
(RepV)

ff

(APT9) APT ′

0@ T ′
T1 . . . Tn

e ⇒ e′
(Rep⇒)

T ′′

e1 ⇒ e2
(EC)

1A =

APT ′(T ′) APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)

e1 ⇒ e2
(Rep⇒)

ff

(APT10) APT ′
„

T1 . . . Tn

e1 ⇒ e2
(EC)

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

(R) any inference rule V either → or ⇒ af either e1 → e2, e : s or e1 ⇒ e2

Figure 3: Transforming rules for obtaining abbreviated proof trees

14

The one-step debugging tree follows strictly the idea of keeping only nodes corresponding to the
replacement and membership inference rules. However, the many-steps debugging tree also keeps nodes
corresponding to the transitivity inference rule for rewrites. The user will choose which debugging tree
(one-step or many-steps) will be used for the declarative debugging session, taking into account that
the many-steps debugging tree usually leads to shorter debugging sessions (in terms of the number of
questions) but with likely more complicated questions. The number of questions is usually reduced
because keeping the transitivity nodes for rewrites gives to some parts of the debugging tree the shape
of a balanced binary tree (each transitivity inference has two premises, i.e., two child subtrees), and this
allows the debugger to use a very efficient divide and query navigation strategy similar to that presented
in [21]. On the contrary, removing the transitivity inferences for rewrites (as rule (APT o

4) does) produces
flattened trees where this strategy is no longer efficient. On the other hand, in rewrites e⇒ e′ appearing
as conclusion of the transitivity inference rule, the term e′ can contain the result of rewriting several
subterms of e, and determining the validity of such nodes can be complicated, while in the one-step
debugging tree each rewrite node e ⇒ e′ corresponds to a single rewrite applied at e and checking its
validity is usually easier. The user must balance the pros and cons of each option, and choose the best
one for each debugging session.

The rules (APT 3) and (APT 9) deserve a more detailed explanation. They keep the corresponding
label (RepV) but changing the conclusion of the replacement inference in the lefthand side. For instance,
(APT 3) replaces e1 → e′ by the conclusion of the next transitivity inference e1 → e2. We do this as a
pragmatic way of simplifying the structure of the APT s, since e2 is obtained from e′ and hence likely
simpler (the root of the tree T ′ in (APT 3) must be necessarily of the form e′ → e2 by the structure of
the inference rule for transitivity in Figure 1). A similar reasoning explains the form of (APT 9). We will
formally state below (Theorem 1) that these changes are safe from the point of view of the debugger.

Although APT (T) is no longer a proof tree we keep the inference labels (RepV) and (Mb), assuming
implicitly that they contain a reference to the rewrite rule, equation, or membership axiom used at the
corresponding step in the original proof trees. This information will be used by the debugger in order to
single out the incorrect fragment of specification code.

The following property of the abbreviated proof trees, in particular of the forests APT ′o(T) and
APT ′m(T), will be useful when proving the correctness of the technique.

Lemma 1 Let T be a finite proof tree representing an inference in the calculus of Figure 1 w.r.t. some
rewrite theory R. Let I be an intended interpretation of R such that the root N of T is invalid in I.
Then:

(a) If T contains only one node, then

APT ′o(T) = APT ′m(T) = {T}

(b) Both sets APT ′o(T) and APT ′m(T) contain a tree with an invalid root.

Proof. If T contains only one node N then N is an invalid node without children and therefore buggy.
By Proposition 2 the inference step proving this node must be either a replacement or a membership. If
it is a replacement the rule (APT 8) of Figure 3 must be applied and the result holds, since it returns a
unary set with the same root. Analogously with a membership inference and rule (APT 7).

The second item can be proved by induction on the number of nodes of T , which we denote as n(T). If
n(T) = 1 the property is straightforward from the part (a) above because T ∈ APT ′o(T), T ∈ APT ′m(T).
If n(T) > 1 we distinguish cases depending on the rule for APT ′ that can be applied at the root of T :

• It cannot be (APT 2) by Proposition 2.

• If it is either (APT 3), (APT m
4), (APT 7), (APT 8), or (APT 9), the result holds directly because

the result is a unary set with the same (invalid) root.

• If it is either (APT o
4), (APT 5), (APT 6), or (APT 10) then by Proposition 2 N has some invalid

child, which corresponds to the root of some premise Ti. By the induction hypothesis, there is some
T ′ ∈ APT ′(Ti) with invalid root. And by observing the rules of Figure 3 it can be checked that
every subtree Ti of the root of T verifies APT ′(Ti) ⊆ APT ′(T). Then T ′ ∈ APT ′(T).

ut

Now we are ready to prove the correctness and completeness of the debugging technique based on
APT s:

15

Theorem 1 Let T be a finite proof tree representing an inference in the calculus of Figure 1 w.r.t. some
rewrite theory R. Let I be an intended interpretation of R such that the root of T is invalid in I. Then:

• Both APT o(T) and APT m(T) contain at least one buggy node (completeness).

• Any buggy node in APT o(T), APT m(T) has an associated wrong statement in R (correctness).

Proof. For simplicity we will denote by APT (T) both APT o(T) and APT m(T), and by APT ′(T) both
APT ′o(T) and APT ′m(T), distinguishing the particular type of abbreviated proof tree when necessary.

• APT (T) contains at least one invalid node, since its root is the root of T , and any debugging tree
containing an invalid node contains a buggy node by Proposition 3.

• First we observe that the root of APT (T) cannot be buggy, because if it is invalid then it has an
invalid child (Lemma 1(b)) . Therefore any buggy node must be part of APT ′(T) (the premise in
(APT 1)).

Let N be a buggy node in APT ′(T). Then N is the root of some tree TN , subtree of APT ′(T).
By the structure of the APT ′ rules this means that there is a subtree T ′ of T s.t. TN ∈ APT ′(T ′).
We prove that N has an associated wrong statement in S by induction on the number of nodes of
T ′, n(T ′).

If n(T ′) = 1 then T ′ contains only one node and APT ′(T ′) = {T ′} by Lemma 1(a). Then the only
possible buggy node is N , which means that N is also buggy in T and that the associated fragment
of code is wrong by Proposition 2.

If n(T ′) > 1 we examine the APT rule applied at the root of T ′:

– (APT 2). This is not possible because then APT ′(T ′) = ∅.
– (APT o

4), (APT 5), (APT 6) and (APT 10). Then TN ∈ APT ′(Ti) for some child subtree Ti of
the root of T ′ and the result holds by the induction hypothesis.

– (APT 3). Then T ′ is of the form

T1 . . . Tn

e1 → e′
(Rep→)

T ′′

e1 → e2
(Tr→)

Hence N ≡ (e1 → e2) and TN is

APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)
e1 → e2

(Rep→)

Since N is buggy in TN it is invalid w.r.t. I. By Proposition 2, e1 → e2 cannot be buggy
in T ′, i.e. either T ′′ has an invalid root or e1 → e′ is invalid. But T ′′ cannot be invalid
because APT ′(T ′′) is a child subtree of N and by Lemma 1(b) it would have an invalid root.
Therefore e1 → e′ is invalid. Moreover, the roots of T1, . . . , Tn are also valid by the same
reason: APT ′(T1), . . . ,APT ′(Tn) are child subtrees of N in TN and cannot have an invalid
root. Therefore e1 → e′ is buggy in T ′, i.e., is buggy in T and by Proposition 2 the equation
associated to label (Rep→) is wrong. And this label is the same that can be found associated
to N in the APT ′ TN . Therefore the buggy node N of the APT ′ has an associated wrong
equation.

– (APT m
4). We check that actually this rule cannot be applied to produce a buggy node and

therefore must not be considered here. If (APT m
4) is applied then T ′ must be of the form

T1 T2

e1 ⇒ e2
(Tr⇒)

N is e1 ⇒ e2 and TN is
APT ′(T1) APT ′(T2)

e1 ⇒ e2
(Tr⇒)

And N can be invalid but not buggy in T ′ (and hence in T) by Proposition 2, because it is the
conclusion of a transitivity inference, and thus either T1 or T2 has an invalid root. Then by
Lemma 1(b), either APT ′(T1) or APT ′(T2) have an invalid root and N is not buggy in TN .

16

is(6)→ 6
is1

il(6, 7)→ 6 7
il2

is(7 6)→ 6 7
is2

hd(7)→ 7
hd1

6 7 : SL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

hd(4 7)→ 7
hd2

hd(7)→ 7
hd1

4 7 : SL
olist

6 4 7 : SL
olist

il(6 4 7, 3)→ 6 3 4 7
il3

is(3 4 7 6)→ 6 3 4 7
is2

Figure 4: Abbreviated proof tree for the sorted lists example

– (APT 7). Then N is of the form e : s, T ′ is

T1 . . . Tn

e : s
(Mb)

and TN

APT ′(T1) . . .APT ′(Tn)
e : s

(Mb)

Since N is buggy the roots of APT ′(T1), . . . ,APT ′(Tn) are valid, which by Lemma 1 means
that the roots of T1, . . . , Tn are also valid. Then N is buggy in T ′, and hence in T , and the
membership axiom associated to the label (Mb) is wrong by Proposition 2.

– (APT 8). Analogous to (APT 7).

– (APT 9). Analogous to (APT 3).
ut

The theorem states that we can safely employ the abbreviated proof tree as a basis for the declarative
debugging of Maude system and functional modules: the technique will find a buggy node starting from
any initial symptom detected by the user. Of course, these results assume that the user answers correctly
all the questions about the validity of the APT nodes asked by the debugger (see Section 4.1).

The tree depicted in Figure 4 is the abbreviated proof tree corresponding to the proof tree in Figure 2,
using the same conventions w.r.t. abbreviating the operation names. The debugging example described
later in Section 4.3.1 will be based on this abbreviated proof tree.

4 Using the debugger

Before describing the basics of the user interaction with the debugger, we make explicit what is assumed
about the modules introduced by the user; then we present the available commands and how to use them
to debug several buggy examples.

4.1 Assumptions

A rewrite theory has an underlying equational theory, containing equations and memberships, which is
expected to satisfy the appropriate executability requirements, namely, it has to be terminating, confluent,
and sort decreasing. Rules are assumed to be coherent with respect to the equations; for details, see [9].

One interesting feature of our tool is that the user is allowed to trust some statements, by means of
labels applied to the suspicious statements. This means that the unlabeled statements are assumed to
be correct, and only their conditions will generate questions. In order to obtain a nonempty abbreviated
proof tree, the user must have labeled some statements (all with different labels); otherwise, everything
is assumed to be correct. In particular, the wrong statement must be labeled in order to be found.

Although the user can introduce a module importing other modules, the debugging process takes
place in the flattened module. However, the debugger allows the user to trust a whole imported module.

As mentioned in the introduction, navigation of the debugging tree takes place by asking questions
to an external oracle, which in our case is either the user or another module introduced by the user. In
both cases the answers are assumed to be correct. If either the module is not really correct or the user
provides an incorrect answer, the result is unpredictable. Notice that the information provided by the
correct module need not be complete, in the sense that some functions can be only partially defined. In
the same way, the signature of the correct module need not coincide with the signature of the module
being debugged. If the correct module cannot help in answering a question, the user may have to answer
it.

17

4.2 Commands

The debugger is initiated in Maude by loading the file dd.maude (available from http://maude.sip.
ucm.es/debugging), which starts an input/output loop that allows the user to interact with the tool.
Then, the user can enter Full Maude modules and commands, as well as commands for the debugger.

The user can choose between using all the labeled statements in the debugging process (by default)
or selecting some of them by means of the command

(set debug select on .)

Once this mode is activated, the user can select and deselect statements by using

(debug select LABELS .)

(debug deselect LABELS .)

where LABELS is a list of labels separated by spaces.
Moreover, all the labels in statements of a flattened module can be selected or deselected with the

following commands:

(debug include MODULES .)

(debug exclude MODULES .)

where MODULES is a list of module names separated by spaces.
The selection mode can be switched off by using the command

(set debug select off .)

If a module with correct definitions is used to reduce the number of questions, it must be indicated
before starting the debugging process with the command

(correct with MODULE-NAME .)

and can be deselected with the command

(delete correct module .)

Since rewriting is not assumed to terminate, a bound, which is 42 by default although iy can be
unbounded, is used when searching in the correct module and can be set with the command

(set bound BOUND .)

When debugging rewrites, two different trees can be built: one whose questions are related to one-step
rewrites and another whose questions are related to several steps. The user can switch between these
trees with the commands

(one-step tree .)

(many-steps tree .)

being the first the default one.
The generated debugging tree can be navigated by using two different strategies, namely, top-down

and divide and query, being the latter the default one. The user can switch between them by using the
commands

(top-down strategy .)

(divide-query strategy .)

The debugging process is started with the commands

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)

(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

18

http://maude.sip.ucm.es/debugging
http://maude.sip.ucm.es/debugging

is(6)→ 6
is1

il(6, 7)→ 6 7
il2

is(7 6)→ 6 7
is2

hd(7)→ 7
hd1

6 7 : SL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

Figure 5: Abbreviated proof tree after the first answer

for wrong reductions, memberships, and rewrites. MODULE-NAME is the module where the inference took;
if no module name is given, the current module is used by default.

How the process continues depends on the selected strategy. In case the top-down strategy is selected,
several nodes will be displayed in each question. If there is an invalid node, the user must select one of
them with the command

(node N .)

where N is the identifier of this wrong node. If all the nodes are correct, he must type

(all valid .)

In the divide and query strategy, each question refers to one inference that can be either correct or
wrong. The different answers are transmitted to the debugger with the commands

(yes .)

(no .)

Instead of just answering yes, we can also trust some statements on the fly if, once the process has
started, we decide the bug is not there. To trust the current statement we type the command

(trust .)

Finally, we can return to the previous state in both strategies by using the command

(undo .)

4.3 Examples

We show how the debugger works by means of several examples: the sorted lists specification already
introduced in Section 2.3, binary search trees, the knight’s tour problem from Section 2.6, and the
evaluation and computation semantics of a simple imperative language.

4.3.1 Sorted lists

We recall from Section 2.3 that if we try to sort the list 3 4 7 6, we obtain the strange result

Maude> (red insertion-sort(3 4 7 6) .)

result SortedList{NatAsToset} : 6 3 4 7

That is, the function returns an unsorted list, but Maude infers it is sorted. We can debug the buggy
specification with the default divide and query strategy by using the command

Maude> (debug insertion-sort(3 4 7 6) -> 6 3 4 7 .)

With this command the debugger computes the tree shown in Figure 4. The first question asked by
the debugger is

Is this reduction (associated with the equation is2) correct?

insertion-sort(4 7 6) -> 6 4 7

Maude> (no .)

We expect insertion-sort to order the list, so we answer negatively and the subtree shown in
Figure 5 is selected to continue the debugging. The next question is

19

hd(7)→ 7
hd1

6 7 : SL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

Figure 6: Abbreviated proof tree after the second answer

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

Figure 7: Abbreviated proof tree after the third answer

Is this reduction (associated with the equation is2) correct?

insertion-sort(7 6) -> 6 7

Maude> (yes .)

Since the list is sorted, we answer yes, so the subtree corresponding to this reduction is deleted (Figure
6). The debugger asks now the question

Is this membership (associated with the membership olist) correct?

6 7 : SortedList{NatAsToset}

Maude> (yes .)

This sort is correct, so the subtree corresponding to this membership is also deleted (Figure 7) and
the next question is asked.

Is this reduction (associated with the equation il3) correct?

insert-list(6 7, 4) -> 6 4 7

Maude> (no .)

With this information the debugger selects the subtree and, since it is a leaf, it concludes that the
node is associated with the wrong equation.

The buggy node is:

insert-list(6 7, 4) -> 6 4 7

with the associated equation: il3

That is, the debugger points to the equation il3 as buggy. If we examine it

ceq [il3] : insert-list(E OL, E’) = E E’ OL

if E’ <= E /\ E OL : SortedList{X} .

we can see that the order of E and E’ in the righthand side is wrong and we can proceed to fix it
appropriately.

ceq [il3] : insert-list(E OL, E’) = E’ E OL

if E’ <= E /\ E OL : SortedList{X} .

We can check the fixed function by sorting again the list 3 4 7 6.

Maude> (red insertion-sort(3 4 7 6) .)

result SortedList{NatAsToset} : 3 4 6 7

We obtain now the sorted list 3 4 6 7. Then, we have solved one problem, but if we reduce the
unsorted list 6 3 4 7

20

Maude> (red 6 3 4 7 .)

result SortedList{NatAsToset}: 6 3 4 7

we can see that Maude continues assigning to it an incorrect sort.
We debug this inference by using the command

Maude> (debug 6 3 4 7 : SortedList{NatAsToset} .)

The first question the debugger asks is

Is this membership (associated with the membership olist) correct?

3 4 7 : SortedList{NatAsToset}

Maude> (yes .)

Of course, this list is sorted. The following question is

Is this reduction (associated with the equation hd2) correct?

head(3 4 7) -> 7

Maude> (no .)

But the head of a list should be the first element, not the last one, so we answer no. With only these
two questions the debugger prints

The buggy node is:

head(2 5 7) -> 7

with the associated equation: hd2

If we check the equation hd2, we can see that we take the element from the wrong side. The right
equation is

eq [hd2] : head(E L) = E .

To debug this module we have used the default divide and query strategy. We illustrate now how to
do it with the top-down strategy. We debug again the inference insertion-sort(3 4 7 6) -> 6 3 4 7
in the initial module with the two errors.

Maude> (top-down strategy .)

Top-down strategy selected.

Maude> (debug insertion-sort(3 4 7 6) -> 6 3 4 7 .)

The debugger asks now about the validity of the children of the root of the tree in Figure 4:

Please, choose a wrong node:

Node 0 : insertion-sort(4 7 6) -> 6 4 7

Node 1 : insert-list(6 4 7,3) -> 6 3 4 7

Maude> (node 0 .)

Both nodes are wrong, so we select, for example, the first one. The debugger selects this node as the
current one and asks about the correction of its children:

Please, choose a wrong node:

Node 0 : insertion-sort(7 6) -> 6 7

Node 1 : insert-list(6 7,4) -> 6 4 7

Maude> (node 1 .)

21

This time, only one of the nodes is wrong, so we select it. The debugger prints now

Please, choose a wrong node:

Node 0 : 6 7 : SortedList{NatAsToset}

Maude> (all valid .)

There is only a node, and it is correct, so we give this information to the debugger, and it detects the
wrong equation.

The buggy node is:

insert-list(6 7,4) -> 6 4 7

with the associated equation: il3

But remember that we chose a node randomly when the debugger showed two wrong nodes. What
happens if we select the other one? The following question is printed:

Please, choose a wrong node:

Node 0 : 6 4 7 : SortedList{NatAsToset}

Maude> (node 0 .)

Since this single node is wrong, we choose it and the debugger asks

Please, choose a wrong node:

Node 0 : head(4 7) -> 7

Node 1 : 4 7 : SortedList{NatAsToset}

Maude> (node 0 .)

The first node is the only one erroneous, so we select it. With this information, the debugger prints

The buggy node is:

head(4 7) -> 7

with the associated equation: hd2

That is, the second path finds the other bug. In general, this strategy finds different bugs if the user
selects different wrong nodes.

In order to prune the debugging tree, we consider a module defining the sorting function sort in a cor-
rect, although inefficient, way. This module will define the functions insertion-sort and insert-list
by means of sort.

(fmod CORRECT-SORTING{X :: TOSET} is

sorts List{X} SortedList{X} .

subsorts X$Elt < SortedList{X} < List{X} .

vars E E’ : X$Elt .

vars L L’ : List{X} .

var OL : SortedList{X} .

op __ : List{X} List{X} -> List{X} [ctor assoc] .

cmb E E’ : SortedList{X}

if E < E’ .

cmb E E’ L : SortedList{X}

if E < E’ /\ E’ L : SortedList{X} .

The sort function is defined by switching unsorted elements in all the possible cases for lists.

22

op sort : List{X} -> SortedList{X} .

ceq sort(L E E’ L’) = sort(L E’ E L’) if E’ < E .

ceq sort(L E E’) = sort(L E’ E) if E’ < E .

ceq sort(E E’ L) = sort(E’ E L) if E’ < E .

ceq sort(E E’) = E’ E if E’ < E .

eq sort(L) = L [owise] .

We use now sort to implement insertion-sort and insert-list.

op insertion-sort : List{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

eq insertion-sort(L) = sort(L) .

eq insert-list(OL, E) = sort(E OL) .

endfm)

We can use this module (instantiated with the view NatAsToset) to prune the debugging trees built
by the debug commands if we previously introduce the command

Maude> (correct module CORRECT-SORTING{NatAsToset} .)

CORRECT-SORTING{NatAsToset} selected as correct module.

Now, we try to debug the initial module (with two errors) again. In this example, all the questions
about correct inferences have been pruned, so all the answers are negative. In general, the correct module
has not to be complete, so some correct inferences could be presented to the user.

Maude> (debug in SORTED-LIST-TEST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

Is this transition (associated with the equation il3) correct?

insert-list(6 4 7,3) -> 6 3 4 7

Maude> (no .)

Is this membership (associated with the membership olist) correct?

6 4 7 : SortedList{NatAsToset}

Maude> (no .)

Is this transition (associated with the equation hd2) correct?

head(4 7) -> 7

Maude> (no .)

The buggy node is:

head(4 7) -> 7

with the associated equation: hd2

The correct module also improves the debugging of the membership. With only one question we
obtain the buggy equation.

Maude> (debug in SORTED-LIST-TEST : 6 3 4 7 : SortedList{NatAsToset} .)

Is this transition (associated with the equation hd2) correct?

head(3 4 7) -> 7

Maude> (no .)

The buggy node is:

head(3 4 7) -> 7

with the associated equation: hd2

23

4.3.2 Binary search trees

As another example, we show how to specify binary search trees without repeated elements, whose nodes
contain elements that satisfy the theory STOSET (defining a strict total order on them) [9, Sect. 8.3].

fmod SEARCH-TREE{X :: STOSET} is

sorts NeSearchTree{X} SearchTree{X} Tree{X} .

subsorts NeSearchTree{X} < SearchTree{X} < Tree{X} .

op empty : -> SearchTree{X} [ctor] .

op ___ : Tree{X} X$Elt Tree{X} -> Tree{X} [ctor] .

where the operation for building non-empty search trees uses juxtaposition and X$Elt denotes the sort
Elt from the theory STOSET.

A tree is a search tree when its root is bigger than all the elements in the left subtree and smaller than
all the elements in the right subtree; this requirement is specified by means of memberships. Assuming
that the subtrees are search trees, instead of comparing with all their elements, it is enough to compare
with the minimum or maximum of the appropriate subtree.

vars E E’ : X$Elt .

vars L R : SearchTree{X} .

vars L’ R’ : NeSearchTree{X} .

mb [leaf] : empty E empty : NeSearchTree{X} .

cmb [1ch1] : L’ E empty : NeSearchTree{X} if max(L’) < E .

cmb [1ch2] : empty E R’ : NeSearchTree{X} if E < min(R’) .

cmb [2ch] : L’ E R’ : NeSearchTree{X}

if max(L’) < E /\ E < max(R’) .

ops min max : NeSearchTree{X} -> X$Elt .

ceq [mn1] : min(empty E R) = E if empty E R : NeSearchTree{X} .

ceq [mn2] : min(L’ E R) = min(L’) if L’ E R : NeSearchTree{X} .

ceq [mx1] : max(L E empty) = E if L E empty : NeSearchTree{X} .

ceq [mx2] : max(L E R’) = max(R’) if L E R’ : NeSearchTree{X} .

The delete operation is specified as usual by structural induction, and in the non-empty case by
comparing the element to be deleted with the root of the tree and distinguishing the three cases according
to whether the former is smaller than, equal to, or bigger than the latter.

op delete : SearchTree{X} X$Elt -> SearchTree{X} .

eq [dl1] : delete(empty, E) = empty .

ceq [dl2] : delete(L E R, E’) = delete(L, E’) E R

if E’ < E /\

L E R : NeSearchTree{X} .

ceq [dl3] : delete(L E R, E’) = L E delete(R, E’)

if E < E’ /\

L E R : NeSearchTree{X} .

ceq [dl4] : delete(empty E R, E) = R

if empty E R : NeSearchTree{X} .

ceq [dl5] : delete(L E empty, E) = L

if L E empty : NeSearchTree{X} .

ceq [dl6] : delete(L’ E R’, E) = L’ E’ delete(R’, E)

if E’ := min(R’) /\

L’ E R’ : NeSearchTree{X} .

endfm

This specification could be completed with other operations for insertion and look up.
Now we can instantiate this module with the predefined module INT of integer numbers.

(view IntAsStoset from STOSET to INT is

sort Elt to Int .

endv)

(fmod SEARCH-TREE-TEST is

protecting SEARCH-TREE{IntAsStoset} .

endfm)

24

N 1 N : NeST
leaf

max(N 1 N)→ 1
mx1

N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

N 7 N : NeST
leaf

min(N 7 N)→ 7
mn1

N 6 (N 7 N) : NeST
1ch2

N 7 N : NeST
leaf

max(N 7 N)→ 7
mx1

max(N 6 (N 7 N))→ 7
mx2

(N 4 N) 6 (N 6 (N 7 N)) : NeST (?)
2ch

�
�
�

A
A
A

max((N 4 N) 6 (N 6 (N 7 N)))
mx2

(N 1 N) 2 ((N 4 N) 6 (N 6 (N 7 N))) : NeST
2ch

Figure 8: Abbreviated proof tree

N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

N 7 N : NeST
leaf

min(N 7 N)→ 7
mn1

N 6 (N 7 N) : NeST
1ch2

N 7 N : NeST
leaf

max(N 7 N)→ 7
mx1

max(N 6 (N 7 N))→ 7 (†)
mx2

(N 4 N) 6 (N 6 (N 7 N)) : NeST
2ch

Figure 9: Abbreviated proof tree after the first question

Then, we reduce the following term

Maude> red delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5) .

result NeSearchTree{Int}:

(empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty)))

We obtain a tree with repetitions; moreover, Maude infers that it is a search tree!
We can debug the inference of this membership with the command

Maude> (debug

(empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty))) : NeSearchTree{Int} .)

that generates, by considering all the labeled statements as suspicious, the debugging tree shown in
Figure 8, where N denotes the empty search tree and 5 represents the already depicted proof subtree
with root max(N 6 (N 7 N))→ 7.

Since the default navigation strategy is divide and query, the debugger selects the node marked with
? in the figure, and then asks the following question:

Is this membership (associated with the membership 2ch) correct?

(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}

Maude> (no .)

Since the answer is no, the debugger discards the rest of the tree and focuses in the subtree with this
node as root (see Figure 9). The next question corresponds to the node marked with † in the figure.

Is this transition (associated with the equation mx2) correct?

max(empty 6 (empty 7 empty)) -> 7

Maude> (yes .)

When the answer is yes the corresponding subtree is deleted, obtaining in this case the tree in
Figure 10. The next question is

N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

(N 4 N) 6 (N 6 (N 7 N)) : NeST
2ch

Figure 10: Abbreviated proof tree after the second question

25

�
�
�

A
A
A

(N 1 N) 2 R : NeST
2ch

�
�
�

A
A
A

N 6 (N 7 N) : NeST
1ch2

�
�
�

A
A
A

R : NeST
2ch

�
�
�

A
A
A

dl(N 6 (N 7 N), 5)→ N 6 (N 7 N)
dl2

dl(R, 5)→ (N 4 N) 6 (N 6 (N 7 N))
dl6

dl((N 1 N) 2 R, 5)→ (N 1 N) 2 ((N 4 N) 6 (N 6 (N 7 N)))
dl3

Figure 11: Abbreviated proof tree for the top down strategy

Is this transition (associated with the equation mx1) correct?

max(empty 4 empty) -> 4

Maude> (trust .)

In the last question, we realized that the equation applied is so simple that we can trust it. This
answer has a behavior similar to yes: it deletes all the subtrees whose root is labeled as the current
statement. With these answers, we obtain a tree with only one node and the debugger is able to conclude
which is the buggy membership.

The buggy node is:

(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}

with the associated membership: 2ch

In fact, if we check now this membership we notice that it compares the root with the biggest value of
the right subtree, when it should be compared with the smallest one. After fixing this error, the delete
function is still incorrect, so we debug this function (using the top-down strategy for illustration’s sake)
as follows:

Maude> (top-down strategy .)

Top-down strategy selected.

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select leaf 1ch1 1ch2 2ch dl2 dl3 dl4 dl5 dl6 .)

Labels leaf 1ch1 1ch2 2ch dl2 dl3 dl4 dl5 dl6 are now suspicious.

Maude> (debug delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5)

-> (empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty))) .)

where we have decided to mark as suspicious the memberships and the non-trivial equations of delete.
In this case, the debugger builds the proof tree (partially) shown in Figure 11 (where R denotes the
search tree (N 4 N) 5 (N 6 (N 7 N))), so it asks the following questions:

Please, choose a wrong node:

Node 0 : (empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))) :

NeSearchTree{Int}

Node 1 : delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->

(empty 4 empty) 6 (empty 6 (empty 7 empty))

Maude> (node 1 .)

Please, choose a wrong node:

Node 0 : empty 6 (empty 7 empty) : NeSearchTree{Int}

Node 1 :(empty 4 empty) 5 (empty 6 (empty 7 empty)) : NeSearchTree{Int}

Node 2 : delete(empty 6 (empty 7 empty), 5) -> empty 6 (empty 7 empty)

26

k(0)⇒1 [1,1]
k1

l([2,3])→ t
leg

c([1,1],[2,3])→ f
con2

k(1)⇒1 [1,1][2,3]

k2

l([3,1])→ t
leg

c([1,1][2,3],[3,1])→ f
con2

k(2)⇒1 [1,1][2,3][3,1]

k2

l([2,3])→ t
leg

c([1,1][2,3][3,1],[2,3])→ f
con2

k(3)⇒1 [1,1][2,3][3,1][2,3]
k2

Figure 12: APT for the knight example

Maude> (all valid .)

The buggy node is:

delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->

(empty 4 empty) 6 (empty 6 (empty 7 empty))

with the associated equation: dl6

The debugger concludes that the problem is within the equation dl6; to fix it, we must delete the
element E’ instead of E in the subtree.

ceq [dl6] : delete(L’ E R’, E) = L’ E’ delete(R’, E’)

if E’ := min(R’) /\

L’ E R’ : NeSearchTree{X} .

4.3.3 Knight’s tour problem

In Section 2.6 we described a system module that simulates a knight’s tour around a chessboard. However,
this system module contains a bug and the knight repeats some positions in its tour. This error is also
obtained when looking for a 3 steps journey:

Maude> (rew knight(3) .)

result List : [1,1][2,3][3,1][2,3]

Thus, we debug this smaller computation. Moreover, after inspecting the rewrite rules describing the
eight possible moves, we are sure that they are not responsible for the error; therefore, we trust them.

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select con1 con2 leg k1 k2 .)

Labels con1 con2 k1 k2 leg are now suspicious.

Maude> (debug knight(3) =>* [1,1][2,3][3,1][2,3] .)

The default one-step tree construction strategy is used and the tree shown in Figure 12 is built, where
every operation has been abbreviated with its first letter.

Since the tree is navigated by using the default divide and query strategy, the first two questions
asked by the debugger are

Is this rewrite (associated with the rule k2) correct?

knight(1) =>1 [1,1][2,3]

Maude> (yes .)

Is this rewrite (associated with the rule k2) correct?

knight(2) =>1 [1,1][2,3][3,1]

Maude> (yes .)

27

legal([3,1])→ true
leg

contains([1,1][2,3],[3,1])→ false
con2

knight(2)⇒1 [1,1][2,3][3,1]
k2

legal([2,3])→ true
leg

contains([1,1][2,3][3,1],[2,3])→ false
con2

knight(3)⇒1 [1,1][2,3][3,1][2,3]
k2

Figure 13: APT for the knight example after the first answer

legal([2,3])→ true
leg

contains([1,1][2,3][3,1],[2,3])→ false
con2

knight(3)⇒1 [1,1][2,3][3,1][2,3]
k2

Figure 14: APT for the knight example after the second answer

Notice the form =>1 of the arrow in the rewrites appearing in the questions, to emphasize that they
are one-step rewrites.

In both cases the answer is yes because these paths are possible, legal behaviors of the knight when
it can do one or two hops. The trees obtained after the first and second answers are shown in Figures 13
and 14, respectively. The next question is

Is this reduction (associated with the equation con2) correct?

contains([1,1][2,3][3,1],[2,3]) -> false

Maude> (no .)

Clearly, this is not a correct reduction, since position [2,3] is already in the path [1,1][2,3][3,1].
With this answer the debugger finds the error

The buggy node is:

contains([1,1][2,3][3,1],[2,3]) -> false

with the associated equation: con2

Looking at the definition of the contains operation, we realize that it defines the membership oper-
ation for sets, not for lists. Actually, it is checking if the position given as second argument is the head
of the list. A correct definition of the contains operation is as follows:

eq contains(nil, P) = false .

eq contains(Q J, P) = P == Q or contains(J, P) .

With this function fixed, the problem can be solved:

Maude> (rew knight(11) .)

result Journey : [1,1][2,3][3,1][1,2][2,4][3,2][1,3][2,1][3,3][1,4][2,2][3,4]

4.3.4 WhileL evaluation semantics

We show in this section how to describe the evaluation semantics of a very simple programming language
with arithmetic and Boolean expressions, assignments, sequential composition, conditionals, and loops
[11, 24].

First, we define the syntax of our language. We define sorts for the arithmetic and Boolean variables,
operators, and expressions; the commands; and the programs.

(fmod WHILEL-SYNTAX is

pr QID .

sorts Var BVar Num Boolean Op BOp Exp BExp Com Prog .

The arithmetic variables are defined as quoted identifiers, although we also define ad hoc variables to
facilitate its use. Variables and numbers are particular cases of expressions.

subsorts Qid < Var < Exp .

subsort Nat < Num < Exp .

28

ops w x y z : -> Var .

ops +. -. *. : -> Op .

op ___ : Exp Op Exp -> Exp [prec 20] .

In the same way, Boolean variables are defined:

subsorts Qid < BVar < BExp .

subsort Boolean < BExp .

ops T F : -> Boolean .

ops And Or : -> BOp .

op ___ : BExp BOp BExp -> BExp [prec 20] .

op Not_ : BExp -> BExp [prec 15] .

op Equal : Exp Exp -> BExp .

We define the following commands: skip, assignment, concatenation of commands, conditional, and
while loop. The fact that a program is just a command is reflected in our signature by a subsort
declaration.

op skip : -> Com .

op _:=_ : Var Exp -> Com [prec 30] .

op _;_ : Com Com -> Com [assoc prec 40] .

op If_Then_Else_ : BExp Com Com -> Com [prec 50] .

op While_Do_ : BExp Com -> Com [prec 60] .

subsort Com < Prog .

endfm)

The evaluation of arithmetic and Boolean expression is defined for each operator by using the Maude
predefined functions.

(fmod AP is

pr WHILEL-SYNTAX .

op Ap : Op Num Num -> Num .

vars n n’ : Num .

eq Ap(+., n, n’) = n + n’ .

eq Ap(*., n, n’) = n * n’ .

eq Ap(-., n, n’) = if n < n’ then 0 else sd(n, n’) fi .

op Ap : BOp Boolean Boolean -> Boolean .

var bv bv’ : Boolean .

eq Ap(And, T, bv) = bv .

eq Ap(And, F, bv) = F .

eq Ap(Or, T, bv) = T .

eq Ap(Or, F, bv) = bv .

endfm)

The environment, defined in the module ENV below, keeps the value associated to each variable.

(fmod ENV is

inc WHILEL-SYNTAX .

sorts Value Variable .

subsorts Num Boolean < Value .

subsorts Var BVar < Variable .

sort ENV .

29

The empty environment is represented by mt, the assignment of a value to a variable is defined by
=, and bigger environments are created by juxtaposition.

op mt : -> ENV .

op _=_ : Variable Value -> ENV [prec 20] .

op __ : ENV ENV -> ENV [assoc id: mt prec 30] .

The module also defines look up and update functions. In case a variable has been assigned more
than one value, the leftmost assignment is the newest and all the others can be deleted.

op _[_] : ENV Var -> Num .

op _[_] : ENV BVar -> Boolean .

op _[_/_] : ENV Value Variable -> ENV [prec 35] .

vars X X’ : Variable .

vars V W : Value .

var rho : ENV .

var n : Num .

var x : Var .

eq rho [V / X] = (X = V) rho .

eq (X = V rho)[X’] = if X == X’ then V else rho[X’] fi .

eq (X = V) rho (X = W) = (X = V) rho .

endfm)

The evaluation semantics of the language is described in the module EVALUATION. We use pairs of
expressions or commands with environments (called statements) to obtain the result of the execution of
a program.

(fmod EVALUATION is

pr ENV .

pr AP .

sort Statement .

subsorts Num Boolean ENV < Statement .

op <_,_> : Exp ENV -> Statement .

op <_,_> : BExp ENV -> Statement .

op <_,_> : Com ENV -> Statement .

The evaluation of expressions uses the function Ap above.

var x : Var .

vars st st’ st’’ : ENV .

vars e e’ : Exp .

var op : Op .

vars v v’ : Num .

var bx : BVar .

var bv bv’ : Boolean .

var bop : BOp .

var be be’ : BExp .

vars C C’ : Com .

rl [CR] : < n, st > => n .

rl [VarR] : < X, st > => st(X) .

crl [OpR] : < e op e’, st > => Ap(op,v,v’)

if < e, st > => v /\

< e’, st > => v’ .

rl [BCR1] : < T, st > => T .

rl [BCR2] : < F, st > => F .

30

rl [BVarR] : < bx, st > => st(bx) .

crl [OpR] : < be bop be’, st > => Ap(bop,bv,bv’)

if < be, st > => bv /\

< be’, st > => bv’ .

crl [EqR1] : < Equal(e,e’), st > => T

if < e, st > => v /\

< e’, st > => v .

crl [EqR2] : < Equal(e,e’), st > => F

if < e, st > => v /\

< e’, st > => v’ /\ v =/= v’ .

crl [Not1] : < Not be, st > => F

if < be, st > => T .

crl [Not2] : < Not be, st > => T

if < be, st > => F .

endm)

We use this module to describe the semantics of statements.

(mod EVALUATION-WHILE is

protecting EVALUATION-EXP-EVAL .

subsort ENV < Statement .

op <_,_> : Com ENV -> Statement .

var X : Var .

vars st st’ st’’ : ENV .

var e : Exp .

var v : Num .

var be : BExp .

vars C C’ C’’ : Com .

The assignment updates the environment with a new value for the variable.

crl [AsR] : < X := e, st > => < skip, st[v / X] >

if < e, st > => v .

The concatenation of statements evaluates the first command, and uses the result to evaluate the rest.

crl [ComR] : < C ; C’, st > => < skip, st’’ >

if < C, st > => < skip, st’ > /\

< C’, st’ > => < skip, st’’ > .

The if statement evaluates the condition and then selects the branch that must be evaluated.

crl [IfR1] : < If be Then C Else C’, st > => < skip, st’ >

if < be, st > => T /\

< C, st > => < skip, st’ > .

crl [IfR2] : < If be Then C Else C’, st > => < skip, st’ >

if < be, st > => F /\

< C’, st > => < skip, st’ > .

The while statement also distinguishes whether the condition is false or not. In the first case, it
returns the same environment. In the second one it evaluates the body of the loop and then tries to
evaluate the whole statement again.

crl [WhileR1] : < While be Do C, st > => < skip, st >

if < be, st > => F .

crl [WhileR2] : < While be Do C, st > => < skip, st’ >

if < be, st > => T /\

< C, st > => < skip, st’ > .

endm)

31

If we execute now the program below to multiply x and y and keep the result in z

Maude> (rew < z := 0 ; (While Not Equal(x, 0) Do

z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 > .)

result Statement : < skip, y = 3 z = 3 x = 1 >

we obtain z = 3, while we expected to obtain z = 6. We debug this behavior with the top-down strategy
and the default one-step tree by typing the commands

Maude> (top-down strategy .)

Top-down strategy selected.

Maude> (debug < z := 0 ; (While Not Equal(x, 0) Do

z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 >

=>* < skip, y = 3 z = 3 x = 1 > .)

The debugger computes the tree and asks about the validity of the root’s children:

Please, choose a wrong node:

Node 0 : < z := 0, x = 2 y = 3 z = 1 > =>1 < skip, x = 2 y = 3 z = 0 >

Node 1 : < While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >

Maude> (node 1 .)

The second node is erroneous, because x has not reached 0, so we select this node, and the following
question is related to its children:

Please, choose a wrong node:

Node 0 : < Not Equal(x,0), x = 2 y = 3 z = 0 > =>1 T

Node 1 : < z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >

Maude> (all valid .)

Since both nodes are right, the debugger determines that the current node is buggy:

The buggy node is:

< While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >

with the associated rule: WhileR2

If we examine now the WhileR2 rule we realize that the body of the while loop is evaluated only once.
We fix this rule as follows:

crl [WhileR2] : < While be Do C, st > => < skip, st’ >

if < be, st > => T /\

< C ; (While be Do C), st > => < skip, st’ > .

If we execute now the program in the fixed module, we obtain the right result.

Maude> (rew < z := 0 ; (While Not Equal(x, 0) Do

z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 > .)

result Statement : < skip, y = 3 z = 6 x = 0 >

32

4.3.5 WhileL computation semantics

In contrast to the evaluation semantics, the computation semantics describes the behavior of programs
in terms of small steps [11, 24]. We define this behavior in the following module:

(mod COMPUTATION-WHILE is

protecting EVALUATION-EXP .

op <_,_> : Com ENV -> Statement .

sort Statement2 .

op (_,_) : Com ENV -> Statement2 .

op Tick : -> Statement2 .

var X : Var .

vars st st’ : ENV .

var e : Exp .

var v : Num .

var be : BExp .

vars C C’ C’’ : Com .

eq skip ; C = C .

eq C ; skip = C .

crl [AsRc] : < X := e, st > => < skip, st[v / X] >

if < e, st > => v .

crl [IfRc1] : < If be Then C Else C’, st > => < C’’, st’ >

if < be, st > => T /\

< C, st > => < C’’, st’ > /\ C =/= C’’ .

crl [IfRc2] : < If be Then C Else C’, st > => < C’’, st’ >

if < be, st > => F /\

< C’, st > => < C’’, st’ > /\ C’ =/= C’’ .

crl [ComRc1] : < C ; C’, st > => < C’’ ; C’, st >

if < C, st > => < C’’, st’ > /\ C =/= C’’ .

crl [ComRc2] : < C ; C’, st > => < C’’, st’ >

if (C, st) => Tick /\

< C’, st > => < C’’, st’ > /\ C’ =/= C’’ .

crl [WhileRc1] : < While be Do C, st > => < skip, st >

if < be, st > => F .

crl [WhileRc2] : < While be Do C, st > => < C ; (While be Do C), st >

if < be, st > => T .

We also define the termination predicates for the language:

rl [Skipt] : (skip, st) => Tick .

crl [IfRt1] : (If be Then C Else C’, st) => Tick

if < be, st > => T /\

(C, st) => Tick .

crl [IfRt2] : (If be Then C Else C’, st) => Tick

if < be, st > => F /\

(C’, st) => Tick .

crl [ComRt] : (C ; C’, st) => Tick

if (C, st) => Tick /\

(C’, st) => Tick .

endm)

If we rewrite now a program to swap the values of two variables, their values are not exchanged:

Maude> (rew < x := x -. y ;

y := x +. y ;

33

< A1 ; A2 ; A3, x = 5 y = 2 >⇒f < A2 ; A3, x = 5 y = 2 >
ComRc1

< A2 ; A3, x = 5 y = 2 >⇒f < A3, x = 5 y = 2 >
ComRc1

< A3, x = 5 y = 2 >⇒f < skip, y = 2 x = 0 >
AsRc

< A2 ; A3, x = 5 y = 2 >⇒+ < skip, y = 2 x = 0 >

Tr

< A1 ; A2 ; A3, x = 5 y = 2 >⇒+ < skip, y = 2x = 0 >
Tr

Figure 15: APT for the computation semantics example

< A2; A3, x = 5y = 2 >⇒f < A3, x = 5y = 2 >
ComRc1

< A3, x = 5y = 2 >⇒f < skip,y = 2 x = 0 >
AsRc

< A2; A3, x = 5y = 2 >⇒+ < skip, y = 2x = 0 >
Tr

Figure 16: APT for the computation semantics example after the first answer

x := y -. x, x = 5 y = 2 > .)

result Statement : < skip,y = 2 x = 0 >

We use the many-steps tree and the default divide and query strategy to debug this behavior:

Maude> (many-steps tree .)

Many-steps tree selected.

Maude> (debug < x := x -. y ; y := x +. y ; x := y -. x, x = 5 y = 2 >

=>* < skip, y = 2 x = 0 > .)

The tool builds the debugging tree shown in Figure 15 where the assignments in the program have
been abbreviated: A1 = x := x -. y, A2 = y := x +. y, A3 = x := y -. x. The debugging trees
above ⇒f transitions have not been calculated yet; they are frozen until the navigation through the tree
leads to them.

A node is selected and the following question is presented to the user:

Is this rewrite correct?

< y := x +. y ; x := y -. x, x = 5 y = 2 > =>+ < skip, y = 2 x = 0 >

Maude> (no .)

Notice the form =>+ of the arrow in the rewrite appearing in the question, to emphasize that it is a
many-steps rewrite.

The transition is wrong because the variables have not been properly updated. The debugger continues
with the tree shown in Figure 16 and asks the following question:

Is this rewrite (associated with the rule AsRc) correct?

< x := y -. x,x = 5 y = 2 > =>1 < skip,y = 2 x = 0 >

Maude> (yes .)

Now the debugger computes the debugging tree associated with the left child in Figure 16. It is shown
if Figure 17.

x = 5 y = 2(x)→ 5
st2

< x,x = 5 y = 2 >⇒1 5
VarR

y = 2(y)→ 2
st2

x = 5 y = 2(y)→ 2
st2

< y,x = 5 y = 2 >⇒1 2
VarR

Ap(+.,5,2)→ 7
ap-add

< x +. y,x = 5 y = 2 >⇒1 7
OpR

remove(y = 2,y)→ mt
rmv2

remove(x = 5 y = 2,y)→ x = 5
rmv2

x = 5 y = 2[7 / y]→ x = 5 y = 7
st1

< y := x +. y,x = 5 y = 2 >⇒1 < skip,x = 5 y = 7 >
AsRc

< y := x +. y ; x := y -. x,x = 5 y = 2 >⇒1 < x := y -. x,x = 5 y = 2 >
ComRc1

Figure 17: APT for the computation semantics example after the second answer

34

remove(y = 2,y)→ mt
rmv2

remove(x = 5 y = 2,y)→ x = 5
rmv2

x = 5 y = 2[7 / y]→ x = 5 y = 7
st1

< y := x +. y,x = 5 y = 2 >⇒1 < skip,x = 5 y = 7 >
AsRc

< y := x +. y ; x := y -. x,x = 5 y = 2 >⇒1 < x := y -. x,x = 5 y = 2 >
ComRc1

Figure 18: APT for the computation semantics example after the third answer

< y := x +. y,x = 5 y = 2 >⇒1 < skip,x = 5 y = 7 >
AsRc

< y := x +. y ; x := y -. x,x = 5 y = 2 >⇒1 < x := y -. x,x = 5 y = 2 >
ComRc1

Figure 19: APT for the computation semantics example after the fourth answer

Is this rewrite (associated with the rule OpR) correct?

< x +. y, x = 5 y = 2 > =>1 7

Maude> (trust .)

We consider that the application of a primitive operation is simple enough to be trusted. The remain-
ing tree is shown in Figure 18. The next question is related to the application of an equation to update
the store

Is this reduction (associated with the equation st1) correct?

x = 5 y = 2[7 / y] -> x = 5 y = 7

Maude> (yes .)

This answers leads to the tree shown in Figure 19. Finally, a question about assignment is done:

Is this rewrite (associated with the rule AsRc) correct?

< y := x +. y, x = 5 y = 2 > =>1 < skip, x = 5 y = 7 >

Maude> (yes .)

With this information, the debugger is able to find the bug.

The buggy node is:

< y := x +. y ; x := y -. x, x = 5 y = 2 > =>1 < x := y -. x, x = 5 y = 2 >

with the associated rule: ComRc1

If we check the rule ComRc1 we realize that the store is not properly updated. The righthand side of
the rule should be < C’’ ; C’, st’ >:

crl [ComRc1] : < C ; C’, st > => < C’’ ; C’, st’ >

if < C, st > => < C’’, st’ > /\ C =/= C’’ .

However, since we have the evaluation semantics of the language already specified and debugged, we
can use that module as a correct module to reduce the number of questions to only one.

Maude> (correct module EVALUATION-WHILE .)

EVALUATION-WHILE selected as correct module.

Maude> (debug in COMPUTATION-WHILE :

< x := x -. y ; y := x +. y ; x := y -. x, x = 5 y = 2 >

=>* < skip, y = 2 x = 0 > .)

After introducing these commands, the debugger builds the tree shown in Figure 20 and presents the
following question:

35

< A1 ; A2 ; A3, x = 5 y = 2 >⇒f < A2; A3, x = 5 y = 2 >
ComRc1

< A2 ; A3, x = 5 y = 2 >⇒f < A3, x = 5 y = 2 >
ComRc1

< A1 ; A2 ; A3, x = 5 y = 2 >⇒+ < A3, x = 5 y = 2 >
Tr

Figure 20: APT for the computation semantics example using a correct module

Is this rewrite (associated with the rule ComRc1) correct?

< y := x +. y ; x := y -. x, x = 5 y = 2 > =>1 < x := y -. x, x = 5 y = 2 >

Maude> (no .)

Having received a negative answer, the debugger tries to build the debugging tree associated to the
left child in Figure 20 which had remained frozen until now. Such a tree is depicted in Figure 17; however,
this time the information obtained from the correct module makes it possible to prune it so that the result
consists only of the root. Having obtained a single node, it is pointed out as the buggy node.

The buggy node is:

< y := x +. y ; x := y -. x, x = 5 y = 2 > => < x := y -. x, x = 5 y = 2 >

with the associated rule: ComRc1

5 Implementation

We show in this section how the ideas described in the previous sections are implemented. This imple-
mentation can be done in Maude itself by means of its reflective capabilities, that allow us to use Maude
terms and modules as data [9, Chapter 14]. Sections 5.1 to 5.3 describe the tree construction stage, where
the abbreviated proof trees are constructed by means of functions that receive the initial symptom (a
wrong computation), the module where it took place, a correct module (possibly empty), and a set of
suspicious labels. The tree navigation is explained in Section 5.4, and the interaction with the user is
explained in Section 5.5.

5.1 Proof tree definition

In this section we show how to represent in Maude the proof trees used in the debugging process. First,
we implement parametric general trees with generic data in each node. Then, we instantiate them by
defining the concrete data for building our proof trees.

The parameterized module that describes the tree behavior receives the theory TRIV (that simply
requires a sort Elt) as parameter. We use lists of natural numbers to identify (the position of) each
node.

fmod TREE{X :: TRIV} is

pr NAT-LIST .

General trees are defined by means of the constructor tree, composed by some contents (received
from the theory) and a Forest, which in turn is a list of trees.

sorts Tree Forest .

subsort Tree < Forest .

op tree(_,_) : X$Elt Forest -> Tree [format (ngi o d d ++i n--i d)] .

op mtForest : -> Forest [format (ni d)] .

op __ : Forest Forest -> Forest [assoc id: mtForest] .

*** Repeated computations

eq F T F’ T F’’ = F T F’ F’’ .

We define now some operations over trees. The function find extracts the nth tree from a forest.
Notice the use of ~> in the operator declaration, stating that the function is partial, that is, if the number
received as argument is bigger than the size of the forest, the function is not defined.

op find : Forest Nat ~> Tree .

36

The function size calculates the length of a forest.

op size : Forest -> Nat .

Given a tree and a list identifying a node, the function getContents extracts the contents of the
node described by the list, getForest extracts its forest, getSubTree returns the whole subtree, and
hasOffspring? checks if the forest of the node is not empty.

op getContents : Tree NatList ~> X$Elt .

op getForest : Tree NatList ~> Forest .

op getSubTree : Tree NatList ~> Tree .

op hasOffspring? : Tree NatList ~> Bool .

...

endfm

We define now proof trees by instantiating the values contained in each node. We want to know the
name of the statement associated with the node, and the lefthand and righthand sides of the computation
(or the term and sort of a membership). We declare a sort Inference that keeps these values.

fmod PROOF-TREE-NODE is

pr META-TERM .

sort Inference .

op _:_->_ : Qid Term Term -> Inference [format (b o d b o d)] .

op _:_:_ : Qid Term Type -> Inference [format (b o d b o d)] .

In the case of rewrites, we distinguish between nodes in the one-step tree,

op _:_=>1_ : Qid Term Term -> Inference [format (b o d b o d)] .

and nodes in the many-steps tree:

op _=>+_ : Term Term -> Inference [format (d b o d)] .

Since the many-steps tree is computed by demand, its leaves corresponding to one-step rewrites are
kept as “frozen,” and will be evaluated only if needed:

op _:_=>f_ : Qid Term Term -> Inference .

In addition, we have an auxiliary node constructor

op _:_=>_top_=>_ : Qid Term Term Term Term -> Inference .

that is only used while the debugging tree is being built out of the trace.
We are also interested in the number of nodes in each subtree, so we define a constructor node that

contains an inference and a natural number, with their corresponding look up functions.

sort Node .

op node : Inference Nat -> Node .

var I : Inference .

var N : Nat .

op inf : Node -> Inference .

op offspring : Node -> Nat .

eq inf(node(I, N)) = I .

eq offspring(node(I, N)) = N .

endfm

We use this module to create a view from the TRIV theory.

view ProofTreeNode from TRIV to PROOF-TREE-NODE is

sort Elt to Node .

endv

37

We obtain our tree by instantiating the module TREE above.

fmod PROOF-TREE is

pr TREE{ProofTreeNode} .

In addition, this module defines functions to obtain the different components from the root: getLabel
extracts the statement identifier, getFirstTerm returns the first term from the inference, getSecondTerm
extracts the second term in case the inference is related to an equation or a rule, and getOffspring returns
the number of nodes in the tree.

op getLabel : Tree ~> Qid .

op getFirstTerm : Tree -> Term .

op getSecondTerm : Tree ~> Term .

op getOffspring : Tree -> Nat .

When a tree is modified by deleting some nodes, the information about the size of each subtree becomes
obsolete. We use a function calculateOffspring to update the number of nodes in each subtree.

op calculateOffspring : Tree -> Tree .

The function deleteSubTree removes a subtree from the tree, updating the information about the
number of nodes of each subtree, being the third parameter the size of the tree to be deleted.

op deleteSubTree : Tree NatList Nat ~> Tree .

...

endfm

5.2 Auxiliary modules

In this section we describe the main auxiliary modules used by the tool.
The PAIR module defines pairs of elements, that satisfy the theory TRIV, and the corresponding

projection functions:

fmod PAIR{X :: TRIV, Y :: TRIV} is

sort Pair{X, Y} .

op <_,_> : X$Elt Y$Elt -> Pair{X, Y} .

var X : X$Elt .

var Y : Y$Elt .

op first : Pair{X, Y} -> X$Elt .

op second : Pair{X, Y} -> Y$Elt .

eq first(< X, Y >) = X .

eq second(< X, Y >) = Y .

endfm

In the divide and query strategy, the user can decide to trust the statement associated to the current
question. In this case, the tree will be pruned, deleting all the nodes associated with this statement.
Since we cannot prune the root, we keep it and use an auxiliary function pruneAux for the rest of the
tree. Once the tree has been pruned, the size of all the subtrees is recalculated.

fmod TREE-PRUNING is

pr PROOF-TREE .

op prune : Tree Qid -> Tree .

op pruneAux : Tree Qid -> Tree .

op prune* : Forest Qid -> Forest .

...

endfm

The MODULES module deals with the operations defined over modules. It defines the following functions:

38

fmod MODULES is

pr META-LEVEL .

pr MAYBE{Module} * (op maybe to noModule) .

pr CONVERSION .

• functional2system, that transforms a functional module into a system module by adding the
empty set of rules.

op functional2system : FModule -> SModule .

eq functional2system(fmod Q is IL sorts SS . SSDS ODS MAS EqS endfm) =

mod Q is IL sorts SS . SSDS ODS MAS EqS none endm .

• deleteSuspicious, that given a module and a set of suspicious labels, transforms the module by
deleting these statements.

op deleteSuspicious : Module QidSet -> Module .

eq deleteSuspicious(FM, QS) = deleteSuspicious(functional2system(FM), QS) .

eq deleteSuspicious(mod Q is IL sorts SS . SSDS ODS MAS EqS RlS endm, QS) =

mod Q is

IL

sorts SS .

SSDS

ODS

delete(MAS, QS)

delete(EqS, QS)

delete(RlS, QS)

endm .

op delete : MembAxSet QidSet -> MembAxSet .

op delete : EquationSet QidSet -> EquationSet .

op delete : RuleSet QidSet -> RuleSet .

• extractLabels, that extracts all the labels in a module. We use this function to know which
statements must be treated if the user decides to debug without selecting specific labels.

op extractLabels : Module -> QidSet .

op extractLabels : MembAxSet -> QidSet .

op extractLabels : EquationSet -> QidSet .

op extractLabels : RuleSet -> QidSet .

• the functions generalEq and generalMb, that return the given equation or membership as a con-
ditional one.

op generalEq : Equation -> Equation .

op generalMb : MembAx -> MembAx .

• the functions reduce, normal, and type, that simply abbreviate the composition of other functions

op reduce : Maybe{Module} Term ~> Term .

eq reduce(M, T) = getTerm(metaReduce(M, T)) .

op normal : Maybe{Module} Term ~> Term .

eq normal(M, T) = getTerm(metaNormalize(M, T)) .

op type : Maybe{Module} Term ~> Term .

eq type(M, T) = getType(metaReduce(M, T)) .

...

endfm

39

The module SUBSTITUTION is in charge of applying substitutions to terms.

fmod SUBSTITUTION is

pr MODULES .

The function substitute applies a substitution to a term, and then normalizes it:

op substitute : Module Term Substitution -> Term .

op substitute : Term Substitution -> Term .

op substitute* : TermList Substitution -> TermList .

...

The function substituteHole substitutes the hole in a context by a term, and returns the normal
form of the term.

op substituteHole : Module Context Term -> Term .

...

endfm

5.3 Debugging tree construction

In this section we describe how the different abbreviated debugging trees are built. First, we describe the
construction of debugging trees for reductions and memberships, and then we use them in the construction
of trees for rewrites. Instead of creating the complete proof trees and then abbreviating them, we build
the abbreviated proof trees directly.

5.3.1 Debugging trees for wrong reductions and memberships

The function createTree builds debugging trees for reductions or memberships. It exploits the fact that
the equations and membership axioms are both terminating and confluent. It receives the module where
a suspicious inference took place, a correct module (or the constant noModule when no such module is
provided) to prune the tree, the term initially reduced, the (erroneous) result obtained, and the set of
suspicious statement labels. It keeps the initial reduction as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree, receives the module
“cleaned” of suspicious statements (by using deleteSuspicious), and generates the forest of abbreviated
trees corresponding to the reduction between the two terms given as arguments. This transformed module
is used to improve the efficiency of the tree construction, because we can use it to check if a term reaches
its final form by using only trusted statements, thus avoiding to build a tree that will be finally empty.

fmod FUNCTIONAL-TREE-CONSTRUCTION is

pr SUBSTITUTION .

pr PAIR{TermList, Forest} .

pr MAYBE{Forest} * (op maybe to noProof) .

op createTree : Module Maybe{Module} Term Term QidSet -> Tree .

ceq createTree(M, CM, T, T’, QS) =

contract(tree(node(’root : T -> T’, getOffspring*(F) + 1), F))

if M’ := deleteSuspicious(M, QS) /\

F := createForest(M, M’, CM, T, T’, QS) .

The contract function prunes the root of the tree if it is duplicated after the computation of the tree.

op contract : Tree -> Tree .

eq contract(tree(PN, TR)) = TR .

eq contract(TR) = TR [owise] .

It is also possible that the inference we are debugging is a membership. The createTree function is
defined in a similar way to the one above, calculating the least sort possible for the term.

op createTree : Module Maybe{Module} Term Sort QidSet -> Tree .

ceq createTree(M, CM, T, S, QS) =

contract(tree(node(’root : T : S, getOffspring*(F) + 1), F))

if M’ := deleteSuspicious(M, QS) /\

F := createForest(M, M’, CM, T, type(M, T), QS) .

40

where createForest computes the normal form of the term received as argument and then builds the
proof tree for the sort inference (as we will see below).

We use the function createForest to create a forest of abbreviated trees. It receives as parameters
the module where the reduction was done, the transformed module (that only allows trusted inferences),
a correct module (possibly noModule) to check the inferences, two terms representing the inference whose
proof tree we want to generate, and a set of labels of suspicious equations and memberships. This function
checks if the terms are equal, if the result can be reached by using only trusted statements, or if the correct
module can calculate this inference; in such cases, there is no need to calculate the tree, so the empty
forest is returned. Otherwise, it uses the function createForest2, which works with the same innermost
strategy as the Maude interpreter: It first tries to fully reduce the subterms (by means of the function
reduceSubterms), and once all the subterms have been reduced, if the result is not the final one, it tries
to reduce at the top (by using the function applyEq), to reach the final result by transitivity.

op createForest : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest(OM, TM, CM, T, T’, QS) =

if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest

else createForest2(OM, TM, CM, T, T’, QS)

fi .

When the term being reduced is of the form if T1 then T2 else T3 fi Maude first evaluates T1
and then, depending on the result, it evaluates either T2 or T3. The first equation of createForest2
handles this special behavior, so that only debugging trees that correspond to evaluated subterms are
really built.

op createForest2 : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest2(OM, TM, CM, ’if_then_else_fi[T1, T2, T3], T’, QS) =

createForest(OM, TM, CM, T1, reduce(OM, T1), QS)

if reduce(OM, T1) == ’true.Bool then

createForest(OM, TM, CM, T2, T’, QS)

else

if reduce(OM, T1) == ’false.Bool then

createForest(OM, TM, CM, T3, T’, QS)

else

createForest(OM, TM, CM, T2, reduce(OM, T2), QS)

createForest(OM, TM, CM, T3, reduce(OM, T3), QS)

fi

fi .

ceq createForest2(OM, TM, CM, T, T’, QS) = if T’’ == T’ then F

else F applyEq(OM, TM, CM, T’’, T’, QS)

fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The reduceSubterms function returns a pair consisting of the term with its subterms fully reduced
(that is, this function reproduces a specific behavior of the congruence rule shown in Figure 1) and the
forest of abbreviated trees generated by these reductions.

op reduceSubterms : Module Module Maybe{Module} Term QidSet -> Pair{TermList, Forest} .

op reduceSubterms : Module Module Maybe{Module} TermList QidSet

Pair{TermList, Forest} -> Pair{TermList, Forest} .

ceq reduceSubterms(OM, TM, CM, Q[TL], QS) = < normal(OM, Q[TL’]), F >

if < TL’, F > := reduceSubterms(OM, TM, CM, TL, QS, < empty, mtForest >) .

eq reduceSubterms(OM, TM, CM, T, QS) = < T, mtForest > [owise] .

eq reduceSubterms(OM, TM, CM, empty, QS, < TL, F >) = < TL, F > .

ceq reduceSubterms(OM, TM, CM, (T, TL’), QS, < TL, F >) =

reduceSubterms(OM, TM, CM, TL’, QS,

< (TL, T’), F createForest(OM, TM, CM, T, T’, QS) >)

if T’ := reduce(OM, T) .

The function applyEq tries to apply (at the top) one equation,3 by using the replacement rule from
Figure 1, with the constraint that we cannot apply equations with the otherwise attribute if other

3Since the module is assumed to be confluent, we can choose any equation and the final result should be the same.

41

equations can be applied. To apply an equation we check if the term we are trying to reduce matches
the lefthand side of the equation and its conditions are fulfilled. If this happens, we obtain a substitution
(from both the matching with the lefthand side and the matching conditions) that we can apply to the
righthand side of the equation. Note that if we can obtain the transition in the correct module, the forest
is not calculated.

op applyEq : Module Module Maybe{Module} Term Term QidSet -> Maybe{Forest} .

op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Maybe{Forest} .

ceq applyEq(OM, TM, CM, T, T’, QS) = mtForest

if reduce(TM, T) == T’ or-else reduce(CM, T) == T’ .

eq applyEq(OM, TM, CM, T, T’, QS) = applyEq(OM, TM, CM, T, T’, QS, getEqs(OM)) [owise] .

First, we try to apply the equations without the otherwise attribute.

ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =

if in?(AtS, QS) then

tree(node(label(AtS) : T -> T’, getOffspring*(F) + 1), F)

else F

fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\

not owise?(AtS) /\

SB := metaMatch(OM, L, T, C, 0) /\

R’ := substitute(OM, R, SB) /\

F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

If we cannot apply any equation without the otherwise attribute, we check the other equations.

ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =

if in?(AtS, QS) then

tree(node(label(AtS) : T -> T’, getOffspring*(F) + 1), F)

else F

fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\

owise?(AtS) /\

SB := metaMatch(OM, L, T, C, 0) /\

R’ := substitute(OM, R, SB) /\

F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

Finally, if no equation is applicable, the function returns noProof.

eq applyEq(OM, TM, CM, T, T’, QS, EqS) = noProof [owise] .

We show now how the proof trees for the conditions in conditional equations (and memberships) are
generated. Since conditionForest is used after having checked that the condition is fulfilled (by the
function metaMatch above), we do not check it again.

We distinguish between the different types of conditions. If we have an equation, we add the trees of
the reduction of the terms to their respective normal forms.

op conditionForest : Condition Module Module Maybe{Module} QidSet -> Forest .

eq conditionForest(T = T’ /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T, reduce(OM, T), QS)

createForest(OM, TM, CM, T’, reduce(OM, T’), QS)

conditionForest(COND, OM, TM, CM, QS) .

The case of the matching conditions is very similar. We generate the forest for the normal form of
the righthand side.

eq conditionForest(T := T’ /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T’, reduce(OM, T), QS)

conditionForest(COND, OM, TM, CM, QS) .

42

In the membership case, we use the version of createForest that builds a forest for a membership
inference where the sort is the least one assignable to the term in the condition.

eq conditionForest(T : S /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T, type(OM, T), QS)

conditionForest(COND, OM, TM, CM, QS) .

Finally, the empty condition generates the empty forest.

eq conditionForest(nil, OM, TM, CM, QS) = mtForest .

To generate the forest for memberships we use the function createForest, that mimics the subject
reduction rule from Figure 1 by first computing the tree for the full reduction of the term (by means of
createForest) and then computing the tree for the membership inference by using an auxiliary version
of createForest that uses the operator declarations and the membership axioms. Note that if we can
infer the type from the correct module, there is no need to calculate the forest.

op createForest : Module Module Maybe{Module} Term Sort QidSet -> Forest .

op createForest : Module Module Maybe{Module} Term Sort QidSet OpDeclSet

MembAxSet -> Forest .

ceq createForest(OM, TM, CM, T, S, QS) = mtForest

if sortLeq(TM, type(TM, T), S) or-else sortLeq(CM, type(CM, T), S) .

ceq createForest(OM, TM, CM, T, S, QS) =

createForest(OM, TM, CM, T, T’, QS)

createForest(OM, TM, CM, T’, S, QS, getOps(OM), getMbs(OM))

if T’ := reduce(OM, T) [owise] .

The auxiliary createForest computes a forest for a membership inference of the least sort of a term
previously fully reduced; this corresponds to a concrete application of the membership inference rule from
Figure 1. It first checks if the membership has been inferred by using the operator declarations. If the
membership has not been computed by using these declarations, it checks the memberships.

eq createForest(OM, TM, CM, T, S, QS, ODS, MAS) =

if applyOp(OM, TM, CM, T, S, QS, ODS) =/= noProof then

applyOp(OM, TM, CM, T, S, QS, ODS)

else applyMb(OM, TM, CM, T, S, QS, MAS)

fi .

To check the operators we examine that both the arity and co-arity of the term and the declaration
fit. We recursively calculate the forest generated by the subterms. Notice that we never generate a new
node for the application of an operator, because we always trust the signature.

op applyOp : Module Module Maybe{Module} Term Sort QidSet OpDeclSet -> Maybe{Forest} .

ceq applyOp(OM, TM, CM, Q[TL], Ty, QS, op Q : TyL -> Ty [AtS] . ODS) =

createForest*(OM, TM, CM, TL, QS)

if checkTypes(TL, TyL, OM) .

ceq applyOp(OM, TM, CM, CONST, Ty, QS, op Q : nil -> Ty [AtS] . ODS) = mtForest

if getName(CONST) = Q /\

getType(CONST) = Ty .

The function checkTypes examines that all the subterms have the appropriate type in the operator
declaration; while createForest* generates the corresponding forest.

op checkTypes : TermList TypeList Module -> Bool .

eq checkTypes(empty, nil, M) = true .

ceq checkTypes((T, TL), Ty TyL, M) = checkTypes(TL, TyL, M)

if sortLeq(M, type(M, T), Ty) .

eq checkTypes(TL, TyL, M) = false [owise] .

op createForest* : Module Module Maybe{Module} TermList QidSet -> Forest .

eq createForest*(OM, TM, CM, empty, QS) = mtForest .

eq createForest*(OM, TM, CM, (T, TL), QS) = createForest(OM, TM, CM, T, type(OM, T), QS)

createForest*(OM, TM, CM, TL, QS) .

43

Notice that the operator at top in the term can be different of the operator declaration if it is declared
with the iter operator. We treat this case by eliminating the iteration from the top with the function
noIter.

ceq applyOp(OM, TM, CM, Q’[T], Ty’, QS, op Q : Ty -> Ty’ [iter AtS] . ODS) =

createForest(OM, TM, CM, Q’’[T], type(OM, Q’’[T]), QS)

if Q[Q’’[T]] := noIter(Q’[T]) /\

sortLeq(OM, type(OM, Q’’[T]), Ty) .

eq applyOp(OM, TM, CM, T, S, QS, ODS) = noProof [owise] .

op noIter : Term -> Term .

...

We check the membership axioms in a similar fashion to the equation application, that is, we only
generate a new root below the forest for the conditions if the membership is suspicious. The unconditional
axioms generate leaves of the tree, while the conditional ones generate nodes with (possibly) non-empty
forests.

op applyMb : Module Module Maybe{Module} Term Sort QidSet MembAxSet -> Forest .

ceq applyMb(OM, TM, CM, T’, S, QS, MA MAS) =

if in?(AtS, QS) then

tree(node(label(AtS) : T’ : S, getOffspring*(F) + 1), F)

else F

fi

if cmb T : S if C [AtS] . := generalMb(MA) /\

SB := metaMatch(OM, T, T’, C, 0) /\

F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS) .

eq applyMb(OM, TM, CM, T, S, QS, MA) = mtForest [owise] .

endfm

5.3.2 Debugging trees for wrong rewrites

We use a different methodology in the construction of the debugging tree for incorrect rewrites. Since
these modules are not assumed to be confluent or terminating, we use the predefined breadth-first search
function metaSearchPath to find from the initial term the wrong term introduced by the user, and then
we use the returned trace to build the debugging tree. The trace returned by Maude when searching
from T to T’ is a list of steps of the form

{T1, Ty1, R1} ... {Tn, Tyn, Rn}

where T1 is the normal form of T, Ri is the rule applied to (a subterm of) Ti to obtain Ti+1 (which is
already a normal form), and T’ is the result of applying Rn to Tn.

The function createRewTree, given the module where the rewrite took place, a module with correct
statements (possibly empty), the rewritten term, the result term, the set of suspicious labels, the type of
tree selected (many-steps or one-step, identified by constants ms and os in the module TREE-TYPE), and
the bound of the search in the correct modules, creates the corresponding debugging tree.

fmod SYSTEM-TREE-CONSTRUCTION is

pr FUNCTIONAL-TREE-CONSTRUCTION .

pr PAIR{Substitution, Context} .

pr PAIR{TermList, NeCTermList} .

pr PAIR{Forest, Forest} .

pr MAYBE{Tree} * (op maybe to error) .

pr TREE-TYPE .

pr EXT-BOOL .

op createRewTree : Module Maybe{Module} Term Term QidSet TreeType Bound -> Maybe{Tree} .

eq createRewTree(OM, CM, T, T’, QS, os, B) = oneStepTree(OM, CM, T, T’, QS, B) .

eq createRewTree(OM, CM, T, T’, QS, ms, B) = manyStepsTree(OM, CM, T, T’, QS, B) .

44

The function oneStepTree creates a complete debugging tree with only one-step rewrites in its nodes.
It puts as root of the tree the complete inference, computes the tree for the reduction from the initial
term to normal form with the function createForest from Section 5.3.1, and then computes the rest of
the tree with the function oneStepForest. This correspond to a concrete application of the equivalence
class inference rule from Figure 1.

op oneStepTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq oneStepTree(OM, CM, T, T’, QS, B) =

contract(tree(node(T =>+ T’, getOffspring*(F) + 1), F))

if TM := deleteSuspicious(OM, QS) /\

T1 := reduce(OM, T) /\

F := createForest(OM, TM, CM, T, T1, QS)

oneStepForest(OM, TM, CM, T1, T’, QS, B) .

eq oneStepTree(OM, CM, T, T’, QS, B) = error [owise] .

oneStepForest computes the trace of a rewrite with the predefined function metaSearchPath and
uses it to generate a debugging tree by using trace2forest:

op oneStepForest : Module Module Maybe{Module} Term Term QidSet Bound -> Maybe{Forest} .

ceq oneStepForest(OM, TM, CM, T, T’, QS, B) = F

if TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := trace2forest(OM, TM, CM, TR, T’, QS, B) .

eq oneStepForest(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

The function trace2forest generates a forest of one-step rewrites by extracting each step of the trace
and creating its corresponding tree with the function stepForest.

op trace2forest : Module Module Maybe{Module} Trace Term QidSet Bound -> Forest .

eq trace2forest(OM, TM, CM, nil, T, QS, B) = mtForest .

eq trace2forest(OM, TM, CM, {T, Ty, R}, T’, QS, B) =

stepForest(OM, TM, CM, T, T’, R, QS, B, os) .

eq trace2forest(OM, TM, CM, {T, Ty, R} {T’, Ty’, R’} TR, T’’, QS, B) =

stepForest(OM, TM, CM, T, T’, R, QS, B, os)

trace2forest(OM, TM, CM, {T’, Ty’, R’} TR, T’’, QS, B) .

The first equation of stepForest checks if the value can be obtained by using trusted statements or
the correct module.

op stepForest : Module Module Maybe{Module} Term Term Rule QidSet Bound TreeType -> Forest .

ceq stepForest(OM, TM, CM, T, T’, R, QS, B, TT) = mtForest

if secure?(TM, CM, T, T’, B) .

where secure? searches in the modules with correct statements if the rewrite is possible. Note the use
of the bound, that can be selected by the user.

op secure? : Module Maybe{Module} Term Term Bound -> Bool .

eq secure?(TM, CM, T, T’, B) = metaSearchPath(TM, T, T’, nil, ’+, B, 0) :: Trace

or-else metaSearchPath(CM, T, T’, nil, ’+, B, 0) :: Trace .

The second equation of stepForest deals with the other cases. It uses the function getInfo to obtain
the substitution and the context of the application of the rule, and then applies this substitution in the
lefthand and righthand sides to obtain the rewritten (sub)terms. The whole rewritten term is obtained
by substituting the hole in the context by the subterm computed before (by using substituteHole).
The corresponding normal forms are computed with the function createForest for reductions. This
equation reproduces the abbreviation of the application of the replacement, congruence, and equivalence
class inference rules.

ceq stepForest(OM, TM, CM, T, T’, R, QS, B, TT) = if trusted?(R, QS) then F F’

else tree(node(getName(R) : T1 =>1 T3, getOffspring*(F) + 1), F) F’ fi

if < SB, C > := getInfo(OM, T, T’, getName(R), 0) /\

T1 := substitute(OM, getLefthand(R), SB) /\

T2 := substitute(OM, getRighthand(R), SB) /\

45

T3 := reduce(OM, T2) /\

F := conditionForest(substitute(OM, getCondition(R), SB), OM, TM, CM, QS, B, TT)

createForest(OM, TM, CM, T2, T3, QS) /\

F’ := createForest(OM, TM, CM, substituteHole(OM, C, T3), T’, QS) [owise] .

op getName : Rule ~> Qid .

op getCondition : Rule -> Condition .

op getRighthand : Rule -> Term .

op getLefthand : Rule -> Term .

...

where trusted? checks if the rule is not labeled or it is labeled but the label does not belong to the
set of suspicious statements, and getInfo uses metaXapply to compute the substitution and the context
needed to rewrite a term into another one.

op trusted? : Rule QidSet -> Bool .

eq trusted?(rl T => T’ [label(Q) AtS] ., Q ; QS) = false .

eq trusted?(crl T => T’ if COND [label(Q) AtS] ., Q ; QS) = false .

eq trusted?(R, QS) = true [owise] .

op getInfo : Module Term Term Qid Nat ~> Pair{Substitution, Context} .

ceq getInfo(M, T, T’, Q, N) = < SB, C >

if {T’, Ty, SB, C} := metaXapply(M, T, Q, none, 0, unbounded, N) .

ceq getInfo(M, T, T’, Q, N) = getInfo(M, T, T’, Q, s(N))

if {T’’, Ty, SB, C} := metaXapply(M, T, Q, none, 0, unbounded, N) /\

T’ =/= T’’ .

The new version of function conditionForest has as new parameters the bound of the search in the
correct modules and a value indicating if the forest generated by the conditions must be either one-step
or many-step.

op conditionForest : Condition Module Module Maybe{Module} QidSet Bound TreeType -> Forest .

eq conditionForest(nil, OM, TM, CM, QS, B, TT) = mtForest .

eq conditionForest(T = T’ /\ COND, OM, TM, CM, QS, B, TT) =

createForest(OM, TM, CM, T, reduce(OM, T), QS)

createForest(OM, TM, CM, T’, reduce(OM, T’), QS)

conditionForest(COND, OM, TM, CM, QS, B, TT) .

eq conditionForest(T := T’ /\ COND, OM, TM, CM, QS, B, TT) =

createForest(OM, TM, CM, T’, reduce(OM, T), QS)

conditionForest(COND, OM, TM, CM, QS, B, TT) .

eq conditionForest(T : S /\ COND, OM, TM, CM, QS, B, TT) =

createForest(OM, TM, CM, T, type(OM, T), QS)

conditionForest(COND, OM, TM, CM, QS, B, TT) .

Furthermore, it is also defined the case of rewrite conditions, that uses the corresponding tree con-
struction function.

eq conditionForest(T => T’ /\ COND, OM, TM, CM, QS, B, TT) =

if TT == os then oneStepForest(OM, TM, CM, T, T’, QS, B)

else manyStepsTree2(OM, TM, CM, T, T’, QS, B)

fi

conditionForest(COND, OM, TM, CM, QS, B, TT) .

The many-steps debugging tree is built with the function manyStepsTree. This tree is computed by
demand, so that the debugging subtrees corresponding to one-step rewrites are only generated when they
are pointed out as wrong. It uses an auxiliary function manyStepsTree2, that also receives as parameter
the module cleaned of suspicious statements with deleteSuspicious.

op manyStepsTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq manyStepsTree(OM, CM, T, T’, QS, B) =

contract(tree(node(T =>+ T’, getOffspring*(F) + 1), F))

if F := manyStepsTree2(OM, deleteSuspicious(OM, QS), CM, T, T’, QS, B) .

eq manyStepsTree(OM, CM, T, T’, QS, B) = error [owise] .

46

This auxiliary function uses the function metaSearchPath to compute the trace. If it is not empty, the
forest for the reduction of the initial term to normal form is built with the function createForest and
the tree for the rewrites is appended to this forest. If the trace consists on only one step, it is expanded
with the function stepForest shown above. Otherwise, the many-steps tree from the trace is build with
the function trace2tree.

op manyStepsTree2 : Module Module Maybe{Module} Term Term QidSet Bound ~> Maybe{Forest} .

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = F

if {T’’, Ty, R} TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := createForest(OM, TM, CM, T, T’’, QS)

if TR =/= nil

then trace2tree(OM, TM, CM, {T’’, Ty, R} TR, T’, QS, B, mtForest, 0)

else stepForest(OM, TM, CM, T’’, T’, R, QS, B, ms)

fi .

If the trace is empty, only the tree for the reduction is computed:

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = createForest(OM, TM, CM, T, T’, QS)

if nil == metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) .

Finally, if the final term is not reachable from the initial term, an error is returned. Note that errors
due to non-termination cannot be detected.

eq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

The function trace2tree traverses the trace and for those steps which are not secure (that is, they
use suspicious statements and cannot be inferred in the correct module) it builds a temporal node that
will be used later to build the many-steps tree with the function divide.

op trace2tree : Module Module Maybe{Module} Trace Term QidSet Bound Forest Nat -> Tree .

eq trace2tree(OM, TM, CM, nil, T’, QS, B, F, N) = mtForest .

ceq trace2tree(OM, TM, CM, {T, Ty, R}, T’, QS, B, F, N) = divide(F, N)

if secure?(TM, CM, T, T’, B) .

eq trace2tree(OM, TM, CM, {T, Ty, R}, T’, QS, B, F, N) =

divide(F getTree(OM, T, T’, R, QS), s(N)) [owise] .

ceq trace2tree(OM, TM, CM, {T, Ty, R} {T’, Ty’, R’} TR, T’’, QS, B, F, N) =

trace2tree(OM, TM, CM, {T’, Ty’, R’} TR, T’’, QS, B, F, N)

if secure?(TM, CM, T, T’, B) .

eq trace2tree(OM, TM, CM, {T, Ty, R} {T’, Ty’, R’} TR, T’’, QS, B, F, N) =

trace2tree(OM, TM, CM, {T’, Ty’, R’} TR, T’’, QS, B, F

getTree(OM, T, T’, R, QS), s(N)) [owise] .

where the function getTree uses the function getInfo to obtain the concrete subterms that have been
rewritten, although it also keeps the information about the terms that have been rewritten at the top,
which will be used later to create the inferences obtained by transitivity.

op getTree : Module Term Term Rule QidSet -> Tree .

ceq getTree(M, T, T’, R, QS) = tree(node(Q : T1 => T3 top T => T’, 1), mtForest)

if Q := getName(R) /\

< SB, C > := getInfo(M, T, T’, Q, 0) /\

T1 := substitute(M, getLefthand(R), SB) /\

T2 := substitute(M, getRighthand(R), SB) /\

T3 := reduce(M, T2) .

The function divide creates a balanced tree from the forest of leaves obtained from the trace. It
divides the forest received as parameter into two forests of approximately the same size, recursively
creates their trees, and uses them as children of a new binary tree that has as root the combination by
transitivity of the rewrites in their roots.

op divide : Forest Nat ~> Tree .

We consider as basic cases the forests composed by one, two, or three trees.

47

eq divide(A, 1) = freeze(A) .

ceq divide(A A’, 2) = tree(node(getFirstTerm(A) =>+ getSecondTerm(A’), 3), A2 A3)

if A2 := freeze(A) /\

A3 := freeze(A’) .

ceq divide(A F, 3) = tree(node(getFirstTerm(A) =>+ getSecondTerm(A’), 5), A2 A’)

if A’ := divide(F, 2) /\

A2 := freeze(A) .

We transform the leaves of the trees with the function freeze because the exta information is no longer
useful:

op freeze : Tree -> Tree .

eq freeze(tree(node(Q : T => T’ top T1 => T2, N), F)) = tree(node(Q : T =>f T’, N), F) .

eq freeze(A) = A [owise] .

The general case halves the forest and creates the corresponding trees, building a new tree with them:

ceq divide(F, N) = tree(node(getFirstTerm(A) =>+ getSecondTerm(A’), s(N1)), A A’)

if N > 3 /\

N’ := N quo 2 /\

< F’, F’’ > := takeDrop(F, N’) /\

A := divide(F’, N’) /\

A’ := divide(F’’, sd(N, N’)) /\

N1 := getOffspring(A) + getOffspring(A’) .

where the function takeDrop returns a pair composed by the first N elements of the forest and the rest:

op takeDrop : Forest Nat -> Pair{Forest, Forest} .

eq takeDrop(F, N) = takeDrop(F, N, mtForest) .

op takeDrop : Forest Nat Forest -> Pair{Forest, Forest} .

eq takeDrop(A F, s(N), F’) = takeDrop(F, N, F’ A) .

eq takeDrop(F, N, F’) = < F’, F > [owise] .

endfm

5.4 Debugging tree navigation

Regarding the navigation of the debugging tree, we have implemented two strategies. In the top-down
strategy the selection of the next node of the debugging tree is done by the user, thus we do not need
any extra function to compute it (apart from those in module TREE). On the other hand, the divide and
query strategy selects each time the node whose subtree’s size is the closest one to half the size of the
whole tree, keeping only this subtree if its root is incorrect, and deleting the whole subtree otherwise.

The algorithm in charge of calculating the next node uses auxiliary functions that return pairs con-
sisting of a list of natural numbers (identifying the best node found thus far) and a natural number
(specifying the cost associated with this node).

fmod DIVIDE-QUERY-STRATEGY is

pr PROOF-TREE .

pr PAIR{NatList, Nat} .

var I : Inference .

vars N N’ NODES LAST_DIFF BEST_DIFF NEW_DIFF : Nat .

var F : Forest .

vars NL NL’ BEST_NODE : NatList .

var ND : Node .

var T : Tree .

The function searchBestNode calculates the best node by searching for a subtree that minimizes the
function getDiff, where the first argument is the size of the whole tree and the second one the size of
the subtree. That is, a subtree whose size is the closest one to half the size of the tree.

48

op searchBestNode : Tree -> NatList .

eq searchBestNode(tree(node(I, NODES), F)) =

first(searchBestNode(tree(node(I, NODES), F), NODES, 10 * NODES,

10 * NODES, nil, nil)) .

It uses an auxiliary function that receives the tree, the total number of nodes in the whole tree, the last
and the best difference so far, the identifier of the best node, and the identifier of the root of the subtree
it is currently traversing. The last and best differences are initialized with a value big enough (ten times
the number of nodes), in order to avoid the selection of the initial root as the best node. This function
keeps the information about the last difference in order to stop searching when the current difference is
bigger than the last one. Since we use the symmetric difference function, the difference between the size
of the whole tree and the double of the size of the current subtree will initially decrease (while the double
of the size of the subtree is bigger than the size of the tree) and finally it will increase (when the size of
the tree is bigger than the double of the size of the subtree). Thus, in this case the function returns the
current best node and best difference.

op searchBestNode : Tree Nat Nat Nat NatList NatList -> Pair{NatList, Nat} .

ceq searchBestNode(T, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =

< BEST_NODE, BEST_DIFF >

if LAST_DIFF <= getDiff(NODES, getOffspring(T)) .

If the new difference is better than the last one, the function recursively traverses the forest of the
current node with the function searchBestNode*.

ceq searchBestNode(tree(ND, F), NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =

if NEW_DIFF <= BEST_DIFF then

searchBestNode*(F, NODES, NEW_DIFF, NEW_DIFF, NL, NL, 0)

else

searchBestNode*(F, NODES, NEW_DIFF, BEST_DIFF, BEST_NODE, NL, 0)

fi

if NEW_DIFF := getDiff(NODES, offspring(ND)) /\

LAST_DIFF > NEW_DIFF .

As said above, this function recursively traverses the forest and creates the new node identifiers with
its accumulator parameter.

op searchBestNode* : Forest Nat Nat Nat NatList NatList Nat -> Pair{NatList, Nat} .

eq searchBestNode*(mtForest, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL, N) =

< BEST_NODE, BEST_DIFF > .

ceq searchBestNode*(T F, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL, N) =

if N’ <= BEST_DIFF then

searchBestNode*(F, NODES, LAST_DIFF, N’, NL’, NL, s(N))

else

searchBestNode*(F, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL, s(N))

fi

if < NL’, N’ > := searchBestNode(T, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL N) .

op getDiff : Nat Nat -> Nat .

eq getDiff(N, N’) = sd(N, 2 * N’) .

endfm

5.5 The debugger environment

We implement our system on top of Full Maude, a language that extends Maude with support for
object-oriented specification and advanced module operations [9, Part II]. The implementation of Full
Maude includes code for parsing user input and pretty-printing; storing modules, theories, and views;
and transforming object-oriented modules into system modules.

To parse some input using the built-in function metaParse, Full Maude needs the meta-representation
of the signature in which the input has to be parsed. Thus, we define the signature of the debugger in a
module that extends the Full Maude signature.

49

fmod DD-SIGNATURE is

including FULL-MAUDE-SIGN .

op debug_. : @Bubble@ -> @Command@ .

op top-down‘strategy‘. : -> @Command@ .

op divide-query‘strategy‘. : -> @Command@ .

op one-step‘tree‘. : -> @Command@ .

op many-steps‘tree‘. : -> @Command@ .

op node_. : @Token@ -> @Command@ .

op all‘valid‘. : -> @Command@ .

op yes‘. : -> @Command@ .

op no‘. : -> @Command@ .

op trust‘. : -> @Command@ .

op undo‘. : -> @Command@ .

op correct‘module_. : @ModExp@ -> @Command@ .

op delete‘correct‘module‘. : -> @Command@ .

op set‘bound_. : @Token@ -> @Command@ .

op set‘debug‘select‘on‘. : -> @Command@ .

op set‘debug‘select‘off‘. : -> @Command@ .

op debug-select_. : @NeTokenList@ -> @Command@ .

op debug-deselect_. : @NeTokenList@ -> @Command@ .

op debug-include_. : @Bubble@ -> @Command@ .

op debug-exclude_. : @Bubble@ -> @Command@ .

endfm

This signature is included in the meta-module GRAMMAR to obtain the grammar DD-GRAMMAR, that
allows to parse both Full Maude modules and commands and the debugger commands.

fmod META-DD-SIGN is

inc META-FULL-MAUDE-SIGN .

inc UNIT .

op DD-GRAMMAR : -> FModule [memo] .

eq DD-GRAMMAR = addImports((including ’DD-SIGNATURE .), GRAMMAR) .

...

endfm

The module DD-COMMAND-PROCESSING is in charge of processing the commands dealing with suspicious
statements and the debugging command.

fmod DD-COMMAND-PROCESSING is

pr COMMAND-PROCESSING .

pr META-DD-SIGN .

pr SYSTEM-TREE-CONSTRUCTION .

pr PRINT .

The parsing of the debugging command returns a tuple containing the generated tree, the module
where the computation took place, the set of suspicious statements, and a list of quoted identifiers
indicating if an error has occurred.

sort DebugTuple .

op <_,_,_,_> : Tree Maybe{Module} QidSet QidList -> DebugTuple .

The parsing of the command is done in the GRAMMAR-DEB module, where the first bubble can contain
either a module or just the initial term.

op GRAMMAR-DEB : -> FModule [memo] .

eq GRAMMAR-DEB = addOps(op ’_->_. : ’@Bubble@ ’@Bubble@ -> ’@Inference@ [none] .

op ’_:_. : ’@Bubble@ ’@Bubble@ -> ’@Inference@ [none] .

op ’_=>*_. : ’@Bubble@ ’@Bubble@ -> ’@Inference@ [none] .,

addSorts(’@Inference@, GRAMMAR-RED)) .

50

The function procDebug processes a bubble and returns either a tree for the corresponding debug
command or an error message. It receives the term to be parsed, a correct module (possibly noModule),
a Boolean indicating if debug-select is on, the set of suspicious labels, the selected type of tree, the bound
of the search in the correct module, the default module, and the Full Maude’s database of modules.

After finding out the kind of the debugging command (reduction, membership, or rewrite) and if a
module name has been selected by the command, the function procDebug builds the appropriate tree by
using the functions createTree and createRewTree explained in Section 5.3.

op procDebug : Term Maybe{Module} Bool QidSet TreeType Bound ModuleExpression

Database -> DebugTuple .

The processing of the commands for selecting or deselecting the labels of a list of modules is accom-
plished by the function procInclude. It receives a Boolean indicating if the selection option is enabled,
the term to be parsed (with the list of modules) and the Full Maude’s database, and it returns a pair
with the set of labels from existing modules, and an error message for the problematic modules.

sort IncludePair .

op <_:_> : QidSet QidList -> IncludePair .

op procInclude : Bool Term Database -> IncludePair .

...

endfm

The persistent state of Full Maude’s system is given by a single object o f class DatabaseClass,
which maintains the database of the system. We extend the Full Maude system by defining a subclass of
DatabaseClass inheriting its behavior and adding new attributes to it.

mod DD-DATABASE-HANDLING is

inc DATABASE-HANDLING .

pr DD-COMMAND-PROCESSING .

pr TREE-PRUNING .

pr DIVIDE-QUERY-STRATEGY .

pr LIST{DDState} .

pr LIST{Answer} .

sort DDDatabaseClass .

subsort DDDatabaseClass < DatabaseClass .

op DDDatabase : -> DDDatabaseClass [ctor] .

The new attributes are:

• the debugging tree, that initially is empty, and will be traversed during the debugging process.

op tree :_ : Forest -> Attribute .

• the type of tree (treeType) that will be built when debugging rewrites. It takes the value os when
the one-step tree is selected and ms when the many-steps tree is chosen.

op treeType :_ : TreeType -> Attribute .

• the current node of the tree that we are analyzing, represented by a list of natural numbers.

op current :_ : NatList -> Attribute .

• the strategy to traverse the tree. The top-down strategy is represented by the constant td, and
divide and query is represented by dq.

op strategy :_ : Strat -> Attribute .

51

• the module where debugging takes place. It has sort Maybe{Module}, so its value initially is
noModule.

op module :_ : Maybe{Module} -> Attribute .

• the correct module used to prune the debugging tree (correction). Since this value is optional, it
also has sort Maybe{Module}, and its value is initially noModule.

op correction :_ : Maybe{Module} -> Attribute .

• the bound used in the correct module to search for answers when debugging rewrites.

op bound :_ : Bound -> Attribute .

• the value of the select option, that indicates if it is enabled.

op select :_ : Bool -> Attribute .

• the set of labels considered suspicious.

op suspicious :_ : QidSet -> Attribute [gather(&)] .

• the set of labels that has been considered suspicious for the construction of the current tree
(currentSuspicious).

op currentSuspicious :_ : QidSet -> Attribute [gather(&)] .

• the stack of previous states (previousStates), used to restore the state when the undo command
is used.

op previousStates :_ : List{DDState} -> Attribute [gather(&)] .

• the list of answers already provided by the user, used to avoid making the same question twice.

op answers :_ : List{Answer} -> Attribute [gather(&)] .

• the state of the tool. It is waiting when the tool needs information from the user, computing
when it is processing that information, and finished when the debugging process has concluded.

sort ToolState .

ops waiting computing finished : -> ToolState .

op state :_ : ToolState -> Attribute .

The initial values of these attributes are defined with the constant init-state:

op init-state : -> AttributeSet .

*** Initial values of the attributes (except input and output)

eq init-state = db : initialDatabase,

default : ’CONVERSION, tree : mtForest, module : noModule,

current : nil, strategy : dq, correction : noModule,

previousStates : nil, answers : nil,

bound : 42, state : waiting, treeType : os, suspicious : none,

currentSuspicious : none, select : false .

52

The behavior of the debugger commands is described by means of rewrite rules that change the state
of these attributes. Below we show some of the most interesting rules.

The rule debug starts the debugging process. It receives a term that will be processed with the
function procDebug explained above. If there is no error (that is, the returned list of qids is nil), the
tree, the module, and the set of suspicious labels are updated with the appropriate information, while
the answers given by the user so far and the previous states are reset. However, if the command was
incorrect, the error is shown and the state is set to finished.

crl [debug] :

< O : DDDC | db : DB, input : (’debug_.[T]), output : nil,

default : ME, tree : F, module : MM, correction : MM’,

previousStates : LS, answers : LA, state : TS,

treeType : TT, bound : BND, select : B, suspicious : QS,

currentSuspicious : QS’, AtS >

=> if QIL == nil then

< O : DDDC | db : DB, input : nilTermList, output : nil, default : ME,

tree : F’, module : MM’’, correction : MM’,

previousStates : nil, answers : nil, state : computing,

treeType : TT, bound : BND, select : B, suspicious : QS,

currentSuspicious : QS’’, AtS >

else

< O : DDDC | db : DB, input : nilTermList, output : QIL, default : ME,

tree : mtForest, module : MM, correction : MM’,

previousStates : nil, answers : nil, state : finished,

treeType : TT, bound : BND, select : B, suspicious : QS,

currentSuspicious : QS’, AtS >

fi

if < F’, MM’’, QS’’, QIL > := procDebug(T, MM’, B, QS, TT, BND, ME, DB) .

When the divide and query strategy is selected, the following rule handles the command:

rl [divide-query-strategy] :

< O : DDDC | input : (’divide-query‘strategy‘..@Command@), output : nil,

strategy : STRAT, state : TS, AtS >

=> < O : DDDC | input : nilTermList, output : (’\n ’Divide ’& ’Query ’strategy

’selected. ’\n),

state : if TS == finished then finished else computing fi,

strategy : dq, AtS > .

In the top down strategy, when the user introduces the identifier of a wrong node, the debugger
updates the list of answers and the previous states, and changes the current tree by the appropriate child
of the root.

crl [top-down-traversal] :

< O : DDDC | input : (’node_.[’token[T]]), strategy : td, tree : PT,

previousStates : LS, answers : LA, state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : td, tree : PT’,

previousStates : LS < nil, PT, td >,

answers : LA getAnswer(PT’, wrong), state : computing, AtS >

if N := downNat*(T) /\

N < size(getForest(PT, nil)) /\

PT’ := getSubTree(PT, N) .

where the function getAnswer constructs an answer given the current node and the answer given by the
user.

When the divide and query strategy is selected and the user decides to trust a statement, the current
subtree is deleted and the resulting tree pruned in order to delete the nodes associated with the trusted
statement.

crl [divide-query-traversal] :

< O : DDDC | input : (’trust‘..@Command@), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA,

state : waiting, AtS >

53

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’, current : NL,

previousStates : LS < NL, PT, dq >,

answers : LA getAnswer(getSubTree(PT, NL), right),

state : computing, AtS >

if N := getOffspring(PT, NL) /\

Q := getLabel(PT, NL) /\

PT’ := prune(deleteSubTree(PT, NL, N), Q) .

When the user decides to switch the select mode on to use a subset of the labeled statements as
suspicious, the select attribute is set to true and the set of currently suspicious statements is reset if
the mode was disabled before.

rl [select] :

< O : DDDC | input : (’set‘debug‘select‘on‘..@Command@), select : B,

output : nil, suspicious : QS, AtS >

=> < O : DDDC | input : nilTermList, select : true,

output : (’\n ’Debug ’select ’is ’\! ’on. ’\o ’\n),

suspicious : if B then QS else none fi, AtS > .

...

endm

The module DD manages the introduction of data by the user and the output of the debugger’s
answers. Full Maude uses the input/output facility provided by the LOOP-MODE module [9, Chapter 17],
that consists in an operator [_,_,_] with an input stream (the first argument), an output stream (the
third argument), and a state (given by its second argument).

mod DD is

inc DD-DATABASE-HANDLING .

inc LOOP-MODE .

inc META-DD-SIGN .

op o : -> Oid .

--- State for LOOP mode:

subsort Object < State .

op init-debug : -> System .

rl [init] :

init-debug

=> [nil, < o : DDDatabase | input : nilTermList, output : nil, init-state >, dd-banner] .

The rule in below parses the data introduced by the user, that appears in the first argument of the
loop, in the module DD-GRAMMAR and introduces it in the input attribute if it is correctly built.

crl [in] :

[QIL, < O : X@Database | input : nilTermList, Atts >, QIL’]

=> [nil,

< O : X@Database | input : getTerm(metaParse(DD-GRAMMAR, QIL, ’@Input@)), Atts >,

QIL’]

if QIL =/= nil /\

metaParse(DD-GRAMMAR, QIL, ’@Input@) : ResultPair .

The rule out is in charge of printing the messages from the debugger by moving the data in the
output attribute to the third component of the loop.

rl [out] :

[QIL, < O : X@Database | output : (QI QIL’), Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QI QIL’)] .

endm

The command loop init-debug initializes the state of the loop.

54

6 Conclusions and future work

In this paper we have developed the foundations of declarative debugging of executable rewriting logic
specifications, and we have applied them to implement a debugger for Maude modules. The work en-
compasses and extends previous presentations [6, 5] on the declarative debugging of Maude functional
modules, which constitute now a particular case of a more general setting.

We have described formally how debugging trees can be obtained from Maude proof trees, proving
the correctness and completeness of the debugging technique. The tool based on these ideas allows the
user to concentrate on the logic of the program disregarding the operational details. In order to deal
with the possibly complex questions associated to rewrite statements, the tool offers the possibility of
choosing between two different debugging trees: the one-step trees, with simpler questions and likely
longer debugging sessions, and the many-steps trees which in general require fewer but more complex
questions before finding the bug. The experience will show the user which one must be chosen in each
case depending on the complexity of the specification.

In our opinion, this debugger provides a complement to existing debugging techniques for Maude,
such as tracing and term coloring. An important contribution of our debugger is the help provided by the
tool in locating the buggy statements, assuming the user answers correctly the corresponding questions.

Future work will include the following:

• The current version of our debugger builds incrementally a debugging tree only when the user selects
the many-steps strategy when debugging a rewrite computation. We plan to extend this idea to
the debugging trees for reductions and memberships and for the one-step strategy for rewrites.

• We also want to improve the interaction with the user by providing a complementary graphical
interface that allows the user to navigate the tree with more freedom.

• This interaction could be also improved by allowing the user to give the answer “don’t know”, that
would postpone the answer to the question by asking alternative questions.

• We are investigating how to handle the strat operator attribute, that allows the specifier to define
an evaluation strategy. This can be used to represent some kind of laziness.

• We also plan to study how to debug missing answers [16] in addition to the wrong answers we have
treated thus far.

References

[1] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract diagnosis of functional programs.
In M. Leuschel, editor, Logic Based Program Synthesis and Transformation, volume 2664 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2002.

[2] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational logic.
Theoretical Computer Science, 236:35–132, 2000.

[3] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theoretical Computer
Science, 360(1):386–414, 2006.

[4] R. Caballero. A declarative debugger of incorrect answers for constraint functional-logic programs. In WCFLP
’05: Proceedings of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming, pages
8–13, New York, NY, USA, 2005. ACM Press.

[5] R. Caballero, N. Mart́ı-Oliet, A. Riesco, and A. Verdejo. A declarative debugger for Maude functional
modules. In Proceedings Seventh International Workshop on Rewriting Logic and its Applications, WRLA
2008. Elsevier, 2008. To appear.

[6] R. Caballero, N. Mart́ı-Oliet, A. Riesco, and A. Verdejo. Declarative debugging of membership equational
logic specifications. In Ugo Montanari’s Festschrift, Lecture Notes for Computer Science. Springer, 2008. To
appear.

[7] R. Caballero and M. Rodŕıguez-Artalejo. DDT: A declarative debugging tool for functional-logic languages.
In Proc. 7th International Symposium on Functional and Logic Programming (FLOPS’04), volume 2998 of
Lecture Notes in Computer Science, pages 70–84. Springer, 2004.

[8] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications. CSLI
Publications, Stanford University, 2000.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About Maude: A
High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

55

[10] M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic, many-sorted equational
logic, horn logic with equality, and rewriting logic. Theoretical Computer Science, 373(1-2):70–91, 2007.

[11] M. Hennessy. The Semantics of Programming Languages: An Elementary Introduction Using Structural
Operational Semantics. John Wiley & Sons, 1990.

[12] J. W. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2):133–154, 1987.

[13] I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis, University of Melbourne,
2005.

[14] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science,
96(1):73–155, 1992.

[15] J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-Presicce,
editor, Recent Trends in Algebraic Development Techniques, 12th International Workshop, WADT’97, Tar-
quinia, Italy, June 3–7, 1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1998.

[16] L. Naish. Declarative diagnosis of missing answers. New Generation Computing, 10(3):255–286, 1992.

[17] L. Naish. A declarative debugging scheme. Journal of Functional and Logic Programming, 1997(3), 1997.

[18] H. Nilsson. How to look busy while being as lazy as ever: the implementation of a lazy functional debugger.
Journal of Functional Programming, 11(6):629–671, 2001.

[19] H. Nilsson and P. Fritzson. Algorithmic debugging of lazy functional languages. Journal of Functional
Programming, 4(3):337–370, 1994.

[20] B. Pope. Declarative debugging with Buddha. In Advanced Functional Programming - 5th International
School, AFP 2004, volume 3622 of Lecture Notes in Computer Science, pages 273–308. Springer, 2005.

[21] E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT Press, 1983.

[22] J. Silva. A comparative study of algorithmic debugging strategies. In G. Puebla, editor, Logic-Based Program
Synthesis and Transformation, volume 4407 of Lecture Notes in Computer Science, pages 143–159. Springer,
2007.

[23] A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In Analysis and Visualization Tools
for Constraint Programming, Constraint Debugging (DiSCiPl project), pages 151–174. Springer, 2000.

[24] A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in Maude. Journal of Logic and
Algebraic Programming, 67:226–293, 2006.

[25] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285(2):487–517, 2002.

[26] P. Wadler. Why no one uses functional languages. SIGPLAN Notices, 33(8):23–27, 1998.

56

	Introduction
	Rewriting logic and Maude
	Membership equational logic
	Maude functional modules
	An example of functional module: sorted lists
	Rewriting logic
	Maude system modules
	An example of system module: knight's tour problem

	Debugging trees for Maude specifications
	Proof trees
	Abbreviated proof trees

	Using the debugger
	Assumptions
	Commands
	Examples
	Sorted lists
	Binary search trees
	Knight's tour problem
	WhileL evaluation semantics
	WhileL computation semantics

	Implementation
	Proof tree definition
	Auxiliary modules
	Debugging tree construction
	Debugging trees for wrong reductions and memberships
	Debugging trees for wrong rewrites

	Debugging tree navigation
	The debugger environment

	Conclusions and future work

